196 research outputs found

    Association between somatic cell count and serial locomotion score assessments in UK dairy cows

    Get PDF
    This research investigated the effect of lameness, measured by locomotion score (LS) on the somatic cell count (SCC) of UK dairy cows. The data set consisted of 11,141 records of SCC and LS collected monthly on 12 occasions from 1,397 cows kept on 7 farms. The data were analyzed to account for the correlation of repeated measures of SCC within cow. Results were controlled for farm of origin, stage of lactation, parity, season, and test-day milk yield. Compared with the geometric mean SCC for cows with LS 1 on each farm, cows on farm 3 with LS 2 produced milk with 28,000 fewer somatic cells/mL, and cows with LS 2 on farm 6 produced milk with 30,000 fewer somatic cells/mL at a test day within 10 d. Cows that would have LS 3 six months later produced milk with 16,000 fewer somatic cells/mL compared with the geometric mean SCC for cows that would have LS 1 in 6 mo time. These results illustrate differences in disease dynamics between farms, highlight potential conflict between lameness and mastitis control measures, and emphasize the importance of developing farm-specific estimates of disease costs, and hence, health management plans in clinical practice

    A Numerical Treatment of the Rf SQUID: II. Noise Temperature

    Get PDF
    We investigate rf SQUIDs (Superconducting QUantum Interference Devices), coupled to a resonant input circuit, a readout tank circuit and a preamplifier, by numerically solving the corresponding Langevin equations and optimizing model parameters with respect to noise temperature. We also give approximate analytic solutions for the noise temperature, which we reduce to parameters of the SQUID and the tank circuit in the absence of the input circuit. The analytic solutions agree with numerical simulations of the full circuit to within 10%, and are similar to expressions used to calculate the noise temperature of dc SQUIDs. The best device performance is obtained when \beta_L'\equiv 2\pi L I_0\Phi_0 is 0.6 - 0.8; L is the SQUID inductance, I_0 the junction critical current and \Phi_0 the flux quantum. For a tuned input circuit we find an optimal noise temperature T_{N,opt}\approx 3Tf/f_c, where T, f and f_c denote temperature, signal frequency and junction characteristic frequency, respectively. This value is only a factor of 2 larger than the optimal noise temperatures obtained by approximate analytic theories carried out previously in the limit \beta_L'<<1. We study the dependence of the noise temperature on various model parameters, and give examples using realistic device parameters of the extent to which the intrinsic noise temperature can be realized experimentally.Comment: submitted to J. Low Temp. Phy

    A rotating three component perfect fluid source and its junction with empty space-time

    Get PDF
    The Kerr solution for empty space-time is presented in an ellipsoidally symmetric coordinate system and it is used to produce generalised ellipsoidal metrics appropriate for the generation of rotating interior solutions of Einstein's equations. It is shown that these solutions are the familiar static perfect fluid cases commonly derived in curvature coordinates but now endowed with rotation. The resulting solutions are also discussed in the context of T-solutions of Einstein's equations and the vacuum T-solution outside a rotating source is presented. The interior source for these solutions is shown not to be a perfect fluid but rather an anisotropic three component perfect fluid for which the energy momentum tensor is derived. The Schwarzschild interior solution is given as an example of the approach.Comment: 14 page

    Evaluation studies of a sensing technique for electrostatic charge polarity of pharmaceutical particulates

    Get PDF
    Electrostatic charge due to inter-particle and particle-wall contacts may generate significant hazards during the processing of particulates within the pharmaceutical industry. Although charge behaviour of particulates is erratic and not easy to predict, it would be desirable to characterise the tendency of tribocharging prior to manufacturing. The work reported in this paper concentrates on a new and novel techniques for the detection of the active ingredient and excipient in a bipolar material. Three different case studies are presented for demonstration of the applicability of the method in different practical situations. Work confirmed through an experimental rig set-up indicates that materials that accumulate opposite charge via contact and rubbing can be detected from their charge sign as well as their relative magnitude. The results reported clearly demonstrated that the developed method for charge characterisation is a useful tool to understand how the charges are distributed in a population of particles showing a number of advantages over conventional methods

    Modeling the break-up of nano-particle clusters in aluminum- and magnesium-based metal matrix nano-composites

    Get PDF
    Aluminum- and magnesium-based metal matrix nano-composites with ceramic nano-reinforcements promise low weight with high durability and superior strength, desirable properties in aerospace, automobile, and other applications. However, nano-particle agglomerations lead to adverse effects on final properties: large-size clusters no longer act as dislocation anchors, but instead become defects; the resulting particle distribution will be uneven, leading to inconsistent properties. To prevent agglomeration and to break-up clusters, ultrasonic processing is used via an immersed sonotrode, or alternatively via electromagnetic vibration. A study of the interaction forces holding the nano-particles together shows that the choice of adhesion model significantly affects estimates of break-up force and that simple Stokes drag due to stirring is insufficient to break-up the clusters. The complex interaction of flow and co-joint particles under a high frequency external field (ultrasonic, electromagnetic) is addressed in detail using a discrete-element method code to demonstrate the effect of these fields on de-agglomeration

    A complete 3D numerical study of the effects of pseudoscalar-photon mixing on quasar polarizations

    Full text link
    We present the results of three-dimensional simulations of quasar polarizations in the presence of pseudoscalar-photon mixing in the intergalactic medium. The intergalactic magnetic field is assumed to be uncorrelated in wave vector space but correlated in real space. Such a field may be obtained if its origin is primordial. Furthermore we assume that the quasars, located at cosmological distances, have negligible initial polarization. In the presence of pseudoscalar-photon mixing we show, through a direct comparison with observations, that this may explain the observed large scale alignments in quasar polarizations within the framework of big bang cosmology. We find that the simulation results give a reasonably good fit to the observed data.Comment: 15 pages, 8 figures, significant changes, to appear in EPJ

    Astrophysical Axion Bounds

    Get PDF
    Axion emission by hot and dense plasmas is a new energy-loss channel for stars. Observational consequences include a modification of the solar sound-speed profile, an increase of the solar neutrino flux, a reduction of the helium-burning lifetime of globular-cluster stars, accelerated white-dwarf cooling, and a reduction of the supernova SN 1987A neutrino burst duration. We review and update these arguments and summarize the resulting axion constraints.Comment: Contribution to Axion volume of Lecture Notes in Physics, 20 pages, 3 figure

    Thorough assessment of DNA preservation from fossil bone and sediments excavated from a late Pleistocenee-Holocene cave deposit on Kangaroo Island, South Australia

    Get PDF
    Fossils and sediments preserved in caves are an excellent source of information for investigating impacts of past environmental changes on biodiversity. Until recently studies have relied on morphology-based palaeontological approaches, but recent advances in molecular analytical methods offer excellent potential for extracting a greater array of biological information from these sites. This study presents a thorough assessment of DNA preservation from late Pleistocene-Holocene vertebrate fossils and sediments from Kelly Hill Cave Kangaroo Island, South Australia. Using a combination of extraction techniques and sequencing technologies, ancient DNA was characterised from over 70 bones and 20 sediment samples from 15 stratigraphic layers ranging in age from >20 ka to ~6.8 ka. A combination of primers targeting marsupial and placental mammals, reptiles and two universal plant primers were used to reveal genetic biodiversity for comparison with the mainland and with the morphological fossil record for Kelly Hill Cave. We demonstrate that Kelly Hill Cave has excellent long-term DNA preservation, back to at least 20 ka. This contrasts with the majority of Australian cave sites thus far explored for ancient DNA preservation, and highlights the great promise Kangaroo Island caves hold for yielding the hitherto-elusive DNA of extinct Australian Pleistocene species
    corecore