16 research outputs found

    Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases

    Get PDF
    Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination

    Characterization of Efficiency and Mechanisms of Cold Atmospheric Pressure Plasma Decontamination of Seeds for Sprout Production

    Get PDF
    The consumption of fresh fruit and vegetable products has strongly increased during the past few decades. However, inherent to all minimally processed products is the short shelf life, and the risk of foodborne diseases, which have been increasingly related to such products in many parts of the world. Because of the favorable conditions for the growth of bacteria during the germination of seeds, sprouts are a frequent source for pathogenic bacteria, thus highlighting the need for seed decontamination to reduce the risk of foodborne illness. Consequently, this study focused on cold atmospheric pressure plasma (CAPP) treatment of artificially inoculated seeds in a diffuse coplanar surface barrier discharge to determine the inactivation efficiency for relevant foodborne pathogens and fungal spores. Plasma treatment of seeds resulted in a highly efficient reduction of microorganisms on the seed surface, while preserving the germination properties of seeds, at least for moderate treatment times. To characterize the mechanisms that contribute to microbial inactivation during plasma treatment, an experimental setup was developed to separate ultraviolet light (UV) and other plasma components. The combination of bacterial viability staining with confocal laser scanning microscopy was used to investigate the impact of ozone and other reactive species on the bacterial cells in comparison to UV. Further characterization of the effect of CAPP on bacterial cells by atomic force microscopy imaging of the same Escherichia coli cells before and after treatment revealed an increase in the surface roughness of treated E. coli cells and a decrease in the average height of the cells, which suggests physical damage to the cell envelope. In conclusion, CAPP shows potential for use as a decontamination technology in the production process of sprouts, which may contribute to food safety and prolonged shelf life of the product

    Low-energy electron beam has severe impact on seedling development compared to cold atmospheric pressure plasma

    No full text
    Sprouts are germinated seeds that are often consumed due to their high nutritional content and health benefits. However, the conditions for germination strongly support the proliferation of present bacteria, including foodborne pathogens. Since sprouts are consumed raw or minimally processed, they are frequently linked to cases of food poisoning. Therefore, a seed decontamination method that provides efficient inactivation of microbial pathogens, while maintaining the germination capacity and quality of the seeds is in high demand. This study aimed to investigate and compare seed decontamination by cold atmospheric-pressure plasma and low-energy electron beam with respect to their impact on seed and seedling quality. The results show that both technologies provide great potential for inactivation of microorganisms on seeds, while cold plasma yielded a higher efficiency with 5 log units compared to a maximum of 3 log units after electron beam treatment. Both techniques accelerated seed germination, defined by the percentage of hypocotyl and leaf emergence at 3 days, with short plasma treatment (< 120 s) and all applied doses of electron beam treatment (8–60 kGy). However, even the lowest dose of electron beam treatment at 8 kGy in this study caused root abnormalities in seedlings, suggesting a detrimental effect on the seed tissue. Seeds treated with cold plasma had an eroded seed coat and increased seed wettability compared to electron beam treated seeds. However, these effects cannot explain the increase in the germination capacity of seeds as this was observed for both techniques. Future studies should focus on the investigation of the mechanisms causing accelerated seed germination and root abnormalities by characterizing the molecular and physiological impact of cold plasma and electron beam on seed tissue.ISSN:2045-232

    Continued Eculizumab Therapy for Persistent Atypical Hemolytic Uremic Syndrome

    No full text
    Atypical hemolytic uremic syndrome (atypical HUS) is characterized by endothelial injury and microvascular thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia, and ischemic injury to organs, especially the kidney. Activation of complements is involved in the pathogenesis of atypical HUS. Eculizumab, a neutralizing monoclonal antibody directed against complement C5, has shown salutary effects in patients with atypical HUS. In this report, we present a 23-year-old man with atypical HUSwho was treated with eculizumab. During the first four weeks of treatment, eculizumab failed to achieve a remission. Microangiopathic hemolytic anemia and thrombocytopenia persisted, while renal function deteriorated necessitating initiation of hemodialysis. Continuation of eculizumab therapy, however, led to marked improvement in hemolytic anemia, thrombocytopenia, and renal function. After 10 weeks of eculizumab therapy, hemodialysis was discontinued. At 5-month follow-up, serum creatinine was 1.1 mg/dL with continued eculizumab therapy every other week. In addition, platelet count was normal, while there was no evidence of hemolysis. We conclude that in patients with persistent atypical HUS continued treatment with eculizumab can be helpful in achieving remission
    corecore