85 research outputs found

    Mapping genetic factors for resistance to Soil-borne cereal mosaic virus (SBCMV) in durum wheat

    Get PDF
    Article first published online: 8 FEB 2014OBJECTIVE: In an unselected group of women with signs of preterm labour, maintenance tocolysis is not effective in the prevention of preterm birth and does not improve neonatal outcome. Among women with signs of preterm labour, those who are fetal fibronectin positive have an increased risk of preterm birth. We investigated whether maintenance tocolysis with nifedipine would delay delivery and improve neonatal outcome in women with threatened preterm labour and a positive fetal fibronectin status. STUDY DESIGN: Women with a singleton pregnancy in threatened preterm labour (24(+0) to 33(+6)  weeks) with a positive fetal fibronectin test were randomised to nifedipine or placebo. Study medication was continued until 36 completed weeks' gestation. The primary endpoint was prolongation of pregnancy of seven days. Secondary endpoints were gestational age at delivery and length of NICU admission. RESULTS: Of the 60 participants, 29 received nifedipine and 31 placebo. Prolongation of pregnancy by >7 days occurred in 22/29 (76%) in the nifedipine group and 25/31 (81%) in the placebo group (relative risks, RR 0.94 [0.72-1.2]). Gestational age at delivery was 36.1 ± 5.1 weeks for nifedipine and 36.8 ± 3.6 weeks for placebo (P = 0.027). Length of NICU admission [median (interquartile ranges, IQR)] was 27 (24-41) days and 16 (8-37) days in nifedipine and placebo groups, respectively (P = 0.17). CONCLUSION: In women with threatened preterm labour who are fetal fibronectin positive, maintenance tocolysis with nifedipine does not seem to prolong pregnancy, nor reduce length of NICU admission.Emma Parry, Carolien Roos, Peter Stone, Lynsey Hayward, Ben Willem Mol and Lesley McCowa

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer‐reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state‐of‐the‐art handbook for basic and clinical researchers.DFG, 389687267, Kompartimentalisierung, Aufrechterhaltung und Reaktivierung humaner Gedächtnis-T-Lymphozyten aus Knochenmark und peripherem BlutDFG, 80750187, SFB 841: Leberentzündungen: Infektion, Immunregulation und KonsequenzenEC/H2020/800924/EU/International Cancer Research Fellowships - 2/iCARE-2DFG, 252623821, Die Rolle von follikulären T-Helferzellen in T-Helferzell-Differenzierung, Funktion und PlastizitätDFG, 390873048, EXC 2151: ImmunoSensation2 - the immune sensory syste

    First report of apple chlorotic leaf spot virus, Cherry green ring mottle virus, and Cherry necrotic rusty mottle virus on peach in Montenegro

    No full text
    The sanitary status of peach fruit trees was assessed in central and coastal regions of Montenegro during a survey in September and October of 2011 and 2012. Leaf samples were collected from 58 (2011) and 47 (2012) trees showing chlorotic rings and spots, mosaic, necrosis, leaf distortion, and stunting. Total RNAs was extracted from each sample by RNeasy Plant Mini kit (Qiagen, Germany) and used as a template in PDO (polyvalent degenerate oligonucleotides) nested reverse transcription (RT)-PCR for the detection of fruit tree viruses belonging to the genera Trichovirus, Capillovirus, and Foveavirus (family Betaflexiviridae). PDO primer sets PDO-F1i/PDO-R3i/PDO-R4i and PDO-F2i/PDO-R1i (2) were used in the first RT-PCR and nested PCR, respectively. Total RNAs obtained from Italian Apple chlorotic leaf spot virus (ACLSV)-infected isolate and healthy peach leaves were used as positive and negative controls, respectively. A nested set of primers amplified a 362-bp product from 6 samples collected in 2011 (10.3%) and 13 samples collected in 2012 (27.7%). Sequence analysis included three isolates (367/11, 133/12, and 168/12) chosen from different peach cultivars (Ritastar, Spring Belle, and Redhaven, respectively). Amplified products of expected size of the partial RNA-dependent RNA polymerase from three positive samples were cloned into p-GEM-T Easy Vector (Promega, Madison, WI) and sequenced (MWG-Biotech AG, Germany). Sequences were deposited in GenBank under accession nos. KF534757, KF534769, and KF534766, respectively. BLAST analysis showed that the sequence of isolate 367/11 (KF534757) shared high nucleotide similarity (78.9 to 87.2%) with ACLSV isolates from GenBank, showing highest identity with isolate PBM1 (AJ243438) from Germany. Sequence analysis of isolate 133/12 (KF534769) proved that it is 90.5 to 93.3% identical to Cherry green ring mottle virus (CGRMV) isolates reported from other parts of the world. In particular, the highest nucleotide similarity was showed with isolate P1C124 (AJ291761) from France. Finally, analysis of sequence from the isolate 168/12 (KF534766) revealed high degree of identity (86.1 to 96.1%) with the corresponding nucleotide sequences of the Cherry necrotic rusty mottle virus (CNRMV) isolates, showing highest similarity with isolate 120/86 (AF237816) from Switzerland. To confirm virus infectivity, according to the FAO/IPGRI Technical Guidelines (1), budwood from 367/11, 133/12, and 168/12 samples were grafted into seedlings of peach (GF305), Prunus serrulata (cv. Shirofugen) and P. avium (cv. Sam) then maintained in a greenhouse with controlled conditions. Six months post inoculation, GF305 indexed with 367/11 sample reacts with a green depressed mottle on leaves typical of ACLSV infection. Cherry tree of cv. Shirofugen indexed with sample 133/12 showed symptoms attributable to CGRMV such as epinasty, twisting and curling of leaves while a tree of cv. Sam indexed with 168/12 sample exhibited classical necrotic shot holes in leaves induced by CNRMV infection (1). Sequence analysis of PCR products obtained from indicator plants by RT-PCR as described above showed full nucleotide identity with KF534757, KF534769, and KF534766 sequences and confirmed the presence of previous described viral agents. To our knowledge, this is the first report of ACLSV, CGRMV, and CNRMV occurrence on peach in Montenegro. Due to the economic importance of this crop, sanitation measures should be adopted to improve the control of imported plants and the use of virus-tested propagation material in order to prevent spreading of these viruses. References: (1) M. Diekmann and C. A. J. Putter. FAO/IPGRI Technical Guidelines for the Safe Movement of Germplasm. No. 16. Stone Fruits, 1996. (2) X. Foissac et al. Phytopathology 95:617, 2005
    corecore