38 research outputs found
Eukaryotic biodiversity and spatial patterns in the Clarion-Clipperton Zone and other Abyssal regions: Insights from sediment DNA and RNA metabarcoding
The abyssal seafloor is a mosaic of highly diverse habitats that represent the least known marine ecosystems on Earth. Some regions enriched in natural resources, such as polymetallic nodules in the Clarion-Clipperton Zone (CCZ), attract much interest because of their huge commercial potential. Since nodule mining will be destructive, baseline data are necessary to measure its impact on benthic communities. Hence, we conducted an environmental DNA and RNA metabarcoding survey of CCZ biodiversity targeting microbial and meiofaunal eukaryotes that are the least known component of the deep-sea benthos. We analyzed two 18S rRNA gene regions targeting eukaryotes with a focus on Foraminifera (37F) and metazoans (V1V2), sequenced from 310 surface-sediment samples from the CCZ and other abyssal regions. Our results confirm huge unknown deep-sea biodiversity. Over 60% of benthic foraminiferal and almost a third of eukaryotic operational taxonomic units (OTUs) could not be assigned to a known taxon. Benthic Foraminifera are more common in CCZ samples than metazoans and dominated by clades that are only known from environmental surveys. The most striking results are the uniqueness of CCZ areas, both datasets being characterized by a high number of OTUs exclusive to the CCZ, as well as greater beta diversity compared to other abyssal regions. The alpha diversity in the CCZ is high and correlated with water depth and terrain complexity. Topography was important at a local scale, with communities at CCZ stations located in depressions more diverse and heterogeneous than those located on slopes. This could result from eDNA accumulation, justifying the interim use of eRNA for more accurate biomonitoring surveys. Our descriptions not only support previous findings and consolidate our general understanding of deep-sea ecosystems, but also provide a data resource inviting further taxon-specific and large-scale modeling studies. We foresee that metabarcoding will be useful for deep-sea biomonitoring efforts to consider the diversity of small taxa, but it must be validated based on ground truthing data or experimental studies
Diatom DNA metabarcoding for ecological assessment: Comparison among bioinformatics pipelines used in six European countries reveals the need for standardization
Ecological assessment of lakes and rivers using benthic diatom assemblages currently requires considerable taxonomic expertise to identify species using light microscopy. This traditional approach is also time-consuming. Diatom metabarcoding is a promising alternative and there is increasing interest in using this approach for routine assessment. However, until now, analysis protocols for diatom metabarcoding have been developed and optimised by research groups working in isolation. The diversity of existing bioinformatics methods highlights the need for an assessment of the performance and comparability of results of different methods. The aim of this study was to test the correspondence of outputs from six bioinformatics pipelines currently in use for diatom metabarcoding in different European countries. Raw sequence data from 29 biofilm samples were treated by each of the bioinformatics pipelines, five of them using the same curated reference database. The outputs of the pipelines were compared in terms of sequence unit assemblages, taxonomic assignment, biotic index score and ecological assessment outcomes. The three last components were also compared to outputs from traditional light microscopy, which is currently accepted for ecological assessment of phytobenthos, as required by the Water Framework Directive. We also tested the performance of the pipelines on the two DNA markers (rbcL and 185-V4) that are currently used by the working groups participating in this study. The sequence unit assemblages produced by different pipelines showed significant differences in terms of assigned and unassigned read numbers and sequence unit numbers. When comparing the taxonomic assignments at genus and species level, correspondence of the taxonomic assemblages between pipelines was weak. Most discrepancies were linked to differential detection or quantification of taxa, despite the use of the same reference database. Subsequent calculation of biotic index scores also showed significant differences between approaches, which were reflected in the final ecological assessment. Use of the rbcL marker always resulted in better correlation among molecular datasets and also in results closer to these generated using traditional microscopy. This study shows that decisions made in pipeline design have implications for the dataset's structure and the taxonomic assemblage, which in turn may affect biotic index calculation and ecological assessment. There is a need to define best-practice bioinformatics parameters in order to ensure the best representation of diatom assemblages. Only the use of similar parameters will ensure the compatibility of data from different working groups. The future of diatom metabarcoding for ecological assessment may also lie in the development of new metrics using, for example, presence/absence instead of relative abundance data. (C) 2020 The Authors. Published by Elsevier B.V
The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems
The bioassessment of aquatic ecosystems is currently based on various biotic indices that use the occurrence and/or abundance of selected taxonomic groups to define ecological status. These conventional indices have some limitations, often related to difficulties in morphological identification of bioindicator taxa. Recent development of DNA barcoding and metabarcoding could potentially alleviate some of these limitations, by using DNA sequences instead of morphology to identify organisms and to characterize a given ecosystem. In this paper, we review the structure of conventional biotic indices, and we present the results of pilot metabarcoding studies using environmental DNA to infer biotic indices. We discuss the main advantages and pitfalls of metabarcoding approaches to assess parameters such as richness, abundance, taxonomic composition and species ecological values, to be used for calculation of biotic indices. We present some future developments to fully exploit the potential of metabarcoding data and improve the accuracy and precision of their analysis. We also propose some recommendations for the future integration of DNA metabarcoding to routine biomonitoring programs.info:eu-repo/semantics/publishedVersio
Testing different (e)DNA metabarcoding approaches to assess aquatic oligochaete diversity and the biological quality of sediments
Aquatic oligochaetes are important bioindicators of sediment quality in watercourses and lakes, but their morphological identification to the species level is challenging and sometimes impossible. The use of DNA barcoding and metabarcoding could greatly facilitate the identifications of specimens and improve ecological diagnoses based on oligochaete communities. The aim of this study was to test how well metabarcoding approaches based on high throughout sequencing (HTS) could perform in assessing oligochaete species diversity and the biological quality of sediments. We analysed oligochaete communities at several sites in Swiss rivers, comparing morphological data to metabarcoding of mixed specimen, sieved sediment and total sediment samples. We amplified the cytochrome c oxidase (COI) marker using universal primers and/or specific primers to metazoans. Our results showed that metabarcoding analysis of mixed specimens allowed a more representative assessment of the biodiversity than the metabarcoding of sieved or total sediments. Although community structures obtained with the morphological and metabarcoding analyses were different in term of presence/ absence of species and species abundances, the ecological diagnoses based on these two approaches largely agreed
Data from: Taxonomy-free molecular diatom index for high-throughput eDNA biomonitoring
Current biodiversity assessment and biomonitoring are largely based on the morphological identification of selected bioindicator taxa. Recently, several attempts have been made to use eDNA metabarcoding as an alternative tool. However, until now, most applied metabarcoding studies have been based on the taxonomic assignment of sequences that provides reference to morphospecies ecology. Usually, only a small portion of metabarcoding data can be used due to a limited reference database and a lack of phylogenetic resolution. Here, we investigate the possibility to overcome these limitations using a taxonomy-free approach that allows the computing of a molecular index directly from eDNA data without any reference to morphotaxonomy. As a case study, we use the benthic diatoms index, commonly used for monitoring the biological quality of rivers and streams. We analysed 87 epilithic samples from Swiss rivers, the ecological status of which was established based on the microscopic identification of diatom species. We compared the diatom index derived from eDNA data obtained with or without taxonomic assignment. Our taxonomy-free approach yields promising results by providing a correct assessment for 77% of examined sites. The main advantage of this method is that almost 95% of OTUs could be used for index calculation, compared to 35% in the case of the taxonomic assignment approach. Its main limitations are under-sampling and the need to calibrate the index based on the microscopic assessment of diatoms communities. However, once calibrated, the taxonomy-free molecular index can be easily standardized and applied in routine biomonitoring, as a complementary tool allowing fast and cost-effective assessment of the biological quality of watercourses