2,232 research outputs found

    The Role of IL-1R8 in Modulating Macrophage Inflammation: Implications for Atherosclerosis.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    Direct surface cyclotron resonance terahertz emission from a quantum cascade structure

    Full text link
    A strong magnetic field applied along the growth direction of a semiconductor quantum well gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a quantum cascade structure with a static magnetic field, we can selectively inject electrons into the excited Landau level of a quantum well and realize a tunable surface emitting device based on cyclotron emission. By applying the appropriate magnetic field between 0 and 12 T, we demonstrate emission from a single device over a wide range of frequencies (1-2 THz and 3-5 THz)

    Limiting shapes for deterministic centrally seeded growth models

    Get PDF
    We study the rotor router model and two deterministic sandpile models. For the rotor router model in Zd\mathbb{Z}^d, Levine and Peres proved that the limiting shape of the growth cluster is a sphere. For the other two models, only bounds in dimension 2 are known. A unified approach for these models with a new parameter hh (the initial number of particles at each site), allows to prove a number of new limiting shape results in any dimension d1d \geq 1. For the rotor router model, the limiting shape is a sphere for all values of hh. For one of the sandpile models, and h=2d2h=2d-2 (the maximal value), the limiting shape is a cube. For both sandpile models, the limiting shape is a sphere in the limit hh \to -\infty. Finally, we prove that the rotor router shape contains a diamond.Comment: 18 pages, 3 figures, some errors corrected and more explanation added, to appear in Journal of Statistical Physic

    An AUC-based Permutation Variable Importance Measure for Random Forests

    Get PDF
    The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html

    Mouse models for preeclampsia: disruption of redox-regulated signaling

    Get PDF
    The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD

    The microRNA-29 family in cartilage homeostasis and osteoarthritis

    Get PDF
    MicroRNAs have been shown to function in cartilage development and homeostasis, as well as in progression of osteoarthritis. The objective of the current study was to identify microRNAs involved in the onset or early progression of osteoarthritis and characterise their function in chondrocytes. MicroRNA expression in mouse knee joints post-DMM surgery was measured over 7 days. Expression of miR-29b-3p was increased at day 1 and regulated in the opposite direction to its potential targets. In a mouse model of cartilage injury and in end-stage human OA cartilage, the miR-29 family were also regulated. SOX9 repressed expression of miR-29a-3p and miR-29b-3p via the 29a/b1 promoter. TGFβ1 decreased expression of miR-29a, b and c (3p) in primary chondrocytes, whilst IL-1β increased (but LPS decreased) their expression. The miR-29 family negatively regulated Smad, NFκB and canonical WNT signalling pathways. Expression profiles revealed regulation of new WNT-related genes. Amongst these, FZD3, FZD5, DVL3, FRAT2, CK2A2 were validated as direct targets of the miR-29 family. These data identify the miR-29 family as microRNAs acting across development and progression of OA. They are regulated by factors which are important in OA and impact on relevant signalling pathways

    Global disease burden linked to diet high in red meat and colorectal cancer from 1990 to 2019 and its prediction up to 2030

    Get PDF
    Abstract Numerous studies have already identified an association between excessive consumption of red meat and colorectal cancer (CRC). However, there has been a lack of detailed understanding regarding the disease burden linked to diet high in red meat and CRC. Our objective was to evaluate global, regional, and national mortality rates and disability-adjusted Life years (DALYs) related to this diet. We also considered factors such as sex, age, the socio-demographic index (SDI), and evaluated the cross-national inequalities. Furthermore, we utilized DALYs data from 204 countries and regions to gauge cross-country inequalities of CRC by calculating the slope index of inequality and concentration index as standard indicators of absolute and relative inequalities. Our data was derived from the Global Burden of Disease (GBD) Study 2019. The results show that globally, the ASMR and ASDR related to CRC due to diet high in red meat have decreased, with EAPCs of -0.32% (95% CI -0.37 to -0.28) and -0.18% (95% CI -0.25 to -0.11). Notably, the burden was higher among males and the elderly. The slope index of inequality rose from 22.0 (95% CI 18.1 to 25.9) in 1990 to 32.9 (95% CI 28.3 to 37.5) in 2019 and the concentration index fell from 59.5 (95% CI 46.4 to 72.6) in 1990 to 48.9 (95% CI 34.6 to 63.1) in 2019. We aim to offer evidence-based guidance for developing effective strategies that can mitigate the elevated CRC burden in certain countries. Keywords: colorectal cancer, red meat, Global Burden of Disease, mortality, disability-adjusted life years, health inequality, epidemiolog

    Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    Get PDF
    Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.National Institutes of Health (U.S.) (Grant DP1 OD003961)National Institutes of Health (U.S.) (R01 GM072670)American Chemical Societ

    Long-term field metal extraction by pelargonium:phytoextraction efficiency in relation to plant maturity

    Get PDF
    The long length of periods required for effective soil remediation via phytoextraction constitutes a weak point that reduces its industrial use. However, these calculated periods are mainly based on short-term and/or hydroponic controlled experiments. Moreover, only a few studies concern more than one metal, although soils are scarcely polluted by only one element.In this scientific context, the phytoextraction of metals and metalloids (Pb, Cd, Zn, Cu,and As) by Pelargonium was measured after a long-term field experiment. Both bulk and rhizosphere soils were analyzed in order to determine the mechanisms involved in soil-root transfer. First, a strong increase in lead phytoextraction was observed with plant maturity, significantly reducing the length of the period required for remediation. Rhizosphere Pb, Zn, Cu, Cd, and As accumulation was observed (compared to bulk soil), indicating metal mobilization by the plant, perhaps in relation to root activity. Moreover, metal phytoextraction and translocation were found to be a function of the metals’ nature. These results, taken altogether, suggest that Pelargonium could be used as a multi-metal hyperaccumulator under multi-metal soil contamination conditions, and they also provide an interesting insight for improving field phytoextraction remediation in terms of the length of time required, promoting this biological technique
    corecore