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Abstract
The concept that oxidative stress contributes to the development of human preeclampsia has
never been tested in genetically-defined animal models. Homozygous deletion of catechol-O-
methyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high
blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial
pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically
increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which
counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy.
We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting
mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting
redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological
pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant
animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that
a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger
inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis
would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to
ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD.

Background
Approximately 5–7% of pregnant women worldwide suf-
fer from common hypertensive pregnancy disorders cul-
minating in preeclampsia (PE), intrauterine growth
restriction and premature child birth. PE is the major
cause of maternal mortality (80%) in developing nations
and in recent years, the perinatal mortality and morbidity
in developed countries have increased by five-fold [1,2].
Moreover, the incidence of PE has increased by 40% in the
last 15 years [3]. The most widely accepted cause of pre-
eclampsia is reduced utero-placental circulation (superfi-
cial implantation of the fetus) due to sub-optimal vascular

remodeling of the decidual and the uterine arterioles, sec-
ondary to inadequate trophoblast invasion [4]. Increased
oxidative stress and an altered immune response [5] at the
fetal-maternal interface (Th1 bias) are likely effectors con-
tributing to the development of systemic endothelial and
renal dysfunctions in the later phase of the disease.

A series of recent discoveries, specifically the isolation and
functional characterization of non-phagocytic NADPH
oxidase-homologues in epithelial, endothelial, fibroblast
and muscle cells, argue that reactive oxygen species (ROS)
are indispensible to both physiological and patho-physi-
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ological conditions such as growth, differentiation, apop-
tosis and senescence [6-8]. The transition from growth to
degeneration is finely tuned by the relative concentration
of oxidants. For example, in ambient conditions, low lev-
els of H2O2 (nano-micromolar) are necessary for angio-
genesis [9], while agonist-induced activation resulting in
its excessive accumulation (> 150–200 μM) prompts
endothelial damage [10]. The scheme shown in Fig. 1a
depicts the essential role played by ROS in both early and
late pregnancy together with the detrimental effect when
ROS are produced in excess (oxidative stress).

During pregnancy, the maternal energy demand increases
significantly to sustain the growing fetus. This demand is
met via a substantial increase (30–50% compared to the
non-gravid state) in the uterine blood flow in the preg-
nant women [11]. Consequently the 'shear stress' (drag-
ging frictional force generated by the blood flow), is
negotiated by endothelial cell (EC)-derived vasodilatory
agonists, nitric oxide (NO.) and prostaglandin I2. The
release of vasodilators from EC is controlled by mitochon-
drial Ca+2-influx (ATP-GPCR and ISP3-ER pathways) as
well as NADPH oxidase-dependent mitochondrial O2

.-

production. The pregnancy-induced adaptation of ROS-
regulated Ca+2 signaling in the mitochondria of EC is
essential for re-establishing physiological laminar flow in
uterine vessels [12]. In extreme circumstances, dysregula-
tion of mitochondrial Ca+2 homeostasis due to high ROS,
could lead to Ca+2 overload of the matrix, triggering apop-
tosis. The first indication of a mitochondrial involvement
in preeclampsia/eclampsia came from a case report where
the frequency of the disease was high in a family with
inborn mitochondrial defects [13]. A number of in vitro
studies on a hypoxia-reoxygenation model of placental
culture and plasma oxidant/antioxidant analyses further
pointed to mitochondrial involvement by suggesting that
ROS could influence trophoblast fusion, migration and
apoptosis relevant to preeclampsia [14,15]. In support of
this, it is pertinent that homozygous deletion of SOD-2
(MnSOD) has the most severe effect on embryonic devel-
opment in mouse pregnancy compared to that of SOD-1
and SOD-3 knockouts [16].

Reactive oxygen species (ROS) are key mediators of
growth factor-dependent redox-regulated signaling in
angiogenesis. While > 90% of O2 is reduced in mitochon-
dria, NADPH oxidases (Nox2, gp91phox) are the major
source of ROS in endothelial cells [17,18]. The O2

.- gener-
ated at the outer surface of the plasma membrane is inter-
nalized through ion channels, a process which increases
the intracellular Ca+2 release, activating mitochondrial
O2

.- production. Thus, NADPH oxidases and mitochon-
dria together perpetuate a cascade of O2

.- production in
vascular endothelial cells [19,20].

Hypoxia inducible factor -1α(HIF-1α) is a dynamic part-
ner of the heterodimeric transcription factor HIF-1 which
is essential for angiogenesis [21]. Irrespective of the oxy-
gen tension (hypoxic or normoxic), the stability of HIF-1α
is determined by it ligation to von Hippel-Lindau tumor
suppressor protein, VHL [22]. Once bound to VHL, HIF-
1α undergoes ubiquitination prior to proteosomal degra-
dation. A prerequisite for VHL binding is site-specific
hydroxylation of HIF-1α by prolyl hydroxylases (PHD).
The transfer of these hydroxyl moieties to HIF-1α by PHD
requires O2 and 2-oxogluterate as co-substrates, together
with reduced iron (Fe+2) and ascorbate as cofactors
[23,24]. Therefore, prolyl hydroxylases act as negative reg-
ulators of HIF-1α since active PHD-Fe+2 promote HIF-1α
binding to VHL and subsequent degradation. It is appar-
ent that the enzymatic activity of PHD could be modu-
lated by the relative concentration of co-substrates as well
as cofactors. Indeed, the stability of HIF-1α in angiotensin
II-treated vascular smooth muscle cells under normoxic
conditions is due to H2O2-mediated reduction in cellular
ascorbate concentration and increased Fe+3 [25]. It is note-
worthy that commonly encountered ROS such as O2

.- and
OH. anions are short-lived and, owing to their limited dif-
fusion capacity, fail to cross the plasma membrane except
through ion channels. Therefore, the majority of cellular
ROS-effects are mediated via relatively stable H2O2. This is
consistent with genetic, molecular and pharmacological
experiments [26-29] suggesting that H2O2 plays a central
role in stabilizing HIF-1α by converting PHD-Fe+2 to
PHD-Fe+3.

Clinical research on preeclampsia (PE) is mostly restricted
to observations, in vitro correlative studies on placenta
and patient serum samples originating from mid-to-late
gestation when the disease is fully manifested, long after
it initiates at early pregnancy. These problems have under-
lined the necessity for animal models of PE where the pro-
gression of pathogenesis can be traced through
longitudinal studies from early pregnancy. Three recently
developed mouse models for PE [30-32] exhibit hall-
marks of the human disease. In one of these models, the
critical symptoms of PE (hypertension, proteinurea due to
glomerulosclerosis and fetal resorption) were ameliorated
by continued treatment with an SOD mimetic, tempol
[31], suggesting that the PE-like symptoms of these model
mice are precipitated by disruption of redox-regulated sig-
naling during pregnancy. A further link between redox-
regulated signaling and human pregnancy pathology has
been provided by the most recently developed animal
model for PE [32]. The homozygous deletion of Catechol-
O-methyl transferase (Comt-/-) in pregnant mice results in
the loss of 2ME2 which has direct involvement in redox-
regulated signaling.
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Redox-regulated signaling in normal pregnancies and in Comt-deficient mutant miceFigure 1
Redox-regulated signaling in normal pregnancies and in Comt-deficient mutant mice. A, Shows that ROS-induced 
signaling (Lo ROS) is essential for implantation, establishment and maintenance of pregnancy. The absence of ROS (No ROS) 
or its excessive accumulation (Hi ROS) are detrimental to pregnancy; B, in Comt+/+ mice (WT), 2ME2 production is highest at 
late pregnancy and blocks vascular growth by destabilizing HIF-1α in physiological pregnancies. The absence of 2ME2 in Comt-/- 
animals (mutant) would increase oxidative stress and stabilize HIF-1α. The stability of HIF-1α is dependent upon critical con-
centration of H2O2 which determines the functional state of prolyl hydroxylases (PHD).
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Despite the advantage of targeted disruption of a specific
gene (Comt) in the mouse system and similarities in pla-
cental cell types in mouse and human, this animal model
might be insufficient in understanding all aspects of the
development of human preeclampsia and fetal growth
restriction. The limitations of the mouse model for preec-
lampsia stem from intrinsic differences in the physiology
of mouse and human pregnancies [33]. The mode of
implantation [34,35] differs between mouse and human;
there is shallow decidual invasion in mouse compared to
extensive uterine remodeling by invasive trophoblasts in
human. In addition, the uterine spiral arterioles in mice
are remodeled by maternal factors rather than by invasive
trophoblasts in human pregnancies [36], and the endo-
crine control of mouse pregnancy is mediated by a limited
number of placental hormones compared to that of
human [37]. Moreover, the short gestation period (3
weeks) in mice, the incomplete development and birth of
altricial young are unlike human pregnancies [38]. All of
these factors limit mouse pregnancy as a model system for
human fetal growth restrictions.

Hypothesis
2-methoxyestradiol 2 (2ME2) is a natural estradiol metab-
olite which induces microtubule depolymerisation, inhib-
its angiogenesis and is a promising anticancer drug by
virtue of its ability to target leukaemia cells while sparing
normal lymphocytes [39]. At first glance, the fact that the
absence of the 2ME2 metabolite in mutant (Comt-/-) preg-
nant mice results in placental hypoplasia and vascular
pathology to the extent that it leads to a preeclampsia-like
phenotype [32], might appear surprising. However, a par-
adigm shift with recent discoveries [6] of redox-regulated
signaling pathways for angiogenesis [10,17,18,40] are
consistent with vascular pathology of 2ME2-deficient
(Comt-/-) pregnant mice [32]. It should be emphasized
that the temporal requirements for 2ME2 vary in normal
pregnancies, its production being extremely low in early
pregnancy during the peak period of angiogenesis and
high later (third trimester) when placental development is
complete [41,42].

Genetic and biochemical studies have established that
2ME2 is a potent inhibitor of MnSOD [43-45] and facili-
tates superoxide (O2

.-) production [44]. In wild-type preg-
nant mice (Comt+/+), the inhibition of MnSOD at late
pregnancy (dpc 12–14 in mouse, equivalent to peak activ-
ity of 2ME2 at 30–35 wks of gestation in human) would
disengage NADPH-mitochondrial cross-talk by reducing
critical H2O2 concentration. Lack of sufficient H2O2 will
activate PHD (PHD-Fe+2) for hydroxylation of HIF-1α
(HIF-1α.OH) and subsequent degradation [see Fig 1b and
ref [25-29]]. This notion is in agreement with the estab-
lished anti-angiogenic role of 2ME2 [46] and inhibition
of HIF-1α in WT (Comt+/+) animals [32]. Such down-reg-

ulation of vascular remodeling and placental growth
under normoxic conditions at late pregnancy by 2ME2
(peak activity at 30–35 wks of gestation), is presumed to
be a physiological necessity to circumvent uncontrolled
placental invasion which otherwise could potentially lead
to pregnancy pathology. Premature induction of 2ME2
during early hypoxic growth (4–12 wks of gestation)
would be detrimental to pregnancy, since the stability of
HIF-1α in early hypoxic development is essential for vas-
cular remodeling. Additionally, 2ME1 (2-methox-
yestrone), an analogue of 2ME2 having no inhibitory
effect on MnSOD [45], would fail to correct 2ME2 defi-
ciency in Comt-/- mice.

In Comt-/- mice, the lack of inhibition of MnSOD under
normoxic conditions (late pregnancy) would facilitate
untimely accumulation of H2O2 which is essential for
HIF-1α stability [32]. H2O2 would block hydroxylation of
HIF-1α by inactivating PHD (PHD-Fe+3) [25-29] This
view (Fig 1b) is supported by the observation that HIF-1α
is labile following injection of 2ME2 in Comt-/- mice at late
pregnancy [32]. Increased accumulation of H2 O2 (> 200
μM/L) under normoxic conditions together with stable
HIF1-α is sufficient to inflict vascular pathology in Comt-/
- mice. Moreover, HIF-1α is a potent mediator of myeloid
cell (monocytes and macrophages) infiltration at the sites
of inflammation [47] and lipopolysaccharide-induced
sepsis [48]. Therefore stable HIF-1α alone at late preg-
nancy could elicit preeclampsia-like phenotypes in Comt-/
- mice.

Testing the hypothesis
Oxidative stress as an inducer of preeclampsia in genetically normal 
mice
1. Preeclampsia symptoms in normal pregnant mice
could be created by treating the animals with 2ME2.
2ME2 which peaks at third trimester of pregnancy, is a
pro-oxidant and rather than an antioxidant as proposed
by Kanasaki et al [32]. Therefore, 2ME2 could be detri-
mental to early hypoxic development. This hypothesis
could be tested by daily injection of 2ME2 beginning at 3
days prior to pregnancy up to dpc 17 of gestation in genet-
ically normal mice.

2. Since 2ME2 at low concentrations (0.3 mM) in combi-
nation with rotenone [44] is a potent inducer of O2

.-, the
same experiment could be repeated to ensure maximum
oxidative effect. The logic behind using the combination
is that rotenone at low concentration (50 nM) would
direct O2

.- production by diverting electron flow from
complex 1 of the electron transport chain to O2, while
non-toxic concentrations of 2ME2 (0.3 μM) would syner-
gistically facilitate O2

.- accumulation by inhibiting SOD
[44].
Page 4 of 6
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2009, 7:4 http://www.rbej.com/content/7/1/4
Elimination of oxidative stress in mutant mice by antioxidants/
activator of PHD
1. The proposed oxidative damage induced by accumula-
tion of H2O2 in Comt-/- mice could be rescued by treating
the animals with synthetic MnSOD/catalase mimetics.
Synthetic MnSOD/catalase mimetics have been shown to
exhibit both SOD and catalase activities, and some are
more potent, stable and cytoprotective than the native
antioxidant enzyme SOD [49].

2. The preeclampsia phenotype in mutant animals could
be rescued by treating the animals with ascorbate or spe-
cific activators of PHD (benzopyran or an inhibitor of dia-
cylglycerol kinase, R59949).

Implications of the hypothesis
While oxidative stress has been proposed to be central to
placental pathogenesis and systemic vasculo-endothelial
damage in human preeclampsia and a hypertensive
mouse model [31], the concept has never been tested in
genetically-defined animal models. The hypothesis and
tests described here might contribute to the understand-
ing of pathophysiologic sequences leading to the clinical
manifestation of preeclampsia. Moreover, ROS are indis-
pensible to angiogenesis, trophoblast differentiation,
invasion and embryogenesis. The proposed experiments
would help evaluate the importance of redox-regulated
signaling in early as well as late pregnancy.
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