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ABSTRACT 

Atherosclerosis is a chronic inflammatory disease of the cardiovascular system 

characterized by macrophage-driven arterial plaque accumulation. Interleukin (IL)-37 is an anti-

inflammatory cytokine within the IL-1 family which suppresses inflammatory immune response 

by complexing with the receptors IL-1R8 and IL-18Rα. Because IL-37 and its receptor are 

robustly expressed in the macrophage, I sought to determine if IL-1R8 plays a key role in 

macrophage inflammation that may in turn influence the development of atherosclerosis.  

Initially the proposed anti-inflammatory effects of IL-37 was investigated by co-treating 

mice bone marrow-derived macrophages (BMDM) with recombinant IL-37 protein and various 

inflammatory stimuli. Although inflammation was not quelled by IL-37, interestingly, IL-1R8 

was consistently downregulated by LPS and IFNg treatment. To test whether IL-1R8 inhibits 

inflammation, I overexpressed IL-1R8 in the mouse macrophage cell line, RAW 264.7 cells, and 

BMDM by transfection with IL-1R8 or GFP expression plasmids. Transfected cells were treated 

with pro-inflammatory (LPS, IFNg, TNFa) or anti-inflammatory (IL-4) mediators, as well as IL-

37. Transfection of RAW 264.7 cells with IL-1R8 resulted in 35-to-60-fold increases of IL-1R8 

transcript expression compared to controls as measured by RT-qPCR, whereas IL-1R8 protein 

level was increased 6 to9 folds compared to GFP-transfected control cells, as measured by 

Western blot. Interestingly, transfection with IL-1R8 resulted in robust overexpression of IL-1R8 

with a molecular weight of 70-95 kDa, indicating significant glycosylation, which was confirmed 

by glycosidase treatment. In contrast to my initial hypothesis, overexpression of IL-1R8 in RAW 

cells and BMDM had a pro-inflammatory effect overall. However, when treated with 

recombinant IL-37 protein as the ligand for IL-1R8, the IL-1R8-transfected RAW cells showed 

reduced inflammatory gene expression compared to GFP controls treated with the same stimulus. 
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Additionally, siRNA knockdown of IL-1R8 resulted in significantly higher inflammatory gene 

expression, such as IL-6, IL-1b, iNOS, MCP1/CCL2, and TNFa in both RAW 264.7 cells and 

BMDM.  The experiments described show that IL-1R8, along with its ligand IL-37, plays a role 

in regulating macrophage inflammation, although future studies are needed to further elucidate 

its exact molecular mechanism. 

  



 v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS….....……..……..……..……..……..……..……..…….…….…..ii 

ABSTRACT……..……..……..……..……..……..……..………..……..……..……..…….......iii 

LIST OF FIGURES……..……..……..…..……..……..……..…….…………..……..….........ix 

LIST OF TABLES……..……..……..……..……..……..……..……..…….…………………..xi 

LIST OF ABBREVIATIONS……..……..……..……..……..……..……..……..…….……...xii 

CHAPTER 1: INTRODUCTION…..……..……..……..……..…….…..……..……..……..…1 

1. Cardiovascular Disease and Atherosclerosis……..……..……..……..……..…….…….........1 

1.1. Atherosclerosis Causes and Risk Factors……..……..……..……..……..…….………...2 

1.2. The role of macrophages in atherosclerosis development……..……..……..……..…….2 

2. Interleukin-37 (IL-37) ……..……..……..……..……..…….………..……..……..……….....5 

2.1. IL-37’s anti-inflammatory properties……..……..……..……..……..…………….…......6 

2.2. Extracellular pathway……..……..……..……..……..…….………..……..……..……....6 

3. Interleukin 1 Receptor Family Member 8 (IL-1R8/SIGIRR):………………………………...7 

3.1. IL-37/IL-1R8’s mode of action in modulating inflammation………………………….....9 

3.1.1. IL-1R8-/- mice and response to inflammation……………………..,…………….10 

3.2. Glycosylation properties of IL-1R8……………………………………………………..11 

4. Therapeutic Potential for IL-37/IL-1R8 in inflammatory diseases…………………………..13 

CHAPTER 2: MATERIALS AND METHODS……..……..……..……..……..…….…........15 

1. Media, Buffers, and Solutions……..……..……..……..…....................…..…….…..............15 

1.1. Media, Buffers, and Solutions for Cell Culture……..……..……..……..……..…….…15 

1.2. Buffers and Solutions……..……..……..……..……..…….…........................................15 

2. Cell Lines……..……..……..……..……..…….………..……..……..……..……..…….…...16 



 vi 

3. Mouse strains……..……..……..……..……..…….………..……..……..……..…..…….….16 

4. Antibodies……..……..……..……..……..…….………..……..……..……..……..……..…17 

5. Plasmids……..……..……..……..……..…….………..……..……..……..……..…….…....17 

6. siRNA reagents……..……..……..……..……..…….………..……..……..……..…….…...17 

7. Primers……..……..……..……..……..…….………..……..……..……..……..…….……..18 

8. Cell Culture Methods……..……..……..……..……..…….………..……..……..……..…...18 

8.1. Bone marrow derived macrophage (BMDM) cell isolation, in vitro cell culture….......18 

8.2. RAW 264.7 Macrophages, in vitro cell culture……..……..……..……..……..………..19 

9. Transfection of RAW 264.7 Macrophages and BMDM with GFP and IL-1R8……………..20 

10. IL-1R8 siRNA Transfection of RAW 264.7 Macrophages and BMDM………………….....21 

11. Molecular Biology Methods.……..……..……..……..……..…….………..…….…..….…..21 

11.1. RNA Isolation and cDNA Preparation……..……..……..……..……..…….…....….21 

11.2. Polymerase Chain Reaction (PCR)……..……..……..……..……..…………….......22 

11.3. Reverse transcriptase quantitative PCR (RT-qPCR)……..……..……..……..……...23 

11.4. Western blot……..……..……..……..……..…….………..……..……..……..…......23 

11.5. Bacterial Transformation: IL-1R8 in pCMV6-entry vector……..……..……..……..25 

11.6. In-gel band identification……..……..……..………..……..……..…………….........26 

12. Statistical Analysis……..……..……..……..……..…….………..……..……..……..……....27 

CHAPTER 3: RESULTS……..……..……..……..……..…….………..……..……..……...…28 

1. Preliminary Data: Determine the effect of recombinant IL-37 in macrophages.............28 

2. SPECIFIC AIM I: Determine if IL-1R8 overexpression in mouse primary macrophages 

and mouse cell line macrophages would reduce inflammation.........................................31 

a. Hypothesis……..……..……..……..……..…….………..……..……..……..…….....31 



 vii 

b. Approach and Significance……..……..……..……..……..…….…………………...31 

1. Optimized transfection of RAW 264.7 macrophages…... ……………...…..……..…..31 

1.1. 24-well plate GFP transfection optimization…..……..……..……..…….………....31 

1.2. 6-well plate GFP and IL-1R8 transfection optimization…..……..……..……..……32 

2. Baseline effects of IL-1R8 overexpression.............................................................….....33 

2.1. RT-qPCR showed successful transfection of RAW 264.7 macrophages.……..........33 

2.2. Western blot showed successful transfection of RAW 264.7 macrophages .....……34 

2.3. SDS Page In-gel Band IL-1R8 Sequencing...............................................................35 

3. Effects of IL-1R8 overexpression on gene expression with recombinant IL-37.....……36 

4. Investigation of N-linked IL-1R8 Glycosylation……..……..……..……..………...…..37 

4.1. PNGase F Glycosidase treatment confirmed N-linked IL-1R8 Glycosylation..........37 

5. AIM I Summary..…..…….………..……...………..…….………..……..……..............39 

3. SPECIFIC AIM II: Determine if IL-1R8 knockdown in mouse BMDM and mouse 

RAW 264.7 cells would enhance inflammation. .................................................................40 

a. Hypothesis……..……..……..……..……..…….………..……..……..……..……...40 

b. Approach and Significance……..……..……..……..……..…….………..……..….40 

1. Optimized siRNA knockdown of IL-1R8 in BMDM.…………………………………..40 

1.1. Time point and concentration……..……..……..……..……..…….………..….....40 

2. Effects of IL-1R8 siRNA on BMDM treated with LPS and/or IL-37……….……..…...41 

2.1. RT-qPCR of siRNA knockdown-LPS stimulated with IL-37.……...……...............41 

3. Optimized siRNA knockdown of in RAW 264.7 Macrophages......................................42 

4. Effects of IL-1R8 siRNA on RAW 264.7 Macrophages……………………………......43 

5. AIM II Summary..............................................................................................................44 



 viii 

CHAPTER 4: DISCUSSION & FUTURE DIRECTIONS……..……..……..……..…........45 

1. Summary and interpretation of results……..……..……..……..……..…….……….......….45 

1.1. Preliminary Data I: Determine the effect of recombinant IL-37 in macrophages……....45 

1.2. AIM I: Determine the effect of IL-1R8 overexpression in macrophages........................45 

1.3. AIM II: Determine the effect of IL-1R8 knockdown with siRNA in macrophages........46 

2. Importance of IL-1R8 in preventing Inflammation……..……..……..……..……..…….......47 

2.1. Role in Disease……..……..……..……..……..…….………..……..……..……..……..47 

3. Regulation of IL-1R8 under inflammatory conditions……..……..……..…........…..............48 

3.1. IL-1R8 downregulation by LPS……..……..……..……..…….......................................48  

3.2. IL-1R8 Glycosylation……..……..……..……..……..…….………................................49 

4. Therapeutic Potential for IL-37 and IL-1R8 in inflammatory diseases……..……..…...........49 

4.1. IL-37 Homodimerization effect on Anti-Inflammatory Properties……..……..………..49 

5. Limitations and future directions…..........……..…….………..……..……..……..…….......50 

Literature Cited……..……..……..……..……..…….………..……..……..……..……............52 



 ix 

LIST OF FIGURES 
 
Figure 1. This map depicts the total cardiovascular disease death rate in the United States 

from 2013-2015, including all races and both genders……..……..……..….............…..……... 1 

Figure 2. The progression an atherosclerotic lesion……..……..……..……..……..…….…….. 3 

Figure 3. ApoB-Lipoprotein modification attracts macrophages and leads to foam cell 

formation. ……..……..……..……..……..…….………..……..……..……..……..................... 4 

Figure 4. Human IL-37 gene structure. ……..……..……..……..……..…….………..……...... 6 

Figure 5. The Interleukin (IL)-1 Receptor and Toll-like Receptor (TLR) superfamily............... 9 

Figure 6. IL-37/IL-18Ra/IL-1R8 tripartite complex. ……..……..……..……..……..……....... 10 

Figure 7. IL-1R8 (SIGIRR/TIR8) is N-linked glycosylated in human and mouse...................... 12 

Figure 8. Common glycosylation patterns for secreted and cell-surface glycoproteins.............. 13 

Figure 9. Recombinant IL-37 protein co-treatment with LPS had no significant impact on 

pro-inflammatory gene expression……………………………………………………………...   28 

Figure 10. IL-1R8 was significantly downregulated with IFNg and LPS treatment…………… 30 

Figure 11. Optimization of RAW 264.7 macrophage transfection using pcDNA3.1-GFP 

expression plasmid....................................................................................................................... 32 

Figure 12. Images of RAW 264.7 macrophage transfection optimization using GFP and IL-

1R8 expression plasmid............................................................................................................... 33 

Figure 13. PCR of RAW 264.7 macrophages shows IL-1R8 overexpression...……..……........ 33 

Figure 14. RT-qPCR shows successful transfection of GFP and IL-1R8 in RAW 264.7 

macrophages................................................................................................................................. 34 

Figure 15. Western blot shows that inflammatory agents did not change IL-1R8 protein levels 

in IL-1R8 overexpressed RAW 264.7 macrophages.................................................................... 35 



 x 

Figure 16. In-Gel band sequencing shows IL-1R8 protein.......................................................... 36 

Figure 17. IL-1R8 overexpression shows signs of anti-inflammatory properties with IL-37 

treatment.....................………......................……….....….......................................………....… 37 

Figure 18. Western blot shows a significant IL-1R8 protein band at 70-90kDa………………. 38 

Figure 19. Treatment with Peptide N-glycosidase F (PNGase F) shows that IL-1R8 

transfected RAW 264.7 macrophages are heavily N-linked glycosylated..…..……................... 38 

Figure 20. PCR of optimized IL-1R8 knocked down with siRNA in BMDM………………… 40 

Figure 21. IL-1R8 in BMDM was successfully knocked down with siRNA………………….. 41 

Figure 22. Western blot of RAW 264.7 macrophages shows successful knockdown of IL-1R8 

with siRNA…………………....................................................................................................... 42 

Figure 23 RT-qPCR shows that IL-1R8 siRNA knockdown with LPS ± IL-37 suggests an 

increase in inflammation.....……..…..……................................................................................. 43 

 

 

 
  



 xi 

LIST OF TABLES 

Table 1: Medium composition for cell culture……………………………………………. 15 

Table 2: Buffer and solution composition………………………………………………… 15 

Table 3: Cell lines for transfection………………………………………………………... 16 

Table 4. Antibodies for Western blotting………………………………………………… 16 

Table 5: Plasmids for transfection...……………………………………………………… 17 

Table 6: siRNA for knockdown transfection……………………………………………... 17 

Table 7: List of primers for PCR, RT-qPCR, Western blotting…………………………... 18 

  



 xii 

LIST OF ABBREVIATIONS 

apoB-LP: apolipoprotein B-containing lipoproteins 

BMDM: bone marrow derived macrophages  

°C: degree Celsius 

CMV: Cytomegalovirus 

CVD: cardiovascular disease  

DMEM: Dulbecco’s modified eagle medium 

DMSO: Dimethyl sulfoxide 

EDTA: ethylenediaminestetraacetate 

GFP: Enhanced green fluorescent protein 

ER: endoplasmic reticulum 

FBS: fetal bovine serum 

FH: familial hypercholesterolemia  

HEPES: 2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid 

IL-37: Interleukin -1 family cytokine 37 

IL-18bp: IL-18 binding protein  

IL-1Ra: IL-1 receptor antagonist  

LDL: low density lipoprotein  

LDLR: low density lipoprotein receptor 

LPS: lipopolysaccharide 

MI: myocardial infarction  

PBMC: peripheral blood mononuclear cells  

PBS: phosphate buffered saline 

PCR: Polymerase Chain Reaction  

RT-qPCR: Reverse transcriptase quantitative PCR  

SIGIRR: Single Immunoglobulin Interleukin-1 Related Receptor 

Tg: Transgenic 

TIR8: Toll/Interleukin-1 Receptor 8 



 1 

CHAPTER 1: INTRODUCTION 

1. Cardiovascular Disease and Atherosclerosis 

Cardiovascular diseases (CVD) are the leading cause of death, accounting for 17.7 

million deaths or 31% of total deaths in the world in 2015 [1, 2]. Central Asia, Eastern Europe, 

and developing countries have the highest death rate due to CVD [2]. The high percentage of 

deaths in developing countries contributed to a total estimated economic burden of $863 billion 

in 2015 [3, 4]. The American Heart Association reports that in the United States (US), 

approximately 801,000 people die from heart disease annually, which is equivalent to 1 in every 

3 deaths [5, 6]. The distribution of deaths in the US due to cardiovascular disease is shown in 

Figure 1 [7]. In 2015, 41.5% (102.7 million) of the US population had at least one CVD 

condition. In 2016, the approximate total US economic burden was $555 billion, and is projected 

to increase to $1.1 trillion by 2035 [8]. CVD is comprised of a group of heart and blood vessel 

diseases, the most common of which include: hypertension, coronary heart disease, stroke, 

congestive heart failure, and atrial fibrillation [1, 6]. Since atherosclerosis is the leading cause of 

CVD, it is important that we understand the macrophage-driven inflammatory mechanisms that 

drive its pathogenesis [3]. Developing novel, targeted therapies will help to prevent deaths and 

reduce the global economic burden due to CVD. 

 

Figure 1. Map of the total CVD death 
rate in the United States from 2013-
2015, including all races and both 
sexes. The CDC Interactive Atlas of 
Heart Disease and Stroke reports the 
incidence of death due to CVD ranging 
from 147.7-1132.8 per 100,000 people 
(adapted by the author of this thesis) [7].   
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1.1. Atherosclerosis Causes and Risk Factors 

Atherosclerosis was once believed to be a disease caused largely by lipid accumulation in 

the arteries, but it is now understood to be a chronic inflammatory disease involving the immune 

system, particularly monocytes and macrophages. There are major modifiable risk factors that 

contribute to atherosclerosis development, which includes, hyperlipidemia due to an elevated 

circulating low density lipoprotein (LDL); hypertension; tobacco and alcohol usage; obesity; 

unhealthy diet; and physical inactivity. There are also non-modifiable risk factors which 

includes, aging, gender, ethnicity, and family history.  

Most of these aforementioned risk factors are environmental, but some are inherited or 

acquired genetic mutations that can predispose patients to atherosclerosis development. For 

example, homozygous familial hypercholesterolemia (FH), which occurs in 1 out of 1,000,000 

people, is caused by a mutation in both copies of the low-density lipoprotein receptor (LDLR) 

gene that prevents LDLR expression in the liver. More commonly, about 1 in 500 people have a 

heterozygous mutation which results in approximately 50% reduction in the expression of 

LDLR. Both mutations prevent LDL uptake via LDLR and increases total circulating cholesterol 

[9]. Both environmental and genetic factors can contribute to increased lipid accumulation and 

immune cell infiltration within the arterial wall, leading to plaque formation and atherosclerosis 

over time [3, 10].  

1.2. The role of macrophages in atherosclerosis development 

In human and mouse models, early stage atherosclerosis begins with the formation of a 

fatty streak lesion, due to the accumulation of apolipoprotein B-containing lipoproteins (apoB-

LPs) in the sub-endothelial space. Leukocytes, especially monocytes, are attracted to sites of 

vascular inflammation and transmigrate through the endothelial monolayer where they 
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differentiate into macrophages [11, 12]. As the atherosclerotic lesion develops, vascular smooth 

muscle cells are activated and migrate to form a protective layer called the fibrous cap, which is 

rich in extracellular matrix fibers (e.g., collagen), and prevents the blood from coming in contact 

with the inflammatory and thrombotic elements of the necrotic core. The necrotic core consists 

of dead cells, lipid deposits, and other inflammatory debris. In the intermediate stage, 

macrophages in the intima take up modified lipoproteins and become foam cells. The 

accumulation of apoptotic lipoproteins and impaired phagocytic clearance results in the 

formation of a necrotic core making the plaque vulnerable. In the final stage, various enzymes 

(e.g., matrix metalloproteinases) and inflammatory cytokines are secreted by macrophages 

within the plaque that can lead to degradation of the fibrous cap [13]. Plaque rupture and 

subsequent thrombus formation can lead to blockage of blood flow to the arteries of the heart or 

brain, resulting in a devastating myocardial infarction or stroke, respectively (Figure 2) [14].  

 

Figure 2. The progression of an atherosclerotic lesion. The accumulation of modified 
lipoproteins, attracts immune cells (e.g., dendritic cells and macrophages) that transmigrate to the 
intima. Smooth muscle cells are mobilized to form a protective fibrous cap against the lipid-
filled necrotic core. Over time the thinning fibrous cap deceases stability, which may lead the 
atherosclerotic plaques to rupture and form a thrombus [14].  
 

Macrophages are the most prominent cell type that drives the chronic inflammation 

responsible for the development of atherosclerotic plaque. Macrophages can be polarized to a 
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pro-inflammatory, atherogenic state (termed M1), or an anti-inflammatory, protective state 

(termed M2). ApoB-LPs bind to proteoglycans in the intima and are modified (e.g., oxidation 

and hydrolysis). These modified ApoB-LPs trigger an inflammatory response by causing 

cytokine and chemokine secretion. This contributes to the buildup and retention of modified 

lipoprotein. This inflammatory response signals macrophages to phagocytose modified 

lipoproteins in an uninhibited fashion, leading to the development of lipid-laden macrophage 

foam cells (Figure 3) [12, 14]. Since macrophages play a vital role in atherosclerosis 

development, it is important to investigate their function in the context of atherosclerosis as it is 

a potential therapeutic target. 

 

Figure 3. ApoB-Lipoprotein modification attracts macrophages and leads to foam cell 
formation. Lipoproteins accumulate in the intima of aortic vessel walls and are modified by 
oxidation or hydrolysis. These modifications trigger an inflammatory response which signals 
monocyte recruitment through the endothelial monolayer to the intima. The monocytes then 
differentiate into macrophages and phagocytose modified lipoproteins, leading to foam cell 
formation [14].  
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2. Interleukin-37 (IL-37) 

Since its discovery in 2000 by in silico research, the Interleukin (IL)-1 family cytokine 

IL-37 has gained much attention due to its potent anti-inflammatory properties that broadly 

suppresses innate immunity [15]. Recently, the mechanisms by which IL-37 functions have been 

further elucidated to include both intra- and extracellular pathways involving the transcription 

factor Smad3 and the orphan receptor IL-1R8 (also known as SIGIRR or TIR8), respectively. IL-

37 is part of the IL-1 family of cytokines, which are comprised of eleven proteins and have 

similar ß-barrel structures. There are five known IL-37 splice variants, designated a-e [16] 

(Figure 4). The transcripts have been found in human blood monocytes, tissue macrophages, 

plasma cells, neoplastic cells, synovial cells, tonsillar B cells, and in epithelial cells of the skin, 

kidney, and intestines. The longest isoform, IL-37b, is predominantly found in immune cells and 

is the most well-characterized to date [17].  

There is no known mouse homolog of human IL-37, however, a landmark 2010 

publication by Nold et al. [18] showed that transgenic mice expressing human IL-37b were 

protected from acute inflammation. Human IL-37 has been found to be functional in mice, 

paving the way for research studies using mouse models to investigate the role of IL-37 in 

various inflammatory diseases. Many research studies using human samples have shown that IL-

37 expression was strongly associated with many inflammatory diseases, both autoimmune [19-

23], and infection-related [24, 25]. Elevated plasma IL-37 levels have also been found in human 

patients with acute coronary syndrome [26] and atrial fibrillation [27]. Research using mouse 

models of pathogenic cardiovascular inflammation, including ischemia/reperfusion (I/R) injury 

[28, 29], myocardial infarction (MI) [30, 31], and vascular calcification [32, 33], reveal a 

significant benefit from IL-37 expression or treatment in vivo, indicating promising therapeutic 
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value. My thesis aims to explore the role of recombinant IL-37 and its receptor, IL-1R8, in 

preventing atherogenic macrophage function. 

 

Figure 4. Human IL-37 gene structure. 
There are five IL-37 splice variants a-e. 
IL-37 isoforms a, b, and d all have exons 
4, 5, and 6; the extracellular activity is 
located in these exons. Recombinant IL-
37b is highly active (adapted from [17]).  

 

2.1. IL-37’s anti-inflammatory properties 

IL-37 plays an important role in dampening innate inflammation. When endogenous IL-

37 expression was downregulated in human PBMCs (peripheral blood mononuclear cells), there 

was an increase in production of IL-1b and other cytokines following TLR activation [18]. 

Transgenic mice expressing human IL-37 (Tg) show protective phenotypes in models of 

endotoxic shock, myocardial ischemia, colitis, and spinal injury [17, 18, 30, 31, 34]. Treating 

wildtype mice with recombinant IL-37 decreased inflammation in mouse models of myocardial 

infarction [30, 31], rheumatoid arthritis [35], and liver disease [36]. IL-37 is expressed at low 

levels under basal conditions, but inflammatory stimulus leads to an increase in IL-37 serum 

concentrations as seen in human patients with acute coronary syndrome [17, 37]. By knocking 

down endogenous IL-37 in primary human blood monocytes, there is an increase in TNF-α, IL-

1α, IL-1β, and IL-6, supporting IL-37’s anti-inflammatory properties [18, 38].  

2.2. Extracellular pathway 

IL-37 has been shown to act both intracellularly through the transcription factor Smad3, 

and extracellularly by complexing with the receptors IL-18Rα and IL-1R8 [38]. IL-37 was 

initially shown to prevent IL-18-induced inflammation by binding to the IL-18 binding protein 
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(IL-18bp) and preventing IL-18 inflammatory signaling [39]. IL-37 has a similar structure to IL-

18 and binds to IL-18Rα to competitively inhibit IL-18, a pro-inflammatory cytokine [40]. IL-37 

also shares significant homology with another anti-inflammatory member, IL-1 receptor 

antagonist (IL-1Ra), which competitively inhibits IL-1β from binding the IL-1R [41]. The 

extracellular function of IL-37 has been investigated in several studies. For example, treating IL-

37Tg mice with neutralizing antibodies against IL-37 after LPS stimulation resulted in a reversal 

in IL-6, IL-1β, and TNF-α serum levels, which further supports the anti-inflammatory role of IL-

37 as a classic cytokine, functioning as an extracellular mechanism [42]. Another study revealed 

that treating LPS stimulated macrophages with low concentrations of recombinant IL-37 (0.1-

10ng/ml) significantly reduced in vitro cytokine production [43].  

Recently, IL-37 has been found to form a tripartite complex with IL-18Ra and the orphan 

receptor IL-1R8 (SIGIRR) which acts to inhibit pro-inflammatory Interleukin Receptor (ILR) 

and Toll-like Receptor (TLR) signaling. Disruption of the tripartite complex formation by 

inhibiting either IL-18Rα or IL-1R8 (SIGIRR) in THP-1 macrophages or PBMCs resulted in 

significant reversal of the anti-inflammatory effects of IL-37 in vitro and in vivo [44], confirming 

the indispensable role of IL-1R8 for proper extracellular IL-37 function. 

3. Interleukin 1 Receptor Family Member 8 (IL-1R8/SIGIRR): 

Interleukin 1 Receptor Family Member 8 (IL-1R8) was originally discovered in 1998 and 

is formerly known as Single Immunoglobulin Interleukin-1 Related Receptor (SIGIRR or TIR8) 

[45]. IL-1R8 is an orphan receptor lacking a specific ligand and is considered a fringe member of 

the Interleukin Receptor (ILR) family (Figure 5). Unlike the pro-inflammatory members of the 

ILR family, this unique receptor interferes with ILR and Toll-Like Receptor (TLR) complexing 
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that impairs signal transduction and negative regulation of ILR and TLR inflammatory signaling 

[18, 46].  

IL-1R8 is highly conserved across vertebrates and there is approximately 82% homology 

between the protein sequences of human and mouse [47]. IL-1R8 is expressed in various tissues, 

including lung, liver, kidney, intestine, and lymphoid organs. It is also expressed in leukocytes, 

such as monocytes, dendritic cells, natural killer cells, B-cells, and T-cells [45, 48].  

The structure of IL-1R8 is comprised of an extracellular Ig domain, a transmembrane 

domain, a cytoplasmic TIR domain, and an intracellular amino acid tail. Compared to other 

ILRs, which have three extracellular Ig domains, IL-1R8 has only one extracellular Ig domain. 

IL-1R8’s intracellular TIR domains lack two conserved amino acid regions where Cys222 

replaces a Ser amino acid and Leu305 replaces a Tyr amino acid [45]. These two 

phosphorylation sites are conserved in the other IL-1R family members, which most likely 

contribute to the classical function of ILR and TLR signaling. Another unique characteristic of 

IL-1R8 is that it has an unusually long tail containing 95 residues. These unconventional features 

are speculated to contribute to the negative regulation of ILR and TLR signaling [17, 38, 49]. 
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Figure 5. The Interleukin (IL)-1 Receptor and Toll-like Receptor (TLR) superfamily.  
Shown are the ligands, receptors, accessory proteins, and regulators involved in this IL-1R and 
TLR family of receptors. IL-1R8 (SIGIRR) is a fringe member of the IL-1R family and is related 
to the TLR family. IL-37 complexes with IL-18Ra and IL-1R8 to negatively regulate 
inflammation [49].  
 
3.1. IL-37/IL-1R8’s mode of action in modulating inflammation 

IL-37 signals through IL-18Rα and IL-1R8 forming a tripartite complex (Figure 6). In 

particular, IL-1R8 is described as a co-receptor that is required for the anti-inflammatory 

function of IL-37. Investigating this tripartite complex is crucial to understanding the possible 

protective and anti-inflammatory function of IL-1R8 and IL-37 on macrophages in the context of 

atherosclerosis [38, 49]. Treatment with pro-inflammatory mediators, such as LPS, 

downregulates IL-1R8 by reducing SP-1-dependent promoter activation through the TLR4-p38 

MAP kinase pathway [34].  

The formation of the IL-37/IL-18Rα/IL-1R8 tripartite complex modulates the 

phosphorylation of various downstream intracellular signaling pathways. In LPS-stimulated 
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macrophages and dendritic cells isolated from IL-37Tg mice, the formation of the IL-37/IL-

18Rα/IL-1R8 tripartite complex lead to reduced phosphorylation of TAK1, Fyn, IκBε, p65 and 

p105. Additionally, extracellular IL-37 signaling increased phosphorylation of the anti-

inflammatory mediators Stat3, Mer, PTEN and p62 [44, 49]. Overall, this modulation of 

phosphorylation of key signaling proteins acts to suppress the inflammatory response overall.  

 

Figure 6. IL-37/IL-18Ra/IL-1R8 
tripartite complex. The anti-
inflammatory activity of IL-37 is 
achieved via formation of a membrane 
bound IL-37/IL-18Ra/IL-1R8 
tripartite complex. IL-1R8’s structure 
is comprised of a single extracellular 
Ig domain, a transmembrane domain, 
a cytoplasmic TIR domain, and an 
intracellular amino acid tail lacking 
two key phosphorylation sites 
(Adapted from [49]). 

 

3.1.1. IL-1R8-/- mice and response to inflammation  

IL-1R8-/- mouse models were developed to determine the function of IL-1R8 during in 

vivo immune responses to LPS, IL-1, and TNF stimulation. When IL-1R8-/- mice were injected 

intraperitoneally with LPS, a TLR4 activator, they exhibited an increased inflammatory response 

compared to wildtype mice. After the LPS endotoxin challenge, only 10% of the IL-1R8-/- mice 

survived with the remaining dying within 2 days due to severe inflammatory response compared 

to 70% of wildtype mice that survived. Additional pro-inflammatory mediators, including human 

IL-1 and TNF (isoforms not specified) were tested and although TNF did not affect the two 

strains differently, IL-1 resulted in a similar hypersensitive response in IL-1R8-/- mice. This is 
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further evidence that IL-1R8 plays an important role in negatively regulating inflammatory 

response to IL-1 and LPS in vivo [50].  

Under ex vivo conditions, primary kidney epithelial cells from IL-1R8-/- mice were treated 

with the pro-inflammatory mediators, LPS or IL-1. In both cases, IL-1R8-/- cells had an increased 

NF-kB DNA binding response and prolonged activation of JNK, indicating an increase in 

inflammation and apoptosis, respectively. Primary splenocytes from IL-1R8-/- mice exhibited a 

similar increase in NF-kB DNA binding response and prolonged activation of JNK after LPS or 

IL-1 treatment, but not with TNF treatment. There was also a 2-3 fold increase in the rate of cell 

proliferation after LPS treatment in IL-1R8-/- primary mice splenocytes supporting IL-1R8’s 

negative regulation of inflammatory response [50].  

To determine the dependence of IL-37 on IL-1R8 for its anti-inflammatory function, IL-

37Tg mice were crossed with IL-1R8-/- mice. After the IL-37Tg mice were intraperitoneally 

injected with LPS, pro-inflammatory cytokine IL-6 and inflammatory chemokine MIP-2 was 

lowered 53% and 76%, respectively. IL-1R8-/- and wildtype mice resulted in similar cytokine 

fold changes. In IL-37Tg X IL-1R8-/- mice, the reduced inflammation observed in IL-37Tg mice 

was abrogated. The gene expression of IL-6 and MIP-2 in the lungs was 64% and 60% less 

effective, respectively, in IL-37Tg X IL-1R8-/- mice than in IL-37Tg mice, which supports IL-37 

and IL-1R8’s protective role in attenuating inflammation [18, 38].  

3.2. Glycosylation properties of IL-1R8  

One proposed method of IL-1R8 regulation is asparagine N-linked, and serine or 

threonine O-linked, protein glycosylation. With human and mouse IL-1R8 proteins being 82% 

identical, the human IL-1R8 protein has five potential N-glycosylation sites in the extracellular 

region of IL-1R8, whereas mouse IL-1R8 has four potential N- and O-glycosylation sites on the 
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asparagine amino acids (Figure 7) [51]. IL-1R8 protein molecular weight ranges from 44kDa 

(unglycosylated) to 90kDa (glycosylated). Glycosylation of IL-1R8 has been investigated in 

human epithelium colon cancer cells and tissues, human VACO colon cancer cells, HeLa cells, 

mouse endothelium, COS-7 kidney cells, renal tubular epithelial cells, and spleen monocytes [45, 

48, 51]. IL-1R8 protein detected by Western blot analysis reveals heavy glycosylation, a post-

translational modification that is suggested to inhibit the negative regulation of IL-1R8. When 

HeLa cells were transfected with mutant IL-1R8/SIGIRR cDNA, the IL-1R8 glycosylation was 

reduced from 90kDa to around 55kDa [51]. Treatment with the glycosidase PNGase F also 

served to confirm N-linked glycosylation of IL-1R8 in human colonic epithelial cells, COS-7 

kidney cells, renal tubular epithelial cells, and spleen monocytes [45, 48, 51].  

 

Figure 7. IL-1R8 (SIGIRR/TIR8) is N-linked glycosylated in human and mouse. This is a 
partial cDNA sequence of mouse and human IL-1R8 where the underlined amino acids show 
conserved N-linked glycosylated motifs [51]. * represents conserved amino acids. 
 

N-linked glycosylation is a complex and multistep process that begins in the endoplasmic 

reticulum (ER) where high mannose modification occurs, involving the addition of two N-

acetylglucosamines with many mannose residues to the nascent protein, which is then 

transported to the Golgi apparatus for additional processing (Figure 8). It is hypothesized that 

post-translational glycosylation regulates TLR’s influence on surface representation, protein 

trafficking, and pattern recognition [52]. Dysregulation of TLR glycosylation can lead to 

uncontrolled inflammation, irregular intracellular trafficking and protein folding, and the 

promotion of cancer.  Zhao et al. show that both complex glycan modification and cell surface 
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expression was required for IL-1R8 function [48, 51, 53]. Understanding the role and extent of 

IL-1R8 glycosylation in bone marrow derived macrophages (BMDM) and RAW 264.7 

macrophages may provide insight into IL-1R8’s role in inflammation in the context of 

atherosclerosis.  

 

Figure 8. Common glycosylation 
patterns for secreted and cell-surface 
glycoproteins. N-and O-glycosylation is a 
main post-translational modification in 
eukaryotic cells. N-glycosylation occurs at 
the asparagine amino acid and O-
glycosylation occurs at the serine and 
threonine amino acid [54].  

 

4. Therapeutic Potential for IL-37/IL-1R8 in inflammatory diseases 

One of the purposes of the immune system is to regulate and protect against disease, but a 

dysregulated immune response can lead to inappropriate chronic inflammation, and subsequent 

tissue damage. The IL-37/IL-18Ra/IL-1R8 tripartite complex is a potential therapeutic avenue to 

protect against inflammatory diseases, including infection (e.g., Mycobacterium tuberculosis), 

autoimmune disease (e.g., rheumatoid arthritis), kidney disease (e.g., lupus nephritis and post-

ischemic acute renal failure), neuronal inflammation (e.g., Alzheimer’s disease), intestinal 

inflammation and cancer, and chronic cardiovascular inflammation (e.g., atherosclerosis) [49].  

IL-37 has been shown to decrease inflammation in human and mouse primary 

macrophages and cell lines (e.g., THP-1 and RAW 264.7 Macrophages) [18]. Interestingly, IL-

37Tg mice were better protected than wildtype mice from lipopolysaccharide (LPS) endotoxic 

shock [18]. In an experimental dextran sulfate sodium (DSS)-induced colitis mouse model, IL-
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37Tg mice compared to control mice decreased clinical colitis disease scores by 50% and 

reduced pro-inflammatory cytokines, IL-1ß and TNFa [55]. Also, in an in vivo Concanavalin A 

(ConA) induced hepatitis model, IL-37Tg mice stimulated with ConA significantly reduced IL-

1a, IL-6, IL-5, IL-9 cytokine production compared to control mice [36]. These in vivo studies 

support an anti-inflammatory and protective role of IL-37 in various inflammatory disease 

settings.  

A recent study has shown that IL-37 is elevated in peripheral blood mononuclear cells 

from acute myocardial infarction patients [36]. In both atherosclerosis and MI, the accumulation 

of pro-inflammatory cytokines leads to vascular inflammation which causes accelerated necrosis, 

apoptosis, and endothelial dysfunction [14]. Downstream effects showed that with IL-37 

treatment, NF-κB was downregulated which would decrease apoptosis and cardiac injury. This 

was protective in cases of atherosclerosis and MI related heart failure [31].  The IL-37/IL-

18Ra/IL-1R8 tripartite complex has been shown to be indispensable for IL-37 to function 

extracellularly. Since anti-inflammatory therapies using IL-37 will most likely involve systemic 

treatment with recombinant protein, understanding and potentially controlling the regulation of 

IL-1R8 expression for this purpose is important. Acting together, IL-37 and IL-1R8 are part of a 

complex with potential therapeutic value in reducing the chronic inflammation that drives 

atherosclerosis development.  
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CHAPTER 2: MATERIALS AND METHODS 

1. Media, Buffers, and Solutions  

1.1. Media, Buffers, and Solutions for Cell Culture  

Media, buffers, and solutions were prepared under sterile conditions. Media was 

purchased from Gibco by Life Technologies. Dulbecco’s modified eagle medium (DMEM) was 

used to culture L929, RAW 264.7 mouse macrophages. Fetal Bovine Serum (FBS) was heat 

inactivated 56 °C for 1 hour before use. 

Table 1: Medium composition for cell culture 
Cells Name Composition 
All Freezing Medium 90% FBS 

10% Dimethylsulfoxide (DMSO) 
Bone Marrow Derived 
Macrophages 

Differentiating Medium 
(complete) 

DMEM/ F12 + L-Glutamine 
10% FBS 
20% L929 conditioning medium  
1% Penicillin/Streptomycin 
Filter with 0.22um filter unit 

Bone Marrow Derived 
Macrophages 

Experimental Medium DMEM/ F12 + L-Glutamine 
10% FBS 
1% Penicillin/Streptomycin 
Filter with 0.22um filter unit 

L929  
(M-CSF Supernatant) 

Growth Medium DMEM + L-Glutamine, Na2+ Pyruvate 
10% FBS 
1% Penicillin/Streptomycin 
1% 1M HEPES 

RAW 264.7 Mouse 
Macrophages 

Growth Medium DMEM + L-Glutamine, Na2+ Pyruvate 
10% FBS 
1% Penicillin/Streptomycin 
Filter with 0.22um filter unit 

 

1.2. Buffers and Solutions 

Table 2: Buffer and solution composition 
PBS 150mM NaCl 

120mM KCl 
10nM Na2HPO4/KH2PO4  
pH 7.4 

PBS- Tween PBS 
0.1% Tween 

RIPA buffer 50mM Tris-HCl 
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1% Triton X-100 
0.5% Na deoxycholate 
0.1% SDS 
150mM NaCl 
2mM EDTA 
H2O 

SDS-Loading buffer 0.1 M Tris-HCl pH 6.8 
0.7% SDS 
33% glycerol 
0.01% bromophenol blue 
8% b-mercaptoethanol 

TAE 
 

40 mM Tris-acetate 
1 mM EDTA 
pH 8.3 

LB (Luria- Bertani) medium 
 

10g/L Bacto-tryptone 
5g/L yeast extract 
10g/L NaCl 

 

2. Cell lines 

Table 3: Cell lines for transfection 
Cell Line Description ATCC 

Number 
L929 Organism: Mus musculus, mouse 

Tissue: subcutaneous connective tissue; areolar and adipose 
Morphology: fibroblast 

CCL-1 

RAW 264.7  
Macrophages 

Organism: Mus musculus, mouse 
Tissue: Abelson mouse leukemia virus-induced tumor; ascites  
Morphology: monocytes/macrophages 

TIB-71 

 
3. Mouse Strain 

Wildtype C57BL/6 mice originally purchased from Jackson Laboratories were housed in 

the University of Hawaii John A. Burns School of Medicine Vivarium animal facility. Male 8-12 

week old wildtype mice were used for all in vitro experiments. The use of only the male sex 

served as a control, as female mice may have a different response. Animal protocols were 

approved by the University of Hawaii Institutional Animal Care and Use Committee.  
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4. Antibodies 

Table 4. Antibodies for Western blotting 
Target Name Company Isotope Application Dilution  
IL-1R8/ SIGIRR A-4 Santa Cruz 

Biotechnology, Inc. 
1° Mouse 
monoclonal  

Western blot 1:500 

IL-1R8/SIGIRR C-12 Santa Cruz 
Biotechnology, Inc. 

1°Goat 
polyclonal 

Western blot 1:500 

GAPDH 60004-
1-Ig 

Protein Tech Group 1° Mouse 
monoclonal 

Western blot 1:1000 

MYC 71010 Cell Signaling 
Technology 

1° Rabbit 
monoclonal 

Western Blot 1:1000 

Donkey anti-
mouse 

IR Dye 
680RD 

Li-Cor, 926-32210 2°  Western blot 1:10,000 

Donkey anti-
goat 

IR Dye 
800CW 

Li-Cor., 926-68074 2° Western blot 1:10,000 

 
5. Plasmids 

Table 5: Plasmids for transfection  
Plasmid Cat. No. Description 
GFP  pcDNA3.1-CMV-GFP  
IL-1R8/SIGIRR MR206419 

NM_023059 
Sigirr (C-terminal Myc- DDK tagged) Mouse cDNA ORF 
Clone, pCMV6 entry 

 
 
6. siRNA reagents 

Table 6: siRNA for knockdown transfection 
Name Company 
Scrambled siRNA Smart Pool- IL-1R8 Dharmacon 
siRNA Smart Pool- IL-1R8 Dharmacon 
X-tremeGENE siRNA Transfection Reagent  Roche 
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7. Primers 

Table 7: List of primers for PCR, RT-qPCR, Western blotting 
Gene Forward Sequence (5’-3’) Reverse Sequence (5’-3’) 

Gapdh GGCAAATTCAACGGCACAGT  CGCTCCTGGAAGATGGTGAT 
IL-1R8 
(version 1) 

TCCATGAGGACTTCTGGGTCAG AGAACAGGTGAAGGTTCCATAGTCC  

IL-1R8 
(version 2) 

TCCATGAGGACTTCTGGGTCAG TCAGCCGACACTTAACATAGAGCA 

IL-1β TCCAGGATGAGGACATGAGCAC  GAACGTCACACACCAGCAGGTTA 
IL-6 TCTTGGGACTGATGCTGGTGACAAC TGCCATTGCACAACTCTTTTCTCATTT 
iNOS TGCATGGACCAGTATAAGCGAAG GCTTCTGGTCGATGTCATGAGCAA 
TNFα CTGTAGCCCACGTCGTAGC GGTTGTCTTTGAGATCCATGC 
MCP1/ 
CCL2 

TCACTGAAGCCAGCTCTCTCT GTGGGGCGTTAACTGCAT 

ABCA1 CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG 
ABCG1 CAAGACCCTTTTGAAAGGGATCTC GCCAGAATATTCATGAGTGTGGAC 
PPARγ GCAGCTACTGCATGTGATCAAGA GTCAGCGGGTGGGACTTTC 
MMP2 GTAAAGTATGGGAACGCTGATGGC CATGGTAAACAAGGCTTCATGGGG 
MMP3 TGGAACTCCCACAGCATCCC GCGCCAAAAGTGCCTGTCTTT 

 

8. Cell Culture Methods 

All cell culture methods were conducted in biosafety hoods to maintain sterility. Cells 

were maintained at 37 °C in a humidified incubator with 5% CO2. Cell culture medium was pre-

warmed to 37 °C before use. Cell culture materials included: 15ml and 50ml Falcon tubes, cell 

scraper, cell lifter, T-75 flasks (Fisher). 

8.1. Bone marrow derived macrophage (BMDM) cell isolation, in vitro cell culture 

Male wild type C57BL/6 mice, 8-12 weeks old, were euthanized by CO2 asphyxiation 

and sprayed with 70% EtOH for disinfection. The femur and tibia bones were isolated under the 

sterile conditions. The bones were flushed with 20-25ml of ice cold sterile PBS using a 25-gauge 

needle into a 50mL Falcon tube and kept on ice. The isolated bone marrow cells were 

resuspended with a 10ml pipette, passed through a 40µm cell strainer into a new 50ml Falcon 

tube, and centrifuged at 1300 rpm for 5 minutes. The supernatant was aspirated and the cells 
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were resuspended in BMDM complete differentiation medium (DMEM/F12 supplemented with 

10% fetal bovine serum, 20% L929-conditioned medium, and 1% penicillin/streptomycin). Live 

cells were counted using a dilution of 1:3 or 1:5 in 0.4% trypan blue solution. 10µl of diluted 

cells were added to each side of a hemacytometer and cells in four separate quadrants were 

counted and averaged.  

The bone marrow stem cells were differentiated into macrophages by plating 10-15x106 

cells per 15-cm2 tissue culture plate (Corning) in 25mL of BMDM complete differentiation 

medium. On days 3 and 5, an additional 10mL of differentiating medium were added to each 

plate. On day 7, the differentiating medium was aspirated and the BMDM were detached with 

4ml Cell Stripper (Gibco) per plate for 5-10 minutes at 37 °C. Next, the differentiated BMDM 

were gently removed using a cell lifter, washed with 5ml of PBS, and centrifuged at 1300rpm for 

5 minutes. The cells were then counted and replated into 6-well plates at 3-3.5x106 cells per well 

for in vitro experiments. BMDM were stimulated with 10-25ng/ml IFNg, 10ng/ml-100ng/ml LPS 

or 10ng/ml IL-4 for 1-24 hours.   

 L929 conditioned medium was produced by plating 4.7x105 L929 cells per 75 cm2 flask 

in 50ml of medium (DMEM, 10% FBS heat inactivated, 1% HEPES, and 1% Pen/Strep). The 

L929 cells were incubated for 7 days, at which point the medium was collected and sterile 

filtered with 0.22µm filter unit. Then the supernatant was aliquoted into 50ml falcon tubes and 

stored at -20 °C (short term) or -80 °C (long term). 

8.2. RAW 264.7 Macrophages, in vitro cell culture 

Cryopreserved RAW 264.7 Macrophages were removed from the -150°C freezer and 

thawed in a 37°C water bath until almost all the ice was thawed (30-90seconds). The cryovials 

were sprayed with 70% EtOH before putting in biosafety hood, and 1ml of warm media was 
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added to each vial. The cell suspension was added to 5 ml of growth media in a 15ml falcon and 

centrifuged at 1300 rpm for 5 minutes. The supernatant was aspirated and the cells were 

resupsended in 15 ml of growth media and transferred to a T-75 cell culture flask.  

The RAW 264.7 macrophages were cultured in T-75 flasks. Cells were split no more than 

1:4 when they reached 70-80% confluency. The cells were washed with PBS and detached with 

1ml of 0.25% Trypsin-0.53mM EDTA and placed in the 37°C incubator for 3-5 minutes. Then 

4ml of cell medium was added to inhibit the Trypsin. The cells were resuspended and mixed 

thoroughly to prevent clumps before splitting into new T75 flasks in a total volume of 15ml 

each. For experiments, the cells were counted and replated into 6-well plates at 2.5-3.5x105 cells 

per well for in vitro experiments. 

 For freezing RAW 264.7 macrophages, once they reached 70-80% confluency the cells 

were harvested, counted, and centrifuged at 1300rpm for 5minutes. The supernatant was 

aspirated and the cells were quickly resuspended with freezing medium (90% FBS, 10% DMSO 

at a concentration of 1x106 cells/ml. 1ml of cells was added to each cryovial and quickly 

transferred to an isopropanol pot and kept at -80°C for 24 hours. The cryovials were then 

transferred to the -150 °C for long-term storage. 

9. Transfection of RAW 264.7 Macrophages and BMDM with GFP and IL-1R8 

Once the cells reached 70%-80% confluency for RAW 264.7 cells and after 7 days of 

differentiation for BMDM, they were split into appropriate plates for transfection. Optimal 

conditions for a 24-well plate format was 1µg DNA: 2µl Lipofecatmine 2000, with 0.8 x 105 

cells and 500µl media per well. Optimal conditions for a 6 well plate was 4µg DNA: 8µl 

Lipofectamine 2000, with 3-3.5x105 cells/well for RAW 264.7 Macrophages and 3-4x106 
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cells/well for BMDM with 2ml media per well. The manufacturer’s protocol for Lipofectamine 

2000 was followed for transfection experiments (Life Technologies). 

10. IL-1R8 siRNA Transfection of RAW 264.7 Macrophages and BMDM  

In a 6 well plate, 3-3.5x105 RAW 264.7 Macrophages/well and 3-3.5x106 BMDM 

cells/well were plated in a total of 2ml media per well. The test conditions consisted of 400µl of 

combined 50nM or 100nM Scrambled or IL-1R8 siRNA, 10µl of Roche Xtreme Gene siRNA 

transfection reagent, and OptiMem antibiotic free medium for 24 or 48hours. See Dharmacon 

Smart Gene Pool and Roche Xtreme siRNA transfection reagent protocol.  

11. Molecular Biology Methods 

11.1 RNA Isolation and cDNA Preparation 

After the BMDM were harvested and stabilized with RNA Later, 500µl of TRIzol was 

added to the frozen cell pellet in a 1.5mL tube. The samples were vortexed until the pellets 

dissolved and then 100µl of chloroform was added. The samples were inverted 5 to 10 times. 

Once properly mixed, the samples were centrifuged for 15 minutes at 12400 rpm at 4°C. The 

aqueous phase was carefully transferred into a new tube and 1X volume of 70% ethanol was 

added. The samples were gently inverted and added to the Qiagen RNeasy purification column 

and centrifuged for 15 seconds at 10000rpm. Then, 80µl of DNA digest master mix was added 

(70µl H2O and 10µl DNase) and incubated for 15 minutes at RT. For the first wash step, 700µl 

of RW1 buffer was added to each column and samples were centrifuged at 10,000 rpm for 15 

seconds, then discarded. Next, 500µl of RPE buffer was added to each column and samples were 

centrifuged at 10,000rpm for 15 seconds, then discarded, followed by a second wash step with an 

additional 500µl of RPE buffer. The samples were then centrifuged for an additional 2 minutes at 

10000rpm. In the final elution step, 30µl of RNase free H20 was warmed at 55°C and added to 
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the columns, which were put into RNase free 1.5ml microcentrifuge tubes, and allowed to 

incubate for 1-5 minutes. Tubes were centrifuged at 10,000 rpm for 1 minute, and the eluted 

RNA was then kept on ice. A NanoDrop spectrophotometer was used to measure the RNA 

concentration and quality. If not used immediately to make cDNA, the RNA was stored at -80°C.  

Using a qScript cDNA synthesis kit (Quanta Biosciences), 1µg of RNA per sample was 

transcribed into cDNA. In a total volume of 15µl, the appropriate amount of H2O was added to 

the 1µg of RNA. Then, 4µl of 5x reaction buffer and 1µl of reverse transcriptase enzyme per 

sample were added for a total of 20µl per sample. The cDNA samples were run on the following 

program: After cDNA synthesis, 80 µl of RNase free H2O per sample was added to make a total 

of 100µl cDNA at a concentration of 10ng/µl. The cDNA qScript assay was run on a Peltier 

Thermal Cycler 225 PCR System (Stage 1: 25 °C for 5 minutes; Stage 2: 42 °C for 30 minutes, 

Stage 3: 85.0 °C for 5 minutes, Stage 4: 10.0 °C forever). 

11.2. Polymerase Chain Reaction (PCR) 

For a PCR assay, 7µl of H2O was added to 1µl of combined 10nM forward and reverse 

primer mix and vortexed thoroughly. Then, 10µl of 2X Go Taq green master mix was added to 

the H2O and primer master mix. The PCR components were gently mixed and then 2µl of cDNA 

was added for a total of 20µl per sample. PCR assays were run on a Peltier Thermal Cycler 225 

PCR System (Stage 1: 95 °C for 5 minutes; Stage 2: 95 °C for 30 seconds, Stage 3: 57.0 °C for 

30 seconds, Stage 4: 72.0 °C for 1 minute, 35 times). 

After the PCR program was completed, a 1-1.5% agarose gel was made with 1X TAE 

buffer. 1µl of Sybr Safe stain was added for every 10ml of agarose gel. Once the agarose gel 

hardened, 1X TAE was poured into the chamber and 10µl of ladder was added in the first lane. 
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Then, the samples were loaded. For a 50ml gel, the program ran at 125 volts for 30 minutes. For 

a 100ml gel, the program ran at 150-200 volts for 45-60 minutes. After the DNA bands were 

completely separated, the agarose gel was imaged on the Typhoon scanner. 

11.3. Reverse transcriptase quantitative PCR (RT-qPCR)  

For RT-qPCR, 4 µl cDNA was added to each well of a 94-well plate, followed by a 

master mix consisting of 1µl of combined forward and reverse primer (10µM) and 13.5µl of 

RNase-free H20. Then, 18.5 µl of SYBR Green 2X master mix with ROX was added per well in 

a 96-well plate and pipetted up and down to mix. A clear adhesive film was added and the 96-

well plate was centrifuged for 2 minutes at 4°C, 2200 rcf. Then, 10µl of each sample was 

pipetted in triplicate into a 384-well qPCR plate. GAPDH was used as a reference gene to 

determine expression levels of genes of interest. RT-qPCR assays for Aims I and II were run on 

an Applied Biosystems 7900 HT Fast Real Time PCR System (Stage 1: 95 °C for 15 minutes; 

Stage 2 (40 cycles): 94 °C for 30seconds, 57.0 °C for 30 seconds, 72.0 °C for 30 seconds; Stage 

3: 95.0 °C for 15 seconds, 57.0 °C for 15 seconds, 95.0 °C for 15 seconds). Experiments 

performed for Aims II and III were run on an Applied Biosystems Quant Studio 12k Flex (Stage 

1: 95.0 °C for 10minutes, Stage 2 (40cycles): 95.0 °C for 15 seconds, 57.0 °C for 30 seconds, 

72.0 °C for 30 seconds, and Stage 3: 95.0 °C for 15 seconds, 57.0 °C for 1 minute). 

11.4. Western blot 

RIPA lysis buffer was supplemented with protease and phosphatase inhibitor cocktails at 

1:100 (Thermo Fischer) and was used for all lysate sample preparation. Cells were gently 

washed with PBS and all liquid was aspirated before 125µl of lysis buffer was added to each 

sample. The 6-well plates were then incubated on ice for 15 minutes. A cell scraper was used to 

collect lysates, which were pipetted into 1.5ml microcentrifuge tubes. The lysates were then 
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sonicated at a power level of 2.5 for 10 pulses using a probe sonicator (Thermo Fisher) and 

centrifuged at 400 x g for 5 minutes at 4°C to pellet debris. The lysates were then transferred to a 

new tube and the cell debris pellets were discarded. The protein concentrations of the cell lysates 

were determined with the Pierce Bicinchoninic Acid Assay (BCA) kit (ThermoFisher) using a 

1:10 dilution of the samples. Undiluted samples were stored at -80°C until used for Western 

blots.  

Precast 4-12% NuPAGE Bis-Tris Mini (12-well) or Midi (20-well) gels were used for 

protein electrophoresis. 10-20µg of protein plus RIPA lysis buffer up to 12 µl along with 4 µl of 

4x SDS Laemmli-loading buffer per sample were heated at 95 °C for 5 minutes. After cooling to 

RT, samples were loaded onto a precast 4-12% NuPAGE Bis-Tris Mini (12-well) or Midi (20-

well) gel. The gel was run in 1X NuPAGE SDS Running Buffer (Invitrogen) at 150-200 V for 

40-60 minutes.  

After the blue loading dye reached the bottom of the 4-12% NuPAGE Bis-Tris gel, the 

cassette was opened and the gel was then used for transfer to a PVDF-FL (Immobilon) 

membrane. The membrane was cut to the appropriate size and activated in 100% methanol for 15 

seconds. 1X Efficient™ Western Transfer Buffer (G-Biosciences® #786-019) with 20% 

methanol was used to prepare the gel and membrane for transfer. Four sheets of filter paper were 

equilibrated in transfer buffer. The gel and membrane were sandwiched between two sheets of 

soaked filter paper on each side and packaged tightly within a transfer cassette, which was placed 

in the transfer chamber with transfer buffer to the fill line. The transfer chamber containing an 

ice pack and stir rod was packed in ice on a stir plate to ensure that the transfer buffer remained 

at a cool temperature and was run at 100 volts for 1 hour.  

The membrane was then blocked in LI-COR blocking buffer for 1 hour at room 
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temperature. Then the blot was incubated with primary antibodies, C-12 IL-1R8 (SIGIRR) or A-

4 IL-1R8 (SIGIRR) (both Santa Cruz Biotechnology, 1:500) to detect SIGIRR, and GAPDH 

(Protein Tech, 1: 1,000) as loading control. Primary antibodies were diluted in blocking buffer 

and membranes were incubated on a rocker over night at 4°C. The membranes were washed with 

0.1% PBS-Tween three times for 5 minutes each. The membrane was then incubated with the 

appropriate Licor near infrared secondary antibodies (IR-680, IR-800, both 1:10,000). The 

membrane was then washed three times for 5 minutes each in 0.1% PBS-Tween and the 

membrane was stored in PBS. The final Western blot was imaged on a Licor Odyssey infrared 

scanner and the images were analyzed using the Licor Image Studio software (Licor 

Biosciences). 

11.5. Bacterial Transformation: IL-1R8 in pCMV6-entry vector 

Plasmid DNA (pcDNA3.1-CMV-GFP and pCMV6-Myc-DDK-tagged-SIGIRR from 

Origene Product MR206419) was transformed into competent E. Coli (Invitrogen). 2µl of DNA 

was added to 50µl of competent cells on ice. The tubes were gently mixed and left on ice for 30 

minutes. The tubes were then heat shocked in a 42°C water bath for 30 seconds, and then placed 

back on ice for 2 minutes. Next, 500 µl of LB media without antibiotics was added to each vial 

of bacteria and the cells were allowed to recover for 1 hour at 37°C in a shaker. The transformed 

bacteria were then plated on agar plates containing the appropriate antibiotic. The pCMV-

SIGIRR-transformed bacteria were plated on Kanamycin-containing agar (25µg/ml) while the 

pcDNA 3.1-GFP-transformed bacteria were plated on Ampicillin agar plates (50µg/ml). Finally, 

the plates were incubated overnight at 37°C to allow colonies to grow.  
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Glycerol stocks of transformed bacteria were also used. A 10µl pipette tip was used to 

collect a bacterial sample and was added to 250ml of LB broth with appropriate antibiotic and 

incubated at 37°C on a shaker overnight. 

Bacteria were pelleted and plasmid DNA was purified with the Pure Yield Plasmid 

Maxiprep System (Promega) using vacuum filtration according to the company’s protocol. After 

the DNA concentration was measured using a NanoDrop spectrophotometer the plasmid DNA 

was stored at -20 °C.  

11.6. In-Gel band identification  

 The polyacrylamide gel electrophoresis protocol in Section 11.2 was modified with the 

following specifications. After the concentration of protein was determined using a BCA assay, 

the samples were digested with PNGase F glycosidase. 15µg of protein was combined with 1 µl 

of glycoprotein denaturation buffer (10X), and H20 in a total of 10µl, which was incubated for 

10 minutes at 100°C. Then, 2µl Glycobuffer 2, 1µl 10% NP-40, and 1µl PNGase F were added 

and the samples were incubated for 1 hour at 37°C. The samples were then reduced with 50nM 

DTT for 30 minutes at 65 °C, followed by alkylation with 10mM iodoacetamide at room 

temperature for 1 hour in the dark. Finally, freshly made loading dye (6X) was added and the 

samples were run on SDS page at a power of 150V for 60 minutes (See Section 11.2, New 

England Lab protocol, and Protech Cysteine Alkylation Before SDS-PAGE Protocol).  

After the blue loading dye reached the bottom of the gel, the precast gel case was opened. 

The gel was washed in mH2O for 10 minutes for a total of 3 times on a rocker at room 

temperature. The H2O was discarded. 20ml of stain solution was added to cover the gel, which 

was incubated with agitation on a rocker for 5-10 minutes at room temperature until the protein 

stained blue. The stain solution was poured out into a waste bottle. About 15ml of destaining 
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solution (50% MeOH, 10% HoAC, 40% H2O) was added to the gel and incubated on rocker for 

10 minutes, followed by a lower concentration destaining solution (5% MeOH, 7.5% HoAC, 

87.5% H2O) overnight with agitation at room temperature. The gel was monitored every hour 

and the solution was changed out when saturated with blue stain. The gel was stored in 7% 

HoAC solution in the dark at 4°C until imaged. 

Before the band was excised, a photograph of a gel band was taken for records. Direct 

contact with the gel was avoided. Blank gel space was minimized in a gel sample to improve 

digestion efficiency and peptide recovery. The gel band was placed in a sterile 1.5 ml 

microcentrifuge tube and labeled carefully. The height of each gel slice (vertical dimension) was 

less than 2.5 mm (Protech protocol). 

12. Statistical Analysis 

For in vitro experiments, at least 3 biological replicates were analyzed for each assay 

unless otherwise indicated. cDNA was analyzed for transcript expression with RT- qPCR 

analysis. Ct values were first normalized to GAPDH for each sample, and then expressed as the 

average fold change relative to GFP controls for each treatment, with error bars representing the 

SEM.  For Western blot analysis, Image Studio was used to quantify the protein signal. First, the 

bands were selected with an equivalent square area, normalized to its respective GAPDH protein 

band, and then adjusted to the control treatment signal.  

The Student’s T-test was used to compare differences between control, LPS, IFNg, 

TNFa, and IL-37 treatment groups with significance set at p<0.05. The p-values for all 

experiments was calculated using Prism (*p<0.05, **p<0.001, and *** p<0.0001). 
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CHAPTER 3: RESULTS 

Preliminary Data: Determine the effect of recombinant IL-37 in macrophages. 
 

With the hypothesis that IL-37 has potent anti-inflammatory properties in macrophages 

based on many studies that showed IL-37 negatively regulating inflammation, initial studies 

were conducted to determine the effects of recombinant human IL-37 protein on mouse primary 

bone marrow derived macrophages (BMDM). To do so, BMDM were co-treated with 25ng/ml 

IFNg or 20ng/ml LPS and 1, 10, and 100ng/ml recombinant IL-37 for 6 hours. Transcript levels 

for inflammatory genes, (IL-6, IL-1b, iNOS, TNFa, MCP1/CCL2, CCL4), were analyzed with 

PCR and RT-qPCR.  
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E.  F.  
Figure 9. Recombinant IL-37 protein co-treatment with LPS had no significant impact on 
pro-inflammatory gene expression.  (A-F) With BMDM, there was no significant reduction of 
inflammatory IL-6, IL-1b, iNOS, TNFa, MCP1/CCL2, and CCL4 gene expression with 1, 10, or 
100 ng/ml IL-37 and LPS for 6 hours. n=4, except where indicated otherwise.  

 

Contrary to my hypothesis, the expression of IL-6, IL-1b, iNOS, TNFa, MCP1/CCL2, and 

CCL4 transcripts were not significantly reduced by 1, 10, or 100 ng/ml IL-37 (Figure 9A-F). 

In order to determine if IL-1R8 expression was affected by IL-37, BMDM were co-

treated with 25ng/ml IFNg or 20ng/ml LPS and 1, 10, and 100ng/ml recombinant IL-37 for 6 

hours. The 1ng/ml IL-37 treatment alone resulted in a slight, but not significant, increase in IL-

1R8. Interestingly, however, with both pro-inflammatory IFNg and LPS treatments, IL-1R8 was 

consistently and significantly decreased, even with addition of 1, 10, or 100 ng/ml IL-37 (Figure 

10A). This downregulation of IL-1R8 gene expression with IFNg and LPS treatment was also 

confirmed by PCR assay (Figure 10B). Search of the literature revealed that others have 

reported similar decrease in IL-1R8 with LPS treatment in monocytes, intestinal epithelial cells, 

and neutrophils [34, 51, 56]. 
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A.  

B.  

Figure 10. IL-1R8 gene expression was significantly downregulated with IFNg and LPS 
treatment. (A) BMDM treated with 20ng/ml LPS and 25ng/ml IFNg significantly 
downregulated IL-1R8 compared to control treatment, analyzed with RT-qPCR. ***p<0.0001, 
n=4, except where indicated (B) In BMDM, PCR shows a decrease in IL-1R8 gene expression 
with in BMDM with 20ng/ml LPS and 25ng/ml IFNg treatment. 

 

 Although we were not able to show any anti-inflammatory effects of IL-37 as has been 

reported by many investigators, my finding that IL-1R8 is significantly reduced in macrophages 

in the presence of pro-inflammatory mediators led me to focus on this receptor as a means of 

mediating macrophage inflammation. Thus, I devised the following two specific aims to assess if 

macrophage inflammation can be regulated by manipulating lL-1R8.   
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SPECIFIC AIM I: Determine if IL-1R8 overexpression in mouse primary macrophages 

and mouse cell line macrophages would reduce inflammation. 

a. Hypothesis 

IL-1R8 in macrophages contributes to quelling inflammation under pro-inflammatory 

conditions. 

b. Approach and Significance 

The purpose of this aim was to test whether overexpressing IL-1R8 in RAW 264.7 

macrophages and BMDM, in vitro, reduces inflammation compared to GFP DNA control. Cells 

were treated with pro-inflammatory (e.g., LPS, IFNg, and TNFa) and anti-inflammatory (e.g., 

IL-4) mediators. Transcript levels for IL-1R8 and various inflammatory genes, (IL-6, IL-1b, 

iNOS, TNFa, MCP1/CCL2, CCL4), were analyzed with RT-qPCR, and IL-1R8 protein was 

quantified by Western blot. 

1. Optimized transfection of RAW 264.7 macrophages  

1.1 24-well plate GFP transfection optimization 

In my preliminary data, IL-1R8 was consistently decreased with LPS and IFNg pro-

inflammatory stimulation. In Aim I, I shifted my attention to the role of IL-1R8 in modulating 

macrophage inflammation, with specific focus on whether overexpression of IL-1R8 could 

decrease inflammation. The first step to overexpressing IL-1R8 was to establish the optimum 

transfection parameters. To assess the transfection of RAW 264.7 macrophages, a CMV-driven 

GFP expression plasmid was used. First, 0.8X105 cells were plated into a 24-well plate and the 

culture medium was replaced with 500µl of either antibiotic-free OptiMEM, or normal 

experimental medium. Different ratios of Lipofectamine 2000 (ranging from 0.4µl-4µl) and GFP 

plasmid DNA (0.25µg-4µg) were tested based on the manufacturer’s recommendation. The 
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transfection efficiency was rated on a scale of the least efficient (+1) to the most efficient (+5) 

based on the number and brightness of GFP-positive cells. Shown in Figure 11, the ratio of 

transfection reagent to DNA with the greatest number of GFP fluorescent cells was 1.6µl of 

Lipofectamine 2000 to 0.8µg GFP DNA in normal experimental medium (+5). The second most 

highly transfected ratio was 2.4µl of Lipofectamine 2000 to 0.8µg GFP DNA in normal 

experimental medium (+4). The normal experimental medium allowed for higher transfection 

efficiency than the recommended OptiMEM medium.  

 

Figure 11. Optimization of RAW 264.7 macrophage transfection using pcDNA3.1-GFP 
expression plasmid. The transfection efficiency was rated on a scale of the least transfection 
(+1) to the most transfection (+5). The ratio of 1.6µl of Lipofectamine 2000 to 0.8µg GFP DNA 
in normal experimental medium had the most effective RAW 264.7 macrophage transfection in a 
24-well plate after 6 hours. 
 
1.2 6-well plate GFP and IL-1R8 transfection optimization 

 Once the optimum ratio of 1.6µl of Lipofectamine 2000 to 0.8µg GFP DNA determined, 

the experiment was scaled up to 6-well plates. To access the transfection of GFP and IL-1R8 

expression plasmids in RAW 264.7 macrophages, 4.0x105 RAW 264.7 macrophages were plated 

into a 6-well plate in 2ml of normal experimental medium for 6 hours and the ratio of 8µl 

Lipofectamine 2000 to 4µg of GFP or IL-1R8 DNA per 6-well was used. These concentrations 

Raw	264.7	Macrophage	Plasmid	DNA	24-well	Transfection	
1 2 3 4 5 6

A 
(OptiMEM)

0.4ul Lipo + 
0.8 ug DNA +1 0.8ul Lipo + 

0.8ug DNA +1 1.6ul Lipo + 
0.8ug DNA +1 2.4ul Lipo + 

0.8ug DNA +1 3.2ul Lipo + 
0.8 ug DNA +1 4ul Lipo + 

0.8 ugDNA +1

B (Normal 
Medium)

0.4ul Lipo + 
0.8 ug DNA +1 0.8ul Lipo + 

0.8ug DNA +1 1.6ul Lipo + 
0.8ug DNA +5 2.4ul Lipo + 

0.8ug DNA +4 3.2ul Lipo + 
0.8 ug DNA +1 4ul Lipo + 

0.8 ugDNA +1

C 
(OptiMEM)

2ul Lipo + 
0.25ug DNA +1 2ul Lipo + 

0.5ug DNA +1 2ul Lipo + 
1ug DNA +1 2ul Lipo + 

2ug DNA +1 2ul Lipo + 
3ug DNA +1 2ul Lipo + 

4ug DNA +1

D (Normal 
Medium)

2ul Lipo + 
0.25ug DNA +1 2ul Lipo + 

0.5ug DNA +2 2ul Lipo + 
1ug DNA +3 2ul Lipo + 

2ug DNA +2 2ul Lipo +
3ug DNA +1 2ul Lipo + 

4ug DNA +1
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and ratios were based on the manufacturer’s protocols and the experiment described in Section 

1.1. Figure 12 shows an image of a successful GFP transfection, depicted by GFP-positive green 

fluorescent cells. Since IL-1R8 could not be detected by fluorescence, a PCR assay (Figure 13) 

confirmed successful IL-1R8 overexpression shown by the upregulation of IL-1R8 ~120bp.  

 
Figure 12. Images of RAW 264.7 macrophage transfection optimization using GFP and IL-
1R8 expression plasmid. The optimum ratio was 8µl Lipofectamine 2000 transfecting reagent 
to 4µg DNA in 6-well plates with 4x105 cells/well in a total of 2ml normal experimental medium 
for 6 hours. 
 

 

Figure 13. PCR of RAW 264.7 macrophages shows IL-1R8 overexpression. IL-1R8 
transcript increased compared to GFP at ~120bp which confirms successful IL-1R8 transfection 
overexpression. 
 
2. Baseline effects of IL-1R8 overexpression  

2.1 RT-qPCR showed successful transfection of RAW 264.7 macrophages  

After establishing the optimum GFP/IL-1R8 transfection protocol, I wanted to determine 

if IL-1R8 overexpression reduced inflammation. To test this, RAW 264.7 macrophages were 

transfected with GFP or IL-1R8 plasmid DNA in 6-well plates and the media was changed after 

6 hours. The next day, the RAW 264.7 macrophages were treated with pro-inflammatory 

mediators, 20ng/ml LPS, 25ng/ml IFNg, 25ng/ml TNFa or anti-inflammatory mediator, 10ng/ml 
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IL-4. In order to determine the baseline effects of IL-1R8 overexpression, unstimulated cells 

were analyzed. The RT-qPCR data for IL-1R8 transfection showed a 35-60-fold increase 

compared to GFP transfection (Figure 14).  

 
Figure 14. RT-qPCR shows successful transfection of GFP and IL-1R8 in RAW 264.7 
macrophages. With 20ng/ml LPS, 25ng/ml IFNg, 25ng/ml TNFa, or 10ng/ml IL-4 treatment, 
IL-1R8 gene expression showed a 35-to-60-fold change increase compared to GFP after 6 hours 
of transfection. There were no significant differences under LPS, IFNg, TNFa, or IL-4 
conditions. **p<0.001, n=3 
 
2.2 Western blot showed successful transfection of IL-1R8 in RAW 264.7 macrophages 

To determine if IL-1R8 protein was successfully overexpressed in RAW 264.7 

macrophages, a Western blot for IL-1R8 was performed to quantify that amount of endogenous 

and overexpressed protein. The RAW 264.7 macrophages were transfected with GFP or IL-1R8 

DNA plasmids in 6-well plates and the media was changed after 6 hours. The next day, they were 

treated with 20ng/ml LPS, 25ng/ml IFNg, or 25ng/ml TNFa. In Figure 15A, the Western blot 

analysis revealed that the IL-1R8 transfection of RAW 264.7 macrophages increased IL-1R8 

protein levels by 2.6-4.7 folds compared to GFP-transfected control cells. Figure 15B shows the 

total IL-1R8 protein averaged from three Western blots were not significantly affected by LPS, 

IFNg and TNFa conditions compared to control.  
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A.  

B.  
Figure 15. Western blot shows that inflammatory agents did not change IL-1R8 protein 
levels in IL-1R8 overexpressed RAW 264.7 macrophages. (A) Overall IL-1R8 protein levels 
were increased by 2.6-4.7 fold compared to GFP-transfected control cells under 20ng/ml LPS, 
25ng/ml IFNg, and 25ng/ml TNFa. n=1 (B-C) With GFP or IL-1R8 transfection, Control, LPS, 
IFNg and TNFa conditions did not have a significant effect on IL-1R8 protein expression 
compared to control. 
 
 
2.3 SDS PAGE In-Gel Band IL-1R8 Sequencing  

To confirm that the bands seen in the Western blots are indeed that of IL-1R8, an In-gel 

band digestion was conducted to sequence IL-1R8 in the region corresponding to ~60kDa. I 

digested IL-1R8 transfected and Control treated RAW 264.7 macrophages ±PNGase F treatment 

(New England Lab). After reducing and alkylating the lysates, the 60kDa band that did not 

appear in the PNGase F treated sample was cut out and sent out to Protech Inc. to be sequenced. 

The company detected 35.6% or 146 out of 410 IL-1R8 amino acids which are highlighted in 

yellow (Figure 16). The six peptide sequences were analyzed in the National Center for 
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Biotechnology Information (NCBI) “Protein Blast” and the top results were IL-1R8/SIGIRR 

(single Ig IL-1-related receptor) in mus musculus and homo sapiens. The NCBI database 

indicated that the amino acid sequences shared similarities with the Ig superfamily and TIR2 

superfamily.  

 
Figure 16. In-Gel band sequencing shows IL-1R8 protein. In-gel sequencing confirmed that 
the 60kDa band corresponded to IL-1R8. RAW 264.7 macrophages were successfully 
transfected with pCMV6- IL-1R8 vector at the protein level. The highlighted amino acid 
sequences were protein blasted and confirmed to be IL-1R8 and have similarities to the Ig and 
TIR2 superfamilies. 
 

3. Effects of IL-1R8 overexpression on inflammatory gene expression with IL-37 treatment 

After overexpressing IL-1R8 in RAW 264.7 macrophages and treating with 20ng/ml 

LPS, 25ng/ml IFNg, 25ng/ml TNFa, or 10ng/ml IL-4, it was determined that IL-1R8 

overexpression alone did not reduce inflammation (data not shown). Because others have 

shown that the IL-37/IL-18Ra/IL-1R8 tripartite complex negatively regulates inflammation, I 

decided to treat the IL-1R8-overexpressing macrophages with recombinant IL-37. To determine 

the effects of IL-1R8 overexpression with recombinant IL-37, RAW 264.7 macrophages were 

transfected with GFP or IL-1R8 expression plasmids and then untreated or treated with 10ng/ml 

recombinant IL-37. Expression levels of IL-6, iNOS, MCP1 and TNFa were analyzed via RT-

qPCR, as shown below (Figure 17). There were no significant differences between gene 

expression of IL-6, iNOS, MCP1, TNFa under control conditions. However, with 10ng/ml IL-37 

treatment, there was a significant (*p<0.05) decrease in IL-6 transcript as well as trend towards 
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decreasing iNOS and MCP1 supporting the hypothesis that IL-1R8 and IL-37 negatively regulate 

inflammation (Figure 17B). The overexpression of IL-1R8 resulting in a decrease of IL-6 gene 

expression with IL-37 supports concept that IL-1R8 needs IL-37 to negatively regulate 

inflammation.   

A.  B.  
Figure 17. IL-1R8 overexpression shows signs of anti-inflammatory properties with IL-37 
treatment. RAW 264.7 macrophages overexpressing IL-1R8 were treated with control or 
10ng/ml IL-37. (A) There were no significant differences between gene expression of IL-6, 
iNOS, MCP1, TNFa under control conditions. (B) With IL-1R8 overexpression and 10ng/ml IL-
37 treatment, IL-6 was significantly decreased compared to GFP control. *p<0.05, n=3 
 

4. Investigation of N-linked IL-1R8 Glycosylation 

When analyzing the Western blots for overexpression of IL-1R8 we noticed a wide band 

in the region of 70-90 kDa. Because glycosylation is a common occurrence with many proteins 

that raises the molecular weight of the protein, I wondered whether the wide band is indeed 

glycosylated form of IL-1R8. In order to ascertain this I performed an enzymatic experiment as 

detailed below.  

4.1 PNGase F Glycosidase treatment confirmed N-linked IL-1R8 Glycosylation 

The RAW 264.7 macrophages were transfected with GFP or IL-1R8 in 6-well plates and 

the media was changed after 6 hours. The next day, they were treated with 20ng/ml LPS, 
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25ng/ml IFNg, 25ng/ml TNFa or 10ng/ml IL-4. The Western blot analysis revealed a significant 

70-90 kDa IL-1R8 protein band (Figure 18) that has rarely been described in literature.  

Peptide N-glycosidase F (PNGase F) was used to determine whether IL-1R8 transfected 

RAW 264.7 macrophages with Control or LPS treatment were glycosylated. After treatment with 

PNGase F, the Western blot showed the 56-62 kDa and 70-90 kDa proteins shift to 45-49 kDa, 

which indicated that IL-1R8 in RAW 264.7 macrophages are glycosylated (Figure 19).   

A.  
Figure 18. Western blot shows a significant IL-1R8 protein band at 70-90kDa. (A) Overall 
IL-1R8 protein levels are increased by 7.3-9.4 folds compared to GFP-transfected control cells. 
 

 
Figure 19. Treatment with Peptide N-glycosidase F (PNGase F) shows that IL-1R8 
transfected RAW 264.7 macrophages are heavily N-linked glycosylated. With no PNGase F, 
IL-1R8 are 56-62 kDa and 70-90 kDa. With the PNGase F, the IL-1R8 protein bands shifts to 45 
and 49 kDa.  
 
 
 
 
 

IL-1 IL-1 IL-1 IL-1
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5. AIM I Summary: 

Using PCR, qPCR, Western blot, and In-gel sequencing, my data confirmed successful IL-

1R8 overexpression in macrophages. Although IL-1R8 overexpression alone was not protective 

against inflammation and resulted in a significant increase in N-linked glycosylated protein, IL-

1R8 overexpression with 10ng/ml IL-37 treatment was protective and significantly 

downregulated IL-6 gene expression, which strongly indicates that IL-37 needs to be complexed 

to IL-1R8 in order for its anti-inflammatory mechanism to take place. 
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SPECIFIC AIM II: Determine if IL-1R8 knockdown in mouse BMDM and mouse RAW 

264.7 cells would enhance inflammation.  

a. Hypothesis 

IL-1R8 in macrophages enhances inflammation under pro-inflammatory conditions.  

b. Approach and Significance 

The purpose of this aim was to test whether IL-1R8 was necessary to maintain the 

inflammatory mechanism and cause an increase in inflammation. IL-1R8 was knocked down in 

macrophages with IL-1R8 siRNA. Macrophages were then treated with LPS, and the transcript 

levels for inflammatory genes IL-6, IL-1b, iNOS, TNFa, MCP1/CCL2, and CCL4 were 

analyzed via RT-qPCR and IL-1R8 protein was quantified with Western blot. 

1. Optimized siRNA knockdown of IL-1R8 in BMDM 

1.1 Time point and concentration 

To determine whether knocking down IL-1R8 would cause an increase in inflammation, 

the optimum siRNA treatment time point and concentration needed to be determined. In Figure 

20, BMDM were plated at 3.5X106 for 24 with 50nM and100nM of siRNA. At 24 hours with 

100nM of siRNA, the PCR showed an effective inhibition of IL-1R8 expression compared to 

50nM siRNA and Scrambled treatment at 24 hours. 

 

Figure 20. PCR of optimized IL-1R8 knocked 
down with siRNA in BMDM. At 24 hours with 
100nM of siRNA effectively knocked down IL-
1R8 compared to 50nM siRNA and Scrambled 
treatment at 24 hours. GAPDH gene expression is 
consistent throughout the samples. 
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2.   Effects of IL-1R8 siRNA on BMDM treated with LPS and/or IL-37 

2.1 RT-qPCR of siRNA knockdown-LPS stimulated with IL-37 in BMDM 

To determine the effect of IL-1R8 siRNA knockdown with recombinant IL-37, BMDM 

were transfected with 50nM Scrambled or IL-1R8 siRNA in 6-well plate for 24hours. Then, the 

BMDM were treated with 50ng/ml LPS ±10ng/ml IL-37 for an additional 24hrs. In Figure 21A, 

the RT-qPCR data are shown for siRNA downregulated IL-1R8 in the Control and IL-37 treated 

BMDM. In Figure 21B-C, with the downregulation of IL-1R8, IL-6 and IL-1b increased with 

LPS and IL-37/LPS treatment. This adds to the mounting support that IL-1R8 is necessary for 

negative regulation of inflammation.  

A. 

 

B.  

 
C.  

 

Figure 21. IL-1R8 knockdown in BMDM led 
to an increase in inflammatory gene 
expression. (A) In a 6-well plate, 50nM of IL-
1R8 siRNA transfected for 24 hours 
downregulated IL-1R8 in the Control and IL-
37 treated BMDM.  
(B-C) siRNA downregulation of IL-1R8 
showed signs of increased IL-6 and IL-1b gene 
expression with 50ng/ml LPS ± 10ng/ml IL-37 
treatment. n=2 biological replicates, #: n=1 
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3. Optimized siRNA knockdown of in RAW 264.7 Macrophages 

To determine if protein levels of IL-1R8 were successfully knocked down in RAW 264.7 

macrophages, Western blots were performed to assess IL-1R8 protein levels. RAW 264.7 

macrophages were transfected with 50nM Scrambled or IL-1R8 siRNA in 6-well plate for 

48hours. Then, the RAW 264.7 macrophages were treated with 1µg/ml LPS or 10ng/ml IL-37 

for an additional 24hrs. In Figure 22A, the Western blots with IL-1R8 siRNA transfection 

showed successful IL-1R8 knockdown with control treatment, LPS, and IL-37 treatments. 

Glycosylated IL-1R8 was shown at 77-85 kDa and unglycosylated IL-1R8 at 50-55kDa. The 

overall IL-1R8 protein (Figure 22B) was decreased with IL-1R8 siRNA consistently under 

control, LPS and IL-37 treatment conditions.  

A.  

B.  
Figure 22. Western blot of RAW 264.7 cells shows successful knockdown of IL-1R8 with 
siRNA. (A-B) IL-1R8 in RAW 264.7 cells were knocked down with 50nM siRNA in 6-well 
plate for 48hours. Then, treated with 1µg/ml LPS or 10ng/ml IL-37 for 24hrs. Glycosylated and 
unglycosylated IL-1R8 protein is shown at 77-85 kDa and 50-55kDa, respectively. With LPS 
treatment, IL-1R8 was slightly downregulated. The housekeeping gene is GAPDH at 37kDa. n=2 
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4. Effects of IL-1R8 siRNA on RAW 264.7 inflammation 

Next, I sought to determine the effect of IL-1R8 siRNA knockdown at transcript level in 

RAW 264.7 macrophages, which were transfected with 50nM Scrambled or IL-1R8 siRNA in 6-

well plate for 48hours. Then, the RAW 264.7 macrophages were treated with 1µg/ml LPS 

±10ng/ml IL-37 for an additional 24hrs. As shown in the figure below (Figure 23), gene 

expression for IL-6, IL-1b, TNFa, and MCP1/CCL2 were all consistently upregulated with IL-

1R8 knockdown under control, LPS, and LPS/IL-37 treatment conditions. These data suggest 

that IL-1R8 can resolve inflammation, particularly under pro-inflammatory conditions as seen 

with LPS treatment. 

A. 

  

B.  

 
C.  

 

D. 

 
Figure 23. RT-qPCR shows that IL-1R8 siRNA knockdown with LPS ± IL-37 suggests an 
increase in inflammation. (A-D) RAW 264.7 Macrophages in a 6-well plate transfected with 
50nM IL-1R8 siRNA for 48hours with 1µg/ml LPS or LPS+10ng/ml treatment suggests an 
increase in IL-6, IL-1b, TNFa, and MCP1/CCL2 gene expression. A-B. n=2; C-D. n=1 
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5. AIM II Summary: 

Using PCR, qPCR, and Western blot, my data confirmed IL-1R8 transcript and protein 

knockdown in macrophages treated with IL-1R8 siRNA. IL-1R8 knockdown with LPS ± IL-37 

treatment showed signs of enhanced IL-6, IL-1b, and TNFa gene expression. This supports my 

hypothesis that IL-1R8 participates in attenuating inflammation in macrophages. 
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CHAPTER 4: DISCUSSION & FUTURE DIRECTIONS 
 
1. Summary and interpretation of results 

1.1. Preliminary Data: Determine the effect of recombinant IL-37 in macrophages 

The experiments in this thesis investigated the role of IL-1R8 and IL-37 in modulating 

macrophage inflammation. My preliminary data determined the optimum conditions for pre- 

versus co-treatment of LPS and IL-37, time point, and concentration of pro-inflammatory 

markers and IL-37. Using recombinant IL-37 BMDM did not prove to be protective against LPS- 

and IFNg-stimulated inflammation, although other studies have shown that picomolar 

concentrations of IL-37 ranging from 10-0.1 ng/ml prove to be protective against inflammation 

[43]. Interestingly, however, under pro-inflammatory conditions, induced by IFNg and LPS 

treatments, IL-1R8 was significantly decreased with 1, 10, 100 ng/ml recombinant IL-37. 

1.2 AIM I: Determine if IL-1R8 overexpression in mouse primary macrophages and 

mouse cell line macrophages would reduce inflammation. 

The decrease in IL-1R8 under pro-inflammatory conditions led me to investigate IL-

1R8’s anti-inflammatory properties. In AIM I, experiments were conducted to optimize IL-1R8 

overexpression transfection in both primary bone marrow derived macrophages and RAW 264.7 

macrophages. The optimum concentration was determined to be 8µl of Lipofectamine 2000 to 

4µg of GFP or IL-1R8 DNA. Initially, with IL-1R8 overexpression and pro-inflammatory 

conditions induced by LPS, IFNg, and TNFa in RAW 264.7 macrophages, the RT-qPCR 

analysis showed no significant protection against inflammation, as noted by upregulation of IL-6, 

IL-1b, and iNOS gene expression in IL-1R8-overexpressing cells. The Western blot analysis of 

RAW 264.7 macrophages showed successful IL-1R8 overexpression. Interestingly, all three 

trials presented with smeared protein from 65kDa-90kDa. As others have shown that IL-1R8 can 
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be heavily glycosylated, [45, 48, 51], I took the steps to confirm this by excising the 60kDa band 

from the SDS-PAGE gel and having it sequenced by Protech, Inc (Figure 16). They were able to 

verify that 6 peptide sequences were that of IL-1R8, which confirm the IL-1R8 overexpression. 

The experiments in which only IL-1R8 overexpression was achieved without additional 

treatments did not show protection against inflammation. This prompted me to incorporate 

recombinant IL-37 as it might be that IL-37 binding to IL-1R8 is necessary for the anti-

inflammatory activity to take place. In support of this, other investigators have found that, IL-37 

binds to IL-18Ra, which associates with IL-1R8 to downregulate inflammation [43, 49]. With 

IL-1R8 overexpression and 10ng/ml IL-37 treatment in RAW 264.7 macrophages, there was a 

significant downregulation of IL-6 gene expression (Figure 17B). As hypothesized, these results 

suggested that IL-37 binding to IL-1R8 is needed for this complex to exert its anti-inflammatory 

properties in macrophages.  

The Western blot with IL-37 treatment showed a significant increase in IL-1R8 to 

confirm overexpression and revealed that IL-1R8 is expressed in glycosylated form with various 

degrees of glycosylation weighing around 70-90kDa. The protein bands visible at 56-62kDa and 

70-90kDa were confirmed to be N-linked glycosylated with PNGase F treatment (Figure 19). I 

also confirmed the Western blot bands to be IL-1R8 by detecting the MYC-tagged pCMV6 IL-

1R8 vector (data not shown).  

1.3 AIM II: Determine if IL-1R8 knockdown in mouse BMDM and mouse RAW 264.7 

cells would enhance inflammation. 

Once the overexpression of IL-1R8 in RAW 264.7 macrophages was confirmed to 

downregulate inflammation with IL-37, the AIM II experiments were conducted to determine 

whether IL-1R8 was necessary to protect against inflammation by knocking down IL-1R8 in 
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macrophages using siRNA. The optimum condition for the siRNA-mediated knockdown was 

determined to be 24hours with 100nM siRNA transfection in both primary bone marrow derived 

macrophages (Figure 20) and 48hours with 50nM siRNA in RAW 264.7 macrophages (Figure 

22). Initially, IL-1R8 siRNA knockdown was tested in BMDM with pro-inflammatory LPS. The 

data confirmed that LPS downregulates IL-1R8 expression (seen with scrambled siRNA results, 

Figure 21A). The RT-qPCR analysis showed an increasing trend of IL-6, but not IL-1b with LPS 

and LPS/IL-37 treatment, suggesting IL-1R8’s role in negatively regulating inflammation. The 

same experiment was conducted with RAW 264.7 macrophages also showed an upregulation of 

IL-6 gene expression with LPS or LPS/IL-37 treatment (Figure 23 p=0.11). Similar trends were 

seen in gene expression of IL-1b, MCP1, and TNFa, all indicating heightened inflammation with 

IL-1R8 siRNA knockdown (Figure 23). Interestingly, the Western blot confirmed 

downregulation of IL-1R8, but mainly in the glycosylated 77-88 kDa region (Figure 22A). This 

further supports my hypothesis that IL-1R8 is necessary to resolve inflammation in 

macrophages.  

2. Importance of IL-1R8 in preventing inflammation 

2.1. Role in Disease 

IL-1R8, a member of the IL-1 and TLR family, played a vital role in maintaining 

homeostasis, protecting against infection, and modulating inflammation [47, 57]. There was 

evidence that IL-1R8 negatively regulated inflammation in various inflammatory, autoimmune, 

cardiovascular and neuronal disease, as well as during infections [58-61]. In rheumatoid arthritis, 

for example, IL-1R8 suppresses the release of cytokines in human synovial cells [35]. When 

mice were infected with Mycobacterium tuberculosis, IL-1R8-/- mice displayed a higher mortality 

than the control group [62]. In post-ischemic renal failure, IL-1R8 deficiency was associated 
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with an increase in renal injury due to increased cytokine release and inflammation [63]. In brain 

cells, such as, neurons, astrocytes, and microglia, IL-1R8 has been shown to regulate LPS-

activated inflammation. When mice are made to be deficient in IL-1R8, there is an increase in 

cytokine release and excessive inflammatory response to LPS [64]. Also, in Alzheimer’s disease, 

IL-1R8 negatively regulates b-amyloid peptide-induced TLR2 signaling in the brain which is the 

main contributor to neuronal plaque accumulations [65]. In addition, IL-1R8 plays a crucial role 

in maintaining intestinal homeostasis. In the intestinal colitis model, IL-1R8-/- mice were shown 

to have dramatically increased intestinal inflammation and bleeding, as well as, compromised 

survival [66, 67]. Inflammation is necessary to fight off infection and disease, but when 

unregulated, cancer and tumors can develop. IL-1R8 has been shown to protect against colon 

cancer related inflammation [68]. Lastly, in combination with IL-37, IL-1R8 has protective 

properties in cardiovascular diseases, such as atherosclerosis and myocardial infarction [69, 70]. 

3. Regulation of IL-1R8 under inflammatory conditions 

3.1 IL-1R8 downregulation by LPS  

Treatment with pro-inflammatory mediators, such as, LPS, has been shown to 

downregulate IL-1R8 in monocytes, intestinal epithelial cells, and neutrophils [34, 56]. In 

intestinal epithelial cells from ulcerative colitis patients, IL-1R8 (SIGIRR) negatively regulated 

Toll-like receptor (TLR)-4-signaling. LPS treatment induced the downregulation of IL-1R8 

which decreased SP1 binding at the IL-1R8 promoter [34].  LPS was shown to downregulate IL-

1R8 in both monocytes and neutrophils, which led to increased inflammation. Furthermore, it 

was shown that TLR4-dependent p38 MAPK pathway contributes to the LPS-mediated reduction 

of IL-1R8. In support of the above-mentioned studies, my work showed a significant 

downregulation of IL-1R8 with LPS (Figure 10A). By suppressing the LPS activated TLR4-
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dependent p38 MAPK pathway, this may help decrease downregulation of IL-1R8 to help 

prevent inflammation in various disease.    

3.2 IL-1R8 Glycosylation  

Glycosylation is a post-translational modification that regulates protein folding and 

trafficking. There are 5 potential N-glycosylation sites on human IL-1R8 and 4 on mouse IL-1R8 

[47, 48, 51, 54]. The size of IL-1R8 protein ranges from unglycosylated 44kDa to glycosylated 

90kDa. The range is likely due to the addition of glycans in various amounts at IL-1R8 

N31/73/86/102S[51].  

N-linked glycosylation begins in the ER where high mannose modification is added to 

the nascent protein and then transported to the Golgi apparatus for additional modification. 

Hypothetically, dysregulation of glycosylation can lead to spontaneous intestinal inflammation, 

irregular intracellular trafficking and protein folding, and the promotion of cancer. [48, 51, 53]. 

Investigating the role and function of glycosylation in BMDM and RAW 264.7 macrophages 

may provide insight into IL-1R8’s role in inflammation in the context of atherosclerosis. 

4. Therapeutic Potential for IL-37 and IL-1R8 in inflammatory diseases 

4.1. IL-37 Homodimerization effect on Anti-Inflammatory Properties 

IL-37 is a potential therapeutic target for suppressing inflammation in diseases, such as, 

atherosclerosis and other immune diseases. Under experimental in vitro and in vivo conditions, 

the isoform IL-37b was reported to form homodimers which suggested the biological importance 

of IL-37 processing. When overexpressing IL-37b in HEK 293 cells, pro and mature isomers 

formed, which had different estimated dimerization association constants of mature 5nM for 

mature and 4uM for pro IL-37b [16, 71]. My data show that in RAW 264.7 cells, the molecular 

weight of IL-37b protein is 25kDa, but in PBMCs, the molecular weight increases to 45kDa. The 
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immunoblots were conducted under non-reducing conditions to suggest possiblevIL-37 

homodimerization [18].  

In 2017, IL-37b was crystallized, which demonstrated that IL-37 forms a head to head 

homodimer. This head to head orientation was unique in the IL-1 superfamily of cytokines. 

Treating THP-1 cell lines with pro-inflammatory mediator, LPS, monomeric IL-37 variants 

resulted in a 2.3 IL-1b  fold change improvement of anti-inflammatory activity compared to 

natural IL-37b. In an in vivo endotoxic shock mouse model, injection of recombinant IL-37 

monomeric variants resulted in a 13-fold change greater improvement of endotoxic shock and 

decrease of IL-1b  in plasma [72].  

Homodimerization regulation of IL-37 plays an important role in dampening 

inflammation. In Figure 9A-F, treatment with recombinant IL-37 did not effectively protect 

against inflammation as indicated in previous work [18, 38]. This could be due to the formation 

of head to head dimerization which may have inhibited the protective effect of recombinant IL-

37. Regulating the ratio between IL-37 monomers versus homodimers, especially in 

atherosclerotic macrophages may be a potential therapeutic target to suppress excessive 

inflammation in the arterial necrotic core. This would ultimately decrease atherosclerosis and the 

incidence of heart attacks and stroke. 

5. Limitations and future directions 

After successfully overexpressing and knocking down IL-1R8 in primary and RAW 

264.7 macrophages, one of the limitations is that only male mice were used. Future experiments 

designed to investigate both male and female mice in vitro and in vivo will allow us to see if 

there are any differences between sex. Also, in IL-1R8 overexpressed or knocked down mice, the 

glycosylation sites on IL-1R8 in-vitro and in vivo with IL-37 treatment may reveal the 
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importance of glycosylation in negatively regulating inflammation. Additional SDS PAGE In-gel 

band sequencing of IL-1R8 needs to be conducted to confirm IL-1R8 from 46kDa- 90kDa. 

Treating IL-1R8 overexpressed and knocked down macrophages with monomeric IL-37 mutant 

variants [72] would further determine the function of homodimerized IL-37 and may reveal why 

we did observe the purported anti-inflammatory effects of IL-37. Lastly, exploring IL-1R8 

localization with flow cytometry would allow us to learn more about the receptor membrane 

presentation.  
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