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Abstract We study the rotor router model and two deterministic sandpile models. For the
rotor router model in Z

d , Levine and Peres proved that the limiting shape of the growth clus-
ter is a sphere. For the other two models, only bounds in dimension 2 are known. A unified
approach for these models with a new parameter h (the initial number of particles at each
site), allows to prove a number of new limiting shape results in any dimension d ≥ 1.

For the rotor router model, the limiting shape is a sphere for all values of h. For one of
the sandpile models, and h = 2d − 2 (the maximal value), the limiting shape is a cube. For
both sandpile models, the limiting shape is a sphere in the limit h → −∞. Finally, we prove
that the rotor router shape contains a diamond.

Keywords Limiting shape · Sandpile model · Rotor router model

1 Introduction

In a growth model, there is a dynamical rule by which vertices of a graph are added to an ini-
tial collection. The existing literature on growth models deals mainly with stochastic growth
models. Among many stochastic growth models, there are for example the Eden model, the
Richardson model, first and last passage percolation and diffusion limited aggregation. An
introduction to stochastic growth models and limiting shape theorems can be found in [6].

An example related to the models in this paper, is the internal diffusion limited aggrega-
tion (IDLA) model. One adds particles one by one to the origin, letting each particle perform
a random walk that stops when it hits an empty site. The growth cluster is then the collection
of sites that contain a particle.
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The IDLA model on Z
d has been studied by Lawler, Bramson and Griffeath. In their

paper from 1992 [9], they prove that the limiting shape of the growth cluster for this model
in any dimension is a sphere. Lawler [10] estimated the speed of convergence.

The three deterministic models to be discussed in this paper can be viewed as determinis-
tic analogues of IDLA, and are all examples of a general height-arrow model studied in [3].
The closest analogue is the rotor router model, proposed by Propp (see [8]). Once more,
particles are added to the origin of the d-dimensional lattice Z

d , but now they perform a
deterministic walk as follows: at each site, there is an arrow present, pointing at one of the
2d neighboring sites. If a particle at this site finds it already occupied, then it takes a step in
the direction of the arrow, and the arrow rotates to the next position.

In our other models, occupied sites hold the particles until they can be sent out in pairs,
in the directions of a two-pointed arrow (double router model), or groups of 2d , one in every
direction (sandpile model). In the last model, exactly the same amount of particles is sent in
every direction. In the other two models, the difference is at most one.

The last two models are deterministic versions of sandpile models. A stochastic sandpile
model, where addition occurs at a random site, has originally been proposed to study self-
organized criticality [1]. Soon after, Dhar [4] introduced the abelian sandpile model, that has
the symmetric toppling rule (“toppling” of a site means that particles are sent out), which
is now the most widely studied variant. Manna’s sandpile model [16] is doubly stochastic:
the addition site is random, and moreover, in a toppling two particles are sent to randomly
chosen neighbors.

The rotor router model on Z
d has been studied by Peres and Levine [11, 12]. They have

found that the limiting shape of this model is also a sphere, and give bounds for the rate
of convergence. This result is at the basis of a number of new results in the present paper.
Recently, a new paper of these authors appeared [13], further extending their results.

The deterministic abelian sandpile model has been studied on a finite square grid
[15, 17, 20], with emphasis on the dynamics, but hardly as a growth model. Le Borgne and
Rossin [2] found some bounds for the limiting shape for d = 2.

From the above introductory description, it should be clear that all the deterministic mod-
els we introduced here are closely related. In Sect. 2, we define the above models on Z

d in
a common framework, to allow comparisons of the models. We introduce a parameter h to
parametrize the initial configuration. For all models, a (large) number n of particles starts
at the origin, and spreads out in a deterministic way through topplings. The rest of the grid
initially contains a number h of particles at each site, where h can be negative. One can
imagine a negative amount of particles as a hole that needs to be filled up; admitting nega-
tive particle numbers will be helpful in comparing the different models. Once every site is
stable, (i.e., has a number of particles at most some maximal allowed number), the growth
cluster is formed.

We present pictures, obtained by programming the models in Matlab, of growth clusters
for finite n and d = 2. For all models, we obtain beautiful, self-similarly patterned shapes.
The appeal of these pictures has been noted before, e.g., the sandpile pictures for h = 0,−1
can be found on the Internet as “sandpile mandala”, but the patterns are so far unexplained.
Similar patterns are found in the so-called sandpile identity configuration [2, 14].

Finally, we explain our main limiting shape results for each model. For the sandpile
model, we obtain that the limiting shape is a cube for h = 2d − 2 (Theorem 4.1) and a
sphere as h → −∞ (Theorem 4.7). This last result also applies for the double router model.
We remark that the sandpile model with h → −∞, strongly resembles the divisible sandpile
introduced by Levine and Peres [13], of which the limiting shape is also a sphere.

For the rotor router model, we find that the limiting shape is a sphere for all h (Theo-
rem 4.3). Finally, we generalize the bounds of Le Borgne and Rossin for growth cluster of
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the sandpile model, to all h and d . As a corollary, we find that the rotor router shape contains
a diamond, and is contained in a cube.

The rest of the paper contains proofs of these results. In Sect. 3, we derive inequalities
for the growth clusters. In Sect. 4, we prove the various limiting shape theorems.

2 Model Definitions and Results

Before introducing each of the three models, we present some general definitions that apply
to each model. All models are defined on Z

d . We define a configuration η = (H,T ,D) as
consisting of the following three components: the particle function H : Z

d → Z, the toppling
function T : Z

d → Z and the direction function D : Z
d → D = {0,1, . . . ,2d − 1}. We will

use the 2d possible values in D to indicate the 2d unit vectors e0 · · · e2d−1. The results will
not depend on which value is assigned to which vector, as long as the assignment is fixed.

We call a configuration allowed if

1. For all x, T (x) ≥ 0,
2. For all x with T (x) > 0, H(x) ≥ 0,
3. For all x with T (x) = 0, H(x) ≥ h,
4. For all x, D(x) ∈ D.

Here, h ∈ Z, the “background height”, is a model parameter.
Each model starts with initial configuration η0 = η0(n,h), which is as follows: H0(x) = n

if x = 0, and H0(x) = h otherwise, T0(x) = 0 for all x, and D0(x) ∈ D for all x. Observe that
η0 is allowed.

We now define a toppling as follows:

Definition 2.1 A toppling of site x in configuration η consists of the following operations:

• T (x) → T (x) + 1,
• H(x) → H(x) − c, with c ≤ 2d some value specific for the model,
• H(x + ei ) → H(x + ei ) + 1, with i = (D(x) + 1) mod 2d, . . . , (D(x) + c) mod 2d ,
• D(x) → (D(x) + c) mod 2d .

In words, in a toppling c particles from site x move to c different neighbors of x, chosen
according to the value of D(x) in cyclic order. We call a toppling of site x legal if after the
toppling H(x) ≥ 0. We call a site x stable if H(x) ≤ hmax, with hmax = c − 1, so that a site
can legally topple only if it is unstable.

We can now define stabilization of a configuration as performing legal topplings, such
that a stable configuration is reached, that is, a configuration where all sites are stable. We
call this configuration the final configuration ηn = ηn(n,h), which will of course depend on
the model. To ensure that the final configuration is reached in a finite number of topplings,
we impose for each model h < hmax. For each model, it is then known that ηn does not
depend on the order of the topplings. This is called the abelian property. The abelian property
has been proved for centrally seeded growth models in general ([5], Sect. 4), and for the
sandpile model in particular [18].

In the remainder of this paper, we will choose various orders of topplings. In Sect. 4.2,
we will even admit illegal topplings. In Sect. 4.4, we will organize the topplings into discrete
time steps, obtaining after time step t a configuration ηt , consisting of Ht , T t and Dt .

We define two growth clusters that are formed during stabilization, denoting by x� the
unit cube centered at x (i.e., x� = {y : y = z + x, z ∈ [− 1

2 , 1
2 ]d}):
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Definition 2.2 The toppling cluster is the cluster of all sites that have toppled, that is,

Tn =
⋃

x:Tn(x)>0

x�,

and the particle cluster is the cluster of all sites that have been visited by particles from the
origin, that is,

Vn = Tn ∪
⋃

x:Hn(x)>h

x�.

A cluster as a function of n has a limiting shape if, appropriately scaled, it tends to a certain
shape as n → ∞, in some sense to be specified later. By the model definition, all clusters
are path connected. Observe that from Definitions 2.1 and 2.2, it follows that

Tn ⊂ Vn ⊆ Tn ∪ ∂Tn, (1)

with ∂Tn the exterior boundary of Tn. We also define the “lattice ball”:

Bn =
n⋃

i=1

x�
i , (2)

where the lattice sites x1,x2, . . . of Z
d are ordered in such a way that the Euclidean distance

from the origin is non-decreasing.

2.1 The Rotor Router (RR,h) Model

For the rotor router model, c = 1, so that in each toppling only one particle moves to a
neighbor. Therefore, hmax = 0, and the model is defined for h < 0 only. In words, every
site holds the first |h| particles that it receives, and sends every next particle to a neighbor,
choosing the neighbors in a cyclic order. This means that after 2d topplings, every neighbor
received a particle. Instead of a direction function with numerical values, we can think of an
arrow being present at every site. In a toppling, the arrow is rotated to a new direction, and
the particle is sent in this new direction.

Propp, Levine and Peres studied the case h = −1. Levine and Peres have proven that for
h = −1, the limiting shape of the rotor router model is a Euclidean sphere. More precisely,
they showed ([12], Theorem 1.1):

lim
n→∞λ(n−1/dVn 
 B) = 0, (3)

where λ denotes d-dimensional Lebesgue measure, 
 denotes symmetric difference, and B

is the Euclidean sphere of unit volume centered at the origin in R
d . This result is independent

of D0, and of any assignment of different unit vectors to possible values of D(x). Note that
the scaling function is necessarily n−1/d , since |Vn| = n by model definition.

In [8], a picture of Dn is given for h = −1 and n = 3 million and D0 constant. The picture
shows a circular shape with an intriguing seemingly self-similar pattern. Curiously enough,
this picture actually shows the shape of Tn rather than Vn, indicating that the limiting shape
of Tn is also a sphere. This would be a stronger statement than (3), but it remains as yet
unproven.
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It has been noted that the shape of Vn for the rotor router model is remarkably circular,
that is, as close to a circle as a lattice set can get, for every n. However, the shape of Tn

has not been studied before. We programmed the model for several values of h and n, and
observed for all these values that Vn \ Tn is concentrated on the inner boundary of Vn.

Our first main result of the rotor router model is the generalization of (3) to all h ≤ −1,
stated in Theorem 4.3. The proof in fact uses (3) as main ingredient.

By an entirely different method, in fact as a corollary of Theorem 4.8, we moreover
obtain the result that the rotor router shape contains a diamond of radius proportional to
( n

2d−1−h
)1/d . It is surprising that, in spite of the limiting shape of the RR,h model being

known, this is still a new result. But, in the words of Levine and Peres, the convergence
in (3) does not preclude the formation of, e.g., holes close to the origin, as long as their
volume is negligible compared to n. The only comparable previous result is that for d = 2
and h = −1, the particle cluster contains a disk of radius proportional to n1/4 [11].

2.2 The Abelian Sandpile (SP,h) Model

For the abelian sandpile model, c = 2d . Therefore, hmax = 2d − 1, and the model is defined
for h < 2d − 1. In each toppling, one particle moves to every neighbor, so that in fact the
value of D(x) is irrelevant.

It follows that for the SP model, we can specify (1) to

Vn = Tn ∪ ∂Tn. (4)

The SP model as a growth model has received some attention in the cases h = −1 (“greedy”
sandpile) and h = 0 (“non-greedy”), for which pictures of Hn can be found [8]. It is noted
that the shape does not seem to be circular. In Fig. 1, we show a family of sandpile pictures
for a range of values of h, obtained by programming the model in Matlab. We see the number
of symmetry axes increasing as h decreases. The shape appears to become more circular as
h decreases. The shape for h = 2 is observed to be a square, but for the other values of h it
seems to tend to a more complicated shape.

Again, we find that Vn \ Tn is concentrated on the inner boundary of Vn, for all observed
values of h.

For the sandpile model, we have the following results. Theorem 4.1 states that indeed the
toppling cluster for the SP,2d − 2 model is a (d-dimensional) cube, and the particle cluster
tends to a cube as n → ∞.

Theorem 4.7 states that for h → −∞, the limiting shape is a sphere.
Finally, we generalize some bounds for the scaling function that have been obtained

by Le Borgne and Rossin [2] in the case d = 2, 0 ≤ h ≤ 2, to all d and h. This result is
formulated in Theorem 4.8. Our proof moreover allows to deduce that Vn for the sandpile
model is simply connected for all n.

2.3 The Double Router (DR,h) Model

In the double router model, c = 2. Therefore, hmax = 1, and the model is defined for h ≤ 0.
In a toppling of this model, two particles are sent out in two different directions, such that
after d topplings, every neighbor received a particle.

Many variants of this model are possible, e.g., for d = 3 one could choose c = 3, which
amounts to dividing the 6 neighbors in 2 groups of 3. However, to avoid confusion, we only
discuss the above explained variant.
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Fig. 1 Hn for the sandpile model with different h values. The number of particles ranges from n = 60,000
(h = 2) to 1,000,000 (h = −20). The gray-scale colors are such that a lighter color corresponds to a higher
value of H(x)

Fig. 2 Hn for the DR model with h = 0 (n = 110,000), h = −1 (n = 100,000), and h = −5 (n = 400,000),
and D0(x) = 0 for all x. Sites with height 1 are colored white, sites with height 0 or negative are colored
black

Figure 2 shows Hn for h = 0, d = 2 and n = 110.000. We ordered the unit vectors as e0 =
left, e1 = right, e2 = up, e3 = down. Initially, D(x) = 0 for all x. Figure 3 shows Dn for the
same case, to indicate that for this model we find complex patterns both for Hn and Dn.

As for the sandpile model, we see a symmetric, yet not circular shape, with notable flat
edges. In Fig. 2, also some other values of h are shown, again indicating that the shape seems
to become more and more circular with decreasing h. Indeed, Theorem 4.7 states this fact
for both the sandpile model and the double router model.
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Fig. 3 Dn for the DR model
with h = 0 (n = 110,000), and
D0(x) = 0 for all x. White
corresponds to D(x) = 2, black
to D(x) = 0

Again, we observe that Vn \ Tn is concentrated on the inner boundary of Vn, for all ob-
served values of h.

3 Comparing the Models

From the model descriptions, it is clear that one SP toppling always equals d DR topplings,
as well as 2d RR topplings. Furthermore, our toppling definition (Definition 2.1) ensures that
one DR toppling always equals two consecutive RR topplings. We exploit these relations to
compare the clusters for different models. We will with a subindex RR, DR or SP indicate
the model that was used to obtain the growth cluster, and also use a subindex h because we
compare different h values.

Proposition 3.1 For every fixed h (for which the model is defined), d and n,

1. Vn,SP,h ⊆ Vn,DR,h ⊆ Vn,RR,h,
2. For all models i = RR, DR and SP: Vn,i,h−1 ⊆ Vn,i,h,
3. Vn,RR,h−1 ⊆ Vn,DR,h, and Vn,RR,h−(2d−1) ⊆ Vn,SP,h.

Proof The proof makes use of the abelian property of all models, that is, the property that the
stabilized configuration ηn does not depend on the order of topplings. We are therefore free
to choose a convenient order. Furthermore, a site x that at some instant during stabilization
has either T (x) > 0, or T (x) = 0 and H(x) > h, must belong to Vn in the final configuration,
because by further topplings either H(x) or T (x), or both, increase.

Part 1. The initial configurations for all these three models are the same. We first compare
Vn,SP,h with Vn,DR,h. We choose, for both the SP and the DR model, to first perform all legal
SP-topplings. Since every SP-toppling consists of d DR-topplings, these are legal topplings
for both models. The configuration is now stabilized for the SP model, but there can be sites
in Vn,SP,h that are not stable in the DR model, since hmax is 2d − 1 for the SP model and
1 for the DR model. Therefore, in the DR model, possibly more topplings follow, so that
Vn,SP,h ⊆ Vn,DR,h.

We compare Vn,DR,h with Vn,RR,h in an analogous manner, this time using that hmax is 1
for the DR model and 0 for the RR,h model, to get Vn,DR,h ⊆ Vn,RR,h.

Part 2. We start with comparing the RR,h − 1 model with the RR,h model. We choose,
for both initial configurations, to first perform all RR-topplings that stabilize the initial con-
figuration of the RR,h − 1 model. These are legal topplings for both configurations. The
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configuration is now stable for the RR,h − 1 model, but all sites that have H(x) = 0 for this
model, have H(x) = 1 for the RR,h model. Therefore, for this model more topplings would
follow, so that Vn,RR,h−1 ⊆ Vn,RR,h. The same reasoning can be applied for the DR and SP
model.

Part 3. We first compare Vn,DR,h with Vn,RR,h−1. We choose, for both models, to first
perform all DR-topplings that would stabilize the initial configuration with height h − 1.
These are legal topplings for both models. Then for both models, more topplings are needed.
For the RR,h − 1 model there can be sites with H(x) = 1, that are unstable. For the DR,h
model, the same sites have H(x) = 2, and therefore are also unstable. But since one DR-
toppling equals two RR-topplings, the set of sites where the configuration changes by the
extra topplings for the RR,h − 1 model, is a subset of those for the DR,h model. Therefore,
Vn,RR,h−1 ⊆ Vn,DR,h. The argument for the sandpile model is similar. �

4 Limiting Shape Results

4.1 The Sandpile Model in Z
d , with h = 2d − 2

As noted in Sect. 2, Fig. 1 indicates that the limiting shape for the sandpile model with
h = 2 and d = 2 is a square. This section contains the proof of a more general statement for
arbitrary dimension, that is, we prove that indeed the toppling cluster for the SP,2d −2 model
is a (d-dimensional) cube, and the particle cluster tends to a cube as n → ∞. However,
we have no explicit expression for the scaling function f (n), so that the scaled clusters
f (n)Vn and f (n)Tn would tend to the unit cube, just that this scaling satisfies n−1 ≤ f (n) ≤
1
2 n−1/d − 3

2 . Based on the calculations, we believe that f (n) is O(n−1/d).

Theorem 4.1 Let C(r) be the cube
⋃

x:maxi |xi |≤r x�. For every n in the d-dimensional
SP,2d − 2 model, there is an rn such that

Tn = C(rn),

and

Vn = C(rn) ∪ ∂C(rn).

For all n, this rn satisfies

1

2
n1/d − 3

2
≤ rn ≤ n.

We start by outlining the case d = 2 as an example, for the sake of clarity. When simu-
lating the model for several small values of n—this can even be done by hand—one notices
that the configuration is always such that it contains a central square with all boundary sites
full, except for the corner sites, which have height hmax − 1. Outside this square, all sites
have height hmax − 1. We will call such a rectangular boundary a critical boundary. This is
all the information we need to make an inductive argument in n. Suppose, ηn has a criti-
cal boundary, we add one grain to the origin and in the course of stabilization (to obtain
ηn+1), one boundary site topples. As a consequence, all neighboring boundary sites topple,
because they are all full and all in turn receive a grain. The two adjacent corner sites receive
one grain, therefore become full. Therefore, after these topplings a new rectangular critical



J Stat Phys

boundary is created. If any more boundary sites topple, we can reiterate this argument. We
conclude that the presence of a rectangular critical boundary is stable under additions inside
this rectangle. In the special case where additions are made only to the origin, we conclude
by symmetry that the shape of the critical boundary will always be square.

Below, we schematically show the argument for n = 7.

We start with η7 plus one extra grain at the origin. Full boundary sites are colored lightgrey, unstable sites
grey. First the origin topples, causing the full boundary sites to become unstable. Next, these boundary sites
topple, causing the corner sites to be unstable. The first full sites of the new boundary are created.

Next, the corner sites topple. The
configuration now has a new
square critical boundary.
A further toppling of the origin,
after which we obtain η8, does
not change this new boundary
anymore.

In the proof below, we generalize this critical boundary to arbitrary d and make the details
more precise, but the idea will remain the same.

In the course of the proof, we will need the following lemma.

Lemma 4.2 Let φr be the following configuration: H(0) = 2d , and for all other x ∈ Cr ,
H(x) = hmax, otherwise H(x) = hmax − 1. If the configuration φr is stabilized, then during
stabilization, every site x topples exactly δx,r = max{r + 1 − maxi |xi |,0} times.

Proof We choose to order the topplings into waves [7], that is, in each wave, we topple the
origin once and then all other sites that become unstable, except the origin again. No site
can topple more than once during a wave.

In the first wave, all sites in Cr topple once, because it is maximally filled. The wave stops
at the boundary, because the sites outside Cr have at most one toppling neighbor, therefore
they cannot become unstable. All sites in Cr−1 then have 2d once-toppling neighbors, so
their particle number does not change. The sites in Cr \ Cr−1 have less toppling neighbors,
so their particle number becomes at most 2d − 2.

Therefore, the effect of the first wave on φr , is to make it, for all sites in Cr , at most equal
to φr−1, with equality for all sites with Cr−1. It follows that the next wave will topple all
sites in Cr−1 once. Continuing this argument, the result stated in the lemma follows. �

Proof of Theorem 4.1 We will use induction in n. For that, we choose to obtain the final
configuration as follows: the n particles are added to the origin one by one, each time first
stabilizing the current configuration through topplings. Due to abelianness, this procedure
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will give the same final configuration as when all n particles are added simultaneously,
before toppling starts. We will show that during this procedure, only configurations in Cr are
encountered, where Cr is the set of configurations that are as follows:

1. Tn = Cr ,
2. For all x ∈ Tn such that maxi |xi | = r , Tn(x) = 1,
3. Vn = Cr ∪ ∂Cr ,
4. For all x ∈ Vn \ Tn, Hn(x) = hmax = 2d − 1,
5. For all x �∈ Vn, Hn(x) = 2d − 2.

In words, a configuration in Cr is such that Tn is a cube, where all inner boundary sites
toppled exactly once, and all outer boundary sites, i.e., sites that do not belong to Tn but
have a neighbor in Tn, have particle number hmax. Thus, Tn is surrounded by 2d maximally
filled square “slabs” of size (2r + 1)d−1. All sites outside Vn have particle number 2d − 2,
by model definition.

After the first particle is added, H1(0) = hmax, and no site has toppled yet. After the
second particle is added, the origin topples once, and all neighbors of the origin receive one
particle. Therefore, η2 ∈ C0.

We will now show that if we assume ηn ∈ Cr for some r , then either ηn+1 ∈ Cr or
ηn+1 ∈ Cr+1. To prove this, we will add a particle at the origin to configuration ηn and
start stabilizing. First we show that if during stabilization the configuration leaves Cr , then
it enters Cr+1. Then we show that in this last case, it does not leave Cr+1 during further
stabilization.

If no site x ∈ Vn such that maxi |xi | = r topples during stabilization, then ηn+1 remains
in Cr . But if one such site topples, then one site in Vn \ Tn becomes unstable, and also
topples. This site is in one of the 2d maximally filled slabs. If one site of such a slab topples,
then the entire slab must topple, because all of its sites will in turn receive a particle from
a toppling neighbor. After the entire slab toppled once, all neighbors of the slab received a
particle, and the configuration can be described as follows: The toppled cluster is a rectangle
of size (2r + 1)d−1(2r + 2), surrounded by maximally filled slabs, two of them cubic and
the rest rectangular.

But due to symmetry, if one slab topples once then this must happen for all slabs. We
can choose in what order to topple the slabs; suppose we divide them in d opposite pairs.
After we toppled the first pair of slabs, the configuration is a central rectangle of size
(2r + 1)d−1(2r + 3), surrounded by maximally filled slabs, two of them cubic and the rest
rectangular. After we toppled the kth pair of (meanwhile possibly rectangular) slabs, the
configuration is a central rectangle of size (2r + 1)d−k(2r + 3)k , surrounded by maximally
filled slabs, so that after all slabs toppled, the toppled cluster is again a cube, now of size
(2r + 3)d , centered at the origin and surrounded by 2d maximally filled square slabs. In
other words, after these topplings the configuration is in Cr+1. It follows that if ηn ∈ Cr for
some r , then ηn+1 ∈ Cr ′ , for some r ′ ≥ r . It now remains to show that r ′ can only have the
values r or r + 1.

We use Lemma 4.2. A configuration η ∈ Cr , plus an addition at the origin, has at every
site at most the number of particles given by φr+1. Therefore, if we suppose ηn ∈ Cr , then
upon addition of a particle at the origin, by abelianness, the number of topplings for every x
will at most be δx,r+1. In particular, the outer boundary sites of Tn will topple at most once.

The induction proof is now completed, therefore we now know that, for all n, ηn ∈ Cr

for some r . We have also shown that rn ≤ n. From the description of Cr , we see that Tn is
always a cube, and that Vn is more and more like a cube as rn increases.
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To conclude that Vn tends to a cube as n → ∞, we finally need to show that rn increases
with n. For this, note that in ηn every site needs to be stable. Since h = hmax − 1, every site
can accommodate at most one extra particle. Therefore, if ηn ∈ Cr , then r ≥ 1

2n1/d − 3
2 . �

4.2 The Rotor Router Model with h < −1

In this section, we will prove the following result:

Theorem 4.3 The limiting shape of the particle cluster for the rotor router model is a sphere
for every h ≤ −1. More precisely,

lim
n→∞λ

((
n

|h|
)−1/d

Vn 
 B

)
= 0.

The proof will also reveal the following about the rotor router toppling cluster:

Corollary 4.4 The toppling cluster of the RR,h model contains a cluster Wn, with

lim
n→∞λ

((
n

|h| + 1

)−1/d

Wn 
 B

)
= 0.

Theorem 4.3 has been proven for the case h = −1, by Levine and Peres, see (3). We will
use their result to prove the theorem for other values of h. The strategy of the proof will be
as follows. First, we introduce a slightly different version of the RR,h model, which we will
call the k-color rotor router, or RR′,k model. We show that the limiting shape of this model
is a sphere for all k, with scaling function ( n

k
)−1/d . Informally, the k-color model can be

viewed as k iterations of the RR,−1 model. The n particles at the origin are equally divided
in k different-colored groups, and for each color the particles spread out until there is at
most one particle of each color at each site. From (3), we then know that each color region is
approximately spherical, so we get a final configuration that looks like k almost completely
overlapping, approximately spherical, different-colored regions.

Then we show that Vn,RR,h and Vn,RR′,k , with h = −k, differ only in a number of sites
that is o(n). This number is at most the number of sites in Vn,RR′,k where not every color is
present. In the proof of this second point, we will stabilize η0 for the RR,h model by first
performing all topplings needed to stabilize the RR′,−h model. Some of these topplings
may be illegal for the RR,h model, so we will reverse them by performing untopplings. The
main difficulty in the proof is to show that we do reach ηn by this procedure. First we define
untopplings.

Definition 4.5 An untoppling of site x in configuration η consists of the following opera-
tions:

• T (x) → T (x) − 1,
• H(x) → H(x) + c, with c according to the model,
• D(x) → (D(x) − c) mod 2d ,
• H(x + ei ) → H(x + ei ) − 1, with i = D(x), (D(x) + 1) mod 2d, . . . , (D(x) + c − 1)

mod 2d .
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We call an untoppling of site x legal if T (x) > 0 before the untoppling. We see that a
legal untoppling of site x is precisely the undoing of a toppling of site x, in the sense that
the particles that were sent out of site x in the last toppling, return to this site, and the value
of D(x) returns to its previous value.

The following proposition provides a more elaborate description of ηn in the case where
we allow illegal topplings, that we will need in the proof of Theorem 4.3 (we remark that the
abelian property still holds for combinations of legal and illegal topplings). We introduce the
notion of optimality to distinguish ηn from configurations that are stable and allowed, but
that cannot be obtained from η0 by legal topplings. An example for the rotor router model is
as follows. Suppose that, after reaching ηn by legal topplings, there is somewhere a closed
loop of sites with height 0 such that “the arrows form a cycle”, i.e., if we topple all of them,
they would all send and receive one particle. After these topplings (of which at least the first
would be illegal), the height function is still Hn, but the toppling number of these sites has
increased by 1, so we obtained a different, stable and allowed configuration. We remark that
a set of sites forming such a “cycle of arrows” cannot be found in Tn. Since all sites that
toppled are full, in the last toppling in this set a particle must have left the set, so that there
is an arrow pointing out of the set (see also [19], Sect. III). Therefore, if there is a set of sites
forming a cycle of arrows, then at least one of these sites did not topple.

Proposition 4.6 Call a stable configuration optimal if every sequence of legal untopplings
leads to an unstable configuration. For every model, ηn is the unique optimal, stable and
allowed configuration that can be reached from η0 by topplings, either legal or illegal, and
legal untopplings.

Proof We defined ηn before as the unique stable configuration that can be reached from η0

by legal topplings. It follows from this definition that ηn is allowed, since if sites can only
topple when they are unstable, then we automatically obtain for all x where Tn(x) > 0, that
Hn(x) ≥ 0.

To prove that ηn is optimal, we proceed by contradiction. Suppose that, starting from ηn,
there is a sequence of legal untopplings such that a stable configuration ξ is obtained. Then
ξ can be obtained from η0 by a sequence of legal or illegal topplings. Call T ′ the toppling
function for this sequence, then 0 ≤ T ′(x) ≤ Tn(x) for all x (because we undid some top-
plings of Tn), but T ′ �= Tn. By abelianness, ξ depends only on η0 and T ′. Thus, we can
choose the order of the topplings according to T ′, to obtain ξ . There cannot be an order
such that all topplings are legal, otherwise ξ cannot be different from ηn. We will therefore
choose the order such that first all possible legal topplings are performed, and then the rest
(as an example, suppose T ′(0) = 0. Then we must start with an illegal toppling, since in
η0 all sites but the origin are stable). After all possible legal topplings according to T ′, we
have a configuration with at least one unstable site, since we did not yet reach ηn. In the
remainder, this site is not toppled, because otherwise another legal toppling could have been
added to the first legal topplings. Therefore, ξ cannot be stable.

We so far established that ηn is optimal, stable and allowed. Now we prove that it is
unique by deriving another contradiction. Suppose there is an other optimal, stable and al-
lowed configuration ζ that can be reached from η0 by topplings and legal untopplings. Call
T ′′ the toppling function for this sequence. Then T ′′(x) ≥ Tn(x) for all x. We can see this as
follows: we choose the toppling order such that we first perform all topplings that are also
in Tn. If there were some sites y where T ′′(y) < Tn(y), then at this point at least one of these
sites would be unstable. But in the remainder of T ′′, this site would not topple again, so in
that case ζ could not be stable.
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Call τ(x) = T ′′(x) − Tn(x). Since ζ �= ηn, T ′′ �= Tn. Suppose we first perform the top-
plings according to Tn, and then according to τ . Then we have that ζ can be reached from
ηn by performing τ(x) topplings for every site x, and vice versa, that ηn can be reached from
ζ by performing τ(x) legal untopplings for every site x. But then ζ cannot be optimal. �

Proof of Theorem 4.3 The RR′,k model is defined as follows: As in the RR,h model, c = 1.
Initially, there are n particles at the origin; at every other site there are −k particles. We
choose n a multiple of k, and divide the n particles into k groups of n/k particles, each
group with a different color. The height H(x) of a site x is now defined as −k plus the total
number of particles present at x, of either color. However, now we call a site stable if it
contains at most one particle of each color. If a particle arrives at a site where its color is
already present, then that particle will be sent to a neighbor in the subsequent toppling. Note
that in this model, a site x can be unstable even if H(x) < 0. We furthermore restrict the
order of legal topplings for this model. We say that in this model, first all legal topplings for
the first color should be performed, then for the next, etc. Then for each color, the model
behaves just as the RR,−1 model, with for each color a new initial T and D. Therefore, with
this toppling order the final configuration consisting of Hn, Tn and Dn, is well-defined.

We now show that the limiting shape of the RR′,k model is a sphere. We perform first
all the topplings with particles of the first color, say, red. From [12], Theorem 2.1 it follows
that these particles will form a cluster V1

n/k close to the lattice ball Bn/k . In fact, the number
of sites in V1

n/k 
 Bn/k is o(n). We will denote this as

|V1
n/k 
 Bn/k| ≤ f (n/k) = o(n).

D is now different from D0. However, if next we stabilize for the blue particles, these will
again form a cluster close to the lattice ball Bn/k , since the result (3) does not depend on the
initial D. Of course, this cluster V2

n/k need not be the same as V1
n/k .

When all sites are stable, we have Vn,RR′,k = ⋃k

i=1 V i
n/k . We also define a cluster Wn,k =

⋂k

i=1 V i
n/k . From the above, the number of sites in the difference of both these clusters with

Bn/k , is at most kf (n/k). Thus

|Vn,RR′,k 
 Bn/k| ≤ kf (n/k) = o(n). (5)

We will call Xn = Vn,RR′,k \ Wn,k , so that Xn contains |Xn| ≤ 2kf (n/k) sites. Sites in Wn,k

contain k particles, sites in Xn contain less than k particles.
Now we compare this model with the RR,h model, with h = −k. Disregarding the colors,

the initial configuration is the same for both models. Suppose we perform in the RR,h model
all the topplings that are performed as above in the RR′,−h model. The configuration is then
as follows: for all x ∈ Wn,k , H(x) = 0 and T (x) ≥ 0, and for all x′ ∈ Xn, −k ≤ H(x′) < 0
and T (x′) ≥ 0.

This configuration is possibly not ηn for the RR,h model, since it is possibly not al-
lowed, if there are sites x′ in Xn with T (x′) > 0. We can reach an allowed configuration by
performing legal untopplings; it will appear that we then in fact reach ηn.

Suppose first that only one untoppling is needed. It might be that the neighbor y that
returned a particle, now has less than k particles, so that H(y) < 0, while T (y) > 0. In that
case, y would now also have to untopple. We call this process an untoppling avalanche. The
avalanche stops if an allowed (stable) configuration is encountered, that is, if the last particle
came from a site that did not topple. An untoppling avalanche consists of untoppling neigh-
bors, each one passing a particle to the previous one. Therefore, an untoppling avalanche of
arbitrary length, changes the particle number of only two sites in the configuration.
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In our case, at most (k−1)|Xn| untoppling avalanches are required. Each avalanche stops
if the last particle came from a site that did not topple. This will change the configuration
in at most 2(k − 1)|Xn| sites. After all these untopplings, the configuration is allowed and
stable, i.e., we have for all sites with T (x) > 0, that H(x) = 0. We can only perform legal
untopplings at sites with T (x) > 0, so that we cannot perform a sequence of legal untop-
plings in a closed loop of sites. Therefore, any further sequence of legal untopplings would
increase H(x) for at least one of these sites, and thus lead to an unstable configuration.

We have thus reached an optimal configuration, so we have reached ηn. Therefore, at this
point we can conclude

|Vn,RR,h 
 Vn,RR′,k| ≤ 2(k − 1)|Xn| ≤ 4k(k − 1)f (n/k) = o(n).

Combined with (5), this leads to Theorem 4.3. �

To prove the corollary, we define Wn,h = ⋃
x:x∈Vn,RR,h,Hn(x)=|h| x�. By the above argu-

ment, we have, as for Wn,k , that |Wn,h 
 Bn/|h|| = o(n).
Suppose, in the RR,h model, we first perform all topplings that are needed to stabilize

for the RR,h − 1 model, as in the proof of Proposition 3.1, Part 2. The particle cluster then
contains a cluster Wn,h−1, with limn→∞ λ(( n

|h−1| )
−1/dWn 
 B) = 0.

Because the sites in Wn,h−1 contain |h − 1| = |h| + 1 particles, every site in Wn,h−1 is
unstable in the RR,h model. Therefore, Wn,h−1 ⊆ Tn,RR,h.

4.3 The Double Router Model, and the Sandpile Model with h → −∞
In discussing Figs. 1 and 2, we observed that the DR and SP shapes seem to become more
circular as h decreases. Proposition 3.1 and Theorem 4.3 can indeed be combined to give
the following result:

Theorem 4.7 The limiting shape of the SP,h and the DR,h model, for h → −∞, is a sphere.
More precisely,

lim
h→−∞

lim sup
n→∞

λ

((
n

|h|
)−1/d

Vn 
 B

)
= 0.

Proof From Proposition 3.1, for all h ≤ −1,

Vn,RR,h−(2d−1) ⊆ Vn,SP,h ⊆ Vn,RR,h, (6)

and

Vn,RR,h−1 ⊆ Vn,DR,h ⊆ Vn,RR,h. (7)

We will discuss the DR,h model first.
From Theorem 4.3, we know that the particle cluster of the RR,h model, scaled by

( n
|h| )

−1/d , tends for every fixed value of h to the unit volume sphere as n → ∞, i.e.,

lim
n→∞λ

((
n

|h|
)−1/d

Vn,RR,h 
 B

)
= 0,

and thus we also know (note that since h is negative, |h − 1| = |h| + 1)

lim
n→∞λ

((
n

|h|
)−1/d

Vn,RR,h−1 
 B

)
= λ

([( |h|
|h| + 1

)1/d

B

]

 B

)
= 1 − |h|

|h| + 1
.
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Because of (7), it follows that

0 ≤ lim sup
n→∞

λ

((
n

|h|
)−1/d

Vn,DR,h 
 B

)
≤ 1 − |h|

|h| + 1
,

so that

lim
h→−∞

lim sup
n→∞

λ

((
n

|h|
)−1/d

Vn,DR,h
B

)
= 0.

The argument is similar for the SP,h model. �

4.4 The Toppling Cluster for the Sandpile Model

In this subsection, we generalize Theorem 4 of Le Borgne and Rossin [2], who studied the
particle cluster of the SP,h model for d = 2 and h = 0,1 and 2, to arbitrary d and h.

Theorem 4.8 Let D(r) be the diamond
⋃

x:∑d
i=1 |xi |≤r

x�, and C(r) the cube
⋃

x:maxi |xi |≤r x�.

1. In the SP,h model, for every n and h ≤ 2d − 2, there is an rn such that

D(rn − 1) ⊆ Tn ⊆ C(rn),

and

D(rn) ⊆ Vn ⊆ C(rn + 1).

2. This rn satisfies

(
n

2d − 1 − h

)1/d

− 3 ≤ 2rn for all n and h ≤ 2d − 2,

2rn ≤
(

dn

d − h

)1/d

+ o(n1/d) for n → ∞ and h < d.

Corollary 4.9 Vn,RR,h contains the diamond D( 1
2 ( n

2d−1−h
)1/d − 3

2 ) for all h < 0, and is

contained in the cube C( 1
2 ( dn

d−h
)1/d + 1) for all h < −d + 1.

The corollary follows from combining the theorem with Proposition 3.1, parts 1 and 3.

Remark 4.10 Note that the first inequality for rn agrees with that in Theorem 4.1, for the
sandpile model with h = 2d − 2. We cannot use the second inequality in this case, because
that is only valid for h < d . From combining Theorem 4.1 with Proposition 3.1 part 3, we
find that for −d + 1 ≤ h < 0, Vn,RR,h is contained in the cube C(n + 1).

Proof of Theorem 4.8, part 1 We prove the inequality for Tn. The inequality for Vn then
follows from (4).

We follow the method of Le Borgne and Rossin, who introduce the following stabiliza-
tion procedure: Starting at t = 0 in the initial configuration with n particles at the origin,
each time step every unstable site of the current configuration is stabilized. For example, to
obtain η1 we topple only the origin, as many times as legally possible. At t = 2, we topple
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only the neighbors of the origin, et cetera. We will call this the Le Borgne–Rossin procedure.
Thus, ηt contains stable sites that toppled at time t , and unstable sites that received grains.
T t contains for every site the total number of topplings up to time t . For every site x, we
then have

T t+1(x) = max

{⌊
1

2d

(
H 0(x) +

∑

y∼x

T t (y)

)⌋
,0

}
, (8)

where y ∼ x means that y is a neighbor of x. We remark that this formula should correspond
to formula (2) of [2], but, apparently due to a misprint, there the term H 0(x) was omitted.

If we divide the grid Z
d in two (“checkered”) subgrids {x : ∑d

i=1 xi is even} and {x :∑d

i=1 xi is odd}, then at every time t , at most one subgrid contains unstable sites, because
the neighbors of sites of one subgrid are all in the other subgrid, and we started with only
one unstable site. We will consider next-nearest neighbor pairs x and z, i.e., x and z are in
the same subgrid, at most 2 coordinates differ, and

∑
i ||xi | − |zi || = 2, or in other words, z

is a neighbor of a neighbor of x, x itself being excluded.
First, we will prove by induction in t that for every next-nearest neighbor pair x and z,

with d(x) ≤ d(z), where d(x) is the Euclidean distance of x to the origin, T t (x) ≥ T t (z).
We remark that for a next-nearest neighbor pair x′ and z′ with d(x′) = d(z′), we must have
that x′ is equal to z′ up to a permutation of coordinates. The model should be invariant under
such a permutation, therefore, in that case we have T t (x′) = T t (z′).

The statement is true at t = 0, since at t = 0, we have T 0(x) = 0 for all x. It is also true
at t = 1, since at t = 1, only the origin topples.

Now suppose that the statement is true at time t , and let x1 and x2 be two next-nearest
neighbor sites that do not topple at time t . Suppose d(x1) < d(x2). Then by assumption,∑

y1∼x1
T t (y1) ≥ ∑

y2∼x2
T t (y2), because the neighbors of x1 and x2 can be grouped into

next-nearest neighbor pairs with d(y1) < d(y2). Furthermore, we always have H 0(x1) ≥
H 0(x2), since H 0(0) = n, and H 0(x) = h if x �= 0.

Inserting this in (8), we obtain T t+1(x1) ≥ T t+1(x2), so that the statement remains true at
t + 1 for one subgrid. The other subgrid must contain only sites that do not topple at t + 1,
so that for all x in this subgrid, T t+1(x) = T t (x). Therefore, the statement remains true at
t + 1 for both subgrids.

Now let x be a site with maximal r = maxi |xi |, where T (x) > 0 (by symmetry, x cannot
be unique). Then no sites outside C(r) can have toppled. Furthermore, all next-nearest neigh-
bors of x that are closer to the origin have also toppled, and subsequently all next-nearest
neighbors of those next-nearest neighbors, that are still closer to the origin, etc. Then we use
symmetry to find that all sites in D(r) and in the same subgrid as x must also have toppled.
An example for d = 2 is depicted in Fig. 4.

Furthermore, for at least one of the neighbors y of x, we must have T (y) > 0, because Tn

is path connected. This neighbor has maxi |yi | ≥ r − 1. For this neighbor, we can make the
same observation. It follows that all sites in D(r − 1) have toppled, so that the first part of
the theorem follows. �

To prove the inequalities for rn, we need the following lemma:

Lemma 4.11 Let ρn be the average value of Hn(x) in Tn, σn the number of sites and βn the
number of internal bonds in Tn. Then

βn

σn

≤ ρn ≤ 2d − 1.
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Fig. 4 Let x be a site with maximal r = maxi |xi | that toppled. In this example, r = 3. By the fact that all
next-nearest neighbors that are closer to the origin have also toppled, we find that sites y, and the origin, have
also toppled. By symmetry, we find that sites z have also toppled. Then we conclude that all sites in D(3)

(colored lightgrey) and in the same subgrid as x have toppled, and no sites outside C(3) in the same subgrid
can have toppled

Proof It suffices to prove that the configuration restricted to Tn is recurrent [4, 18]. This
can be checked in a nonambiguous way with the burning algorithm [4]. The inequality then
follows from the fact that in a recurrent, stable configuration restricted to some set, the total
number of particles in the set is at least the number of internal bonds in the set, and at most
hmax times the number of sites in the set. In the case of an unstable configuration, the term
“recurrent” is somewhat inappropriate, but we still define it to indicate configurations that
pass the burning algorithm.

We use the following properties of recurrent configurations:

1. Recurrence of a configuration restricted to a set is conserved under addition of a particle
to the set, and under a legal toppling in the set.

2. If the configuration restricted to a set is recurrent, and we add an unstable site x to the
set, then the configuration is recurrent restricted to the extended set.

We will use induction in n. We will show that if ηn restricted to Tn is recurrent, then ηn+1

restricted to Tn+1 is recurrent. For a starting point of the induction, we choose n′ = 2d − h,
so that |Tn′ | = 1, because a configuration restricted to a single site is always recurrent.

We can obtain ηn+1 by starting from ηn, adding a particle to the origin, and stabilizing. If
we first stabilize restricted to Tn, then by the first property of recurrence, the configuration
restricted to Tn is still recurrent. If Tn = Tn+1, then we are now done. But it is also possible
that at this point, there are unstable sites outside Tn.

By both properties of recurrence, if we add one of these sites to Tn and stabilize with
respect to the new set, the configuration restricted to the new set is still recurrent. We can
repeat this step until there are no more unstable sites to be added. Then the new set is Tn+1,
and the new configuration is ηn+1. �

Proof of Theorem 4.8, part 2 To calculate the inequalities for rn, we observe that the mini-
mum rn would be obtained if Vn would equal the cube C(rn + 1), with each site containing
the maximal number of particles. The number of sites in this cube is (2rn + 3)d , and the
number of particles per site is then 2d − 1 − h, so that

n ≤ (2rn + 3)d(2d − 1 − h),

for every n.
The maximal rn would be obtained if Vn would equal the diamond D(rn), containing the

minimum number of particles. As we deduced that the configuration restricted to Tn is re-
current, we calculate the minimum average value of H(x) on D(rn − 1), using Lemma 4.11.
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The number of internal bonds in D(rn − 1) is (2rn − 2)d . The number of sites in D(rn − 1)

is 1
d
(2rn − 1)d + o(rd

n ) as rn → ∞. Thus,

n ≥ (2rn − 2)d − h

d
(2rn − 1)d + o(rd

n ), rn → ∞.

As in the limit n → ∞ we also have rn → ∞, this leads to the second inequality for rn in
the theorem. �

The proof of Theorem 4.8 allows to prove an interesting characteristic of Vn:

Proposition 4.12 For the sandpile model, Vn is simply connected for all n.

Proof We first prove that Tn is simply connected, by contradiction.
Suppose that Tn,SP,h is not simply connected, that is, Tn,SP,h contains holes. This means

there must be a site y in Tn,SP,h ‘beyond a hole’, that is, a site y with T (y) > 0, and at least
one neighbor x of y with T (x) = 0, that is closer to the origin than y itself and all neighbors
x ′ of y for which T (x ′) > 0. At least one neighbor x′ of y must have T (x′) > 0, because Tn

is path connected. Thus, among the neighbors of y, there must be a next-nearest neighbor
pair z and z′, with d(z′) ≥ d(z), T (z) = 0 and T (z′) > 0. But this contradicts the above
derived property that for all t , for every next-nearest neighbor z and z′ with d(z) ≥ d(z′),
T t (z) ≤ T t (z′), as this property should also hold for the final configuration.

The above does not suffice to conclude that Vn is also simply connected. Since Vn =
Tn ∪ δTn, we must show that Tn does not contain so-called fjords, i.e., places where the
boundary of Tn nearly touches itself, such that Tn ∪ δTn would contain a hole. But when one
supposes that Tn does contain a fjord, then one can derive the same contradiction as above.
Therefore, Vn is simply connected. �
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