6,520 research outputs found
Combined Solar System and rotation curve constraints on MOND
The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the
external gravitational field in which a system is embedded can produce effects
on its internal dynamics. In this communication, we first show that this
External Field Effect can significantly improve some galactic rotation curves
fits by decreasing the predicted velocities of the external part of the
rotation curves. In modified gravity versions of MOND, this External Field
Effect also appears in the Solar System and leads to a very good way to
constrain the transition function of the theory. A combined analysis of the
galactic rotation curves and Solar System constraints (provided by the Cassini
spacecraft) rules out several classes of popular MOND transition functions, but
leaves others viable. Moreover, we show that LISA Pathfinder will not be able
to improve the current constraints on these still viable transition functions.Comment: 13 pages, 7 figures, accepted for publication in MNRA
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos
In this article we continue to test cosmological models centred on Modified
Newtonian Dynamics (MOND) with light sterile neutrinos, which could in
principle be a way to solve the fine-tuning problems of the standard model on
galaxy scales while preserving successful predictions on larger scales. Due to
previous failures of the simple MOND cosmological model, here we test a
speculative model where the modified gravitational field is produced only by
the baryons and the sterile neutrinos produce a purely Newtonian field (hence
Modified Baryonic Dynamics). We use two component cosmological simulations to
separate the baryonic N-body particles from the sterile neutrino ones. The
premise is to attenuate the over-production of massive galaxy cluster halos
which were prevalent in the original MOND plus light sterile neutrinos
scenario. Theoretical issues with such a formulation notwithstanding, the
Modified Baryonic Dynamics model fails to produce the correct amplitude for the
galaxy cluster mass function for any reasonable value of the primordial power
spectrum normalisation.Comment: 11 pages, 2 figures. Submitted to JCA
Modelling record times in sport with extreme value methods
We exploit connections between extreme value theory and record processes to develop inference methods for record processes. Record processes have trends in them even when the underlying process is stationary. We study the problem of estimating the underlying trend in times achieved in sports from record data. We develop new methods for inference, simulating record series in non-stationary contexts, and assessing fit which account for the censored characteristic of record data and we apply these methods to athletics and swimming data
Can filamentary accretion explain the orbital poles of the Milky Way satellites?
Several scenarios have been suggested to explain the phase-space distribution
of the Milky Way (MW) satellite galaxies in a disc of satellites (DoS). To
quantitatively compare these different possibilities, a new method analysing
angular momentum directions in modelled data is presented. It determines how
likely it is to find sets of angular momenta as concentrated and as close to a
polar orientation as is observed for the MW satellite orbital poles. The method
can be easily applied to orbital pole data from different models. The observed
distribution of satellite orbital poles is compared to published angular
momentum directions of subhalos derived from six cosmological state-of-the-art
simulations in the Aquarius project. This tests the possibility that
filamentary accretion might be able to naturally explain the satellite orbits
within the DoS. For the most likely alignment of main halo and MW disc spin,
the probability to reproduce the MW satellite orbital pole properties turns out
to be less than 0.5 per cent in Aquarius models. Even an isotropic distribution
of angular momenta has a higher likelihood to produce the observed
distribution. The two Via Lactea cosmological simulations give results similar
to the Aquarius simulations. Comparing instead with numerical models of
galaxy-interactions gives a probability of up to 90 per cent for some models to
draw the observed distribution of orbital poles from the angular momenta of
tidal debris. This indicates that the formation as tidal dwarf galaxies in a
single encounter is a viable, if not the only, process to explain the
phase-space distribution of the MW satellite galaxies.Comment: 14 pages, 4 figures, 3 tables. Accepted for publication in MNRA
Numerical comparison of pipe-column-separation models
Results comparing six column-separation numerical models for simulating localized vapor cavities and distributed vaporous cavitation in pipelines are presented. The discrete vapor-cavity model (DVCM) is shown to be quite sensitive to selected input parameters. For short pipeline systems, the maximum pressure rise following column separation can vary markedly for small changes in wave speed, friction factor, diameter, initial velocity, length of pipe, or pipe slope. Of the six numerical models, three perform consistently over a broad number of reaches. One of them, the discrete gas-cavity model, is recommended for general use as it is least sensitive to input parameters or to the selected discretization of the pipeline. Three models provide inconsistent estimates of the maximum pressure rise as the number of reaches is increased; however, these models do give consistent results provided the ratio of maximum cavity size to reach volume is kept below 10%.Angus R. Simpson and Anton Bergan
Seawater acidification more than warming presents a challenge for two Antarctic macroalgal-associated amphipods
Elevated atmospheric pCO2 concentrations are triggering seawater pH reductions and seawater temperature increases along the western Antarctic Peninsula (WAP). These factors in combination have the potential to influence organisms in an antagonistic, additive, or synergistic manner. The amphipods Gondogeneia antarctica and Paradexamine fissicauda represent prominent members of macroalgal-associated mesograzer assemblages of the WAP. Our primary objective was to investigate amphipod behavioral and physiological responses to reduced seawater pH and elevated temperature to evaluate potential cascading ecological impacts. For 90 d, amphipods were exposed to combinations of seawater conditions based on present ambient (pH 8.0, 1.5°C) and predicted end-of-century conditions (pH 7.6, 3.5°C). We recorded survival, molt frequency, and macroalgal consumption rates as well as change in wet mass and proximate body composition (protein and lipid). Survival for both species declined significantly at reduced pH and co-varied with molt frequency. Consumption rates in G. antarctica were significantly higher at reduced pH and there was an additive pH-temperature effect on consumption rates in P. fissicauda. Body mass was reduced for G. antarctica at elevated temperature, but there was no significant effect of pH or temperature on body mass in P. fissicauda. Exposure to the pH or temperature levels tested did not induce significant changes in whole body biochemical composition of G. antarctica, but exposure to elevated temperature resulted in a significant increase in whole body protein content of P. fissicauda. Our study indicates that while elevated temperature causes sub-lethal impacts on both species of amphipods, reduced pH causes significant mortality
Phosphorylation of Spinophilin Modulates Its Interaction with Actin Filaments
Spinophilin is a protein phosphatase 1 (PP1)- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We report that spinophilin is phosphorylated in vitro by protein kinase A (PKA). Phosphorylation of spinophilin was stimulated by treatment of neostriatal neurons with a dopamine D1 receptor agonist or with forskolin, consistent with spinophilin being a substrate for PKA in intact cells. Using tryptic phosphopeptide mapping, site-directed mutagenesis, and microsequencing analysis, we identified two major sites of phosphorylation, Ser-94 and Ser-177, that are located within the actin-binding domain of spinophilin. Phosphorylation of spinophilin by PKA modulated the association between spinophilin and the actin cytoskeleton. Following subcellular fractionation, unphosphorylated spinophilin was enriched in the postsynaptic density, whereas a pool of phosphorylated spinophilin was found in the cytosol. F-actin co-sedimentation and overlay analysis revealed that phosphorylation of spinophilin reduced the stoichiometry of the spinophilin-actin interaction. In contrast, the ability of spinophilin to bind to PP1 remained unchanged. Taken together, our studies suggest that phosphorylation of spinophilin by PKA modulates the anchoring of the spinophilin-PP1 complex within dendritic spines, thereby likely contributing to the efficacy and plasticity of synaptic transmission
The wedding of modified dynamics and non-exotic dark matter in galaxy clusters
We summarize the status of Modified Newtonian Dynamics (MOND) in galaxy
clusters. The observed acceleration is typically larger than the acceleration
threshold of MOND in the central regions, implying that some dark matter is
necessary to explain the mass discrepancy there. A plausible resolution of this
issue is that the unseen mass in MOND is in the form of ordinary neutrinos with
masses just below the experimentally detectable limit. In particular, we show
that the lensing mass reconstructions of the clusters 1E0657-56 (the bullet
cluster) and Cl0024+17 (the ring) do not pose a new challenge to this scenario.
However, the mass discrepancy for cool X-ray emitting groups, in which
neutrinos cannot cluster, pose a more serious problem, meaning that dark
baryons could present a more satisfactory solution to the problem of unseen
mass in MOND clusters.Comment: to appear in World Scientific, proceedings of DARK 200
Loss of mass and stability of galaxies in MOND
The self-binding energy and stability of a galaxy in MOND-based gravity are
curiously decreasing functions of its center of mass acceleration towards
neighbouring mass concentrations. A tentative indication of this breaking of
the Strong Equivalence Principle in field galaxies is the RAVE-observed escape
speed in the Milky Way. Another consequence is that satellites of field
galaxies will move on nearly Keplerian orbits at large radii (100 - 500 kpc),
with a declining speed below the asymptotically constant naive MOND prediction.
But consequences of an environment-sensitive gravity are even more severe in
clusters, where member galaxies accelerate fast: no more Dark-Halo-like
potential is present to support galaxies, meaning that extended axisymmetric
disks of gas and stars are likely unstable. These predicted reappearance of
asymptotic Keplerian velocity curves and disappearance of "stereotypic
galaxies" in clusters are falsifiable with targeted surveys.Comment: 4 pages, 2 figures, ApJ Letter
- …
