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ABSTRACT

We exploit connections between extreme value theory and record pro-
cesses to develop inference methods for record processes. Record pro-
cesses have trends in them even when the underlying process is station-
ary. We study the problem of estimating the underlying trend in times
achieved in sports from record data. We develop new methods for infer-
ence, simulating record series in non-stationary contexts, and assessing
fit which account for the censored characteristic of record data and we
apply these methods to athletics and swimming data.
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1. Introduction

In many fields records are of particular interest such as in weather (highest
flood, hottest temperature, strongest wind speed) and in finance (largest insur-
ance claim, biggest stock market crash). In sporting events, such as athletics
and swimming, records are the vital events in characterising the development
of the sport, they are the target for competitors, and they receive most pub-
licity. Records are however simply the most extreme values in a series at the
time of their occurrence and so there are natural connections between the the-
ory for records and the theory for extreme values, this has been exploited in
probabilistic results for records by Ahsanullah (2004), Arnold et al. (1998), Ah-
sanullah and Bhoj (1996), Bairamov (1996), David and Nagaraja (2003), Glick
(1978), Sibuya and Nishimura (1997), Smith (1988) and Benested (2004). In
this paper we apply and adapt our knowledge of extreme value methods to the
analysis of record data for sporting events, focusing on athletics track events
and swimming competitions.

To illustrate the issues in this paper first consider the minimum record pro-
cess {Yt} which arises from a stationary sequence {Xt}, i.e. Yt = min(X1, . . . , Xt).
We assume that {Xt} are continuous random variables. Let Rt = I(Xt < Yt−1)
be an indicator variable for the occurrence of a record at time t and let Nn
be the number of records until time n, with N1 = 1 by definition. Then
Rt ∼ Bernoulli(t−1) and E(Nn) =

∑n
t=1E(Rt) =

∑n
t=1

1
t , so for large n,

E(Nn) ≈ log n + γ, with γ is Euler’s constant 0.5772... . Arnold et al. (1998)
point out that about 7 records are expected to occur in a sequence of 100,000
observations of a stationary sequence, so when studying records of stationary
processes we need to recognise that records are broken rarely. Furthermore,
there is a decreasing trend in the {Yt} process as Yt+1 ≤ Yt for all t ≥ 1.

If an analysis is to be undertaken from a series of record data {Yt} alone
then at first sight it may appear that the information in the series is limited
as many of the values in the series will be identical. The few values in the
series where the record changes, i.e. Yt < Yt−1 tell us directly that Xt = Yt.
However, the record remaining unchanged does also provide information about
the underlying {Xt} process as Yt = Yt−1 tells us that Xt > Yt−1, so this
gives censored information about the underlying {Xt} process. Despite the
information from censored data, for stationary series the information about
the record process is gathered very slowly because when the probability of not
breaking the record is high there is very limited information in the censored
data.

As sports have increasingly become professional, their training techniques

2 Malaysian Journal of Mathematical Sciences



Modelling Record Times in Sport with Extreme Value Methods

Figure 1: Plot A - women’s athletics 3000 m with annual minima (circle) and annual record data
(dot) from 1972 to 1992; Plot B - women’s athletics 1500 m with annual minima (circle) and annual
record data (dot) from 1972 to 1992.

have been refined, dietary knowledge has been improved, more people are train-
ing to high standard in every sport, and it is clear that the underlying marginal
distribution of elite performance in sport has changed. This is seen in the ath-
letics and swimming data we study. Figure 1 shows the annual best times
achieved in recognised international competitions over the period of 1972-1992
for the women’s athletics 1500 m and 3000 m track events, see Robinson and
Tawn (1995). The record process, derived from these annual data, is also on
the figure. It shows that the number of records being broken is greater than
would be expected if the annual best performance was stationary over time.

Similarly, Figure 2 shows the FINA world record series of the men’s 400
m freestyle swimming event plotted against the actual times in the year when
the records are achieved. Unlike the athletics data, this type of record data
shows when the record has been broken more than once in a year. Again the
number of records is greater than would be expected if the series was stationary,
indicating a trend in elite performances. We call the two types of data annual
record data and actual record data respectively.

As indicated earlier, the record process exhibits a trend even when the
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Figure 2: The men’s Olympic 400 m freestyle gold medallist’s times (empty dot) and the men’s
actual world record data for 400 m freestyle (dark dot) from 1912 to 2004.

underlying process is stationary. We can tell from the number of records in
the actual record data that there must be non-stationarity in the underlying
process but it is clear that separating the component of the trend due to records
from that due to non-stationarity is not obvious from information on the record
process alone. For the annual records data in athletics we also have annual best
data which allows us to identify the separation as the records decrease over time
faster than the mean of the annual best data.

Most often data on records takes the form of actual record data as annual
record data exclude records if the record is broken more than once in a year.
Furthermore, annual best data (from which annual record data are typically
derived) are difficult to find for early periods in the history of an event whereas
all actual records are well documented. As annual best data, and their associ-
ated annual record data, provide information on both the underlying process
and the record process we first study these data, this helps in identifying the
level of loss of information in analysing annual records in comparison to an-
nual best data and identifies the need for some independent information on the
trend in the underlying series.
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As the data are minima times the appropriate distribution for the annual
best is the generalised extreme value distribution for minima, GEVM(µ, σ, ξ),
which has a distribution function

H(x) = 1− exp

{
−
[
1− ξ

(
x− µ
σ

)]−1/ξ
+

}
(1)

with a location parameter µ ∈ R, a scale parameter σ > 0, a shape parameter
ξ ∈ R and [y]+ = max(y, 0), see Coles (2001). The negative Gumbel is given
by the GEVM distribution with ξ → 0, the negative Fréchet by ξ > 0 and the
Weibull by ξ < 0. The justification for this distribution is that it is the only
possible non-degenerate distribution for the limiting distribution of the minima
of stationary sequences after linear normalisation, see Leadbetter et al. (1983).

Stationarity over a year may be a reasonable approximation to justify the
choice of the GEVM distribution, but the obvious non-stationarity in the annual
best times suggest that at least some of the parameters of the GEVM need to
change over time, as in the modelling framework of Davison and Smith (1990)
and Coles (2001). Here we assume that the GEVM parameter µ(t) varies
smoothly over time t, with σ and ξ being a constant, i.e. the non-stationarity
is purely a location shift in the elite performance in a year. This is justified by
findings in Adam and Tawn (2011) and Adam and Tawn (2012) more generally
for data of this type but also given the limited data in our applications it is also
unlikely that we can find evidence that the scale and shape parameter changes
over time. For the athletics example we take µ(t) as a simple exponential decay
but for the swimming data no simple parametric model seems appropriate so
we use non-parametric methods for estimating µ(t).

We study annual records using the information that they are simply a par-
tially censored series of annual best data. Following the study of annual records
we then develop a general Poisson process limiting characterisation for mod-
elling the actual record data. Specifically, point process results for extremes,
Pickands (1971) and Smith (1989), are adapted to record values recognising
that records are a form of censored extreme value data.

Again modelling the non-stationarity of the underlying data needs to be
addressed. Evidence from the analysis of annual records shows the need for
information on the trend in elite performance (in the form of annual best data
or something equivalent) to supplement information from the annual record to
get any form of useful inference. In order to make inferences from the actual
record data we need additional data that provides information about the trend
of the underlying series. Annual best data are not available generally for other
record series so some form of proxy data are required. For the actual record
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data for swimming we use the Olympic gold medallists’ times as proxy data for
inference on the trend in elite performances.

The structure of this paper is as follows. In Sections 2 and 3 we derive
models and inference methods for annual record data and actual record data
respectively. As a large amount of data are censored this information needs to
be accounted for not just in the fitting but also in methods of goodness-of-fit
for both methods. Then we apply the theory to athletics data in Section 5 and
swimmming data in Section 6.

2. Models and Inference for Annual Records

If Z1, . . . , Zn is the sequence of annual minima from {Xt} with Zt the annual
minima in year t then we define Yt = min(Z1, Z2, . . . , Zt) for t ≥ 1 so that {Yt}
is the annual record process. We assume that {Zt} are independent with Zt ∼
GEVM(µ(t), σ, ξ) and so µ(t), t = 1, . . . , n, σ and ξ determine the distribution
of the annual record process. Suppose that we have data for {Yt} but not {Zt}.
When Yt < Yt−1, i.e. a record occurs, then Yt = Zt is an observation from a
GEVM(µ(t), σ, ξ) variable. When Yt = Yt−1, i.e. not a record, then Zt > Yt
so Zt is a GEVM(µ(t), σ, ξ) variable censored below at Yt. Consequently, the
log-likelihood function for the record sequence yyy = (y1, . . . , yn) is

`(yyy;µµµ, σ, ξ) = −
n∑
t=1

It log σ −
n∑
t=1

It

(
1 +

1

ξ

)
log Ψt

−
n∑
t=1

ItΨ
−1/ξ
t −

n∑
t=1

(1− It)Ψ−1/ξt

(2)

where Ψt =
[
1− ξ

(
yt−µ(t)

σ

)]
+
, with It = I(Yt < Yt−1) andµµµ = (µ(1), . . . , µ(n)).

If µ(t) can be parametrically specified then maximum likelihood estimates
are obtained by maximizing (2) directly. However if µ(t) is specified only to
be a smooth function we use a penalized log-likelihood function for the GEVM
distribution of the form

`(yyy;µµµ, σ, ξ)− λ

2
µµµTKµµµ, (3)

where K is a symmetric n × n matrix of rank n − 2, defined in Green and
Silverman (1994) which depends only on (1, 2, . . . , n) and λ is a smoothing
parameter we select using the AICc criteria. The second term in the penalized
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log-likelihood (3) imposes a penalty for the smooth µµµ values. We maximize
Equation (3) to get the best estimate values of µ̂µµ, σ̂ and ξ̂ using the Fisher’s
scoring method explained in Adam (2007).

As the estimated parameters determine the distribution of {Yt} through
{Zt} we need to derive the distribution of {Yt}. When {Zt} are independent
and identically distributed (IID) then

Pr(Yt > y) = Pr(Z1 > y) Pr(Z2 > y) . . .Pr(Zt > y)

= exp

{
−
[
1− ξ

(
y − µ∗t
σ∗t

)]−1/ξ
+

}
, (4)

where µ∗t = µ − σ
ξ (tξ − 1) and σ∗t = σtξ, so Yt ∼ GEVM(µ∗t , σ

∗
t , ξ), so the

expected value for Yt is E(Yt) = µ∗t +
σ∗
t

ξ [1− Γ(1− ξ)]. For the non-stationary
case as Pr(Yt > y) is complex we resort to deriving the distribution of {Yt} by
simulation from {Zt}.

We can assess the fit of the model through comparison of Ym and its
estimated expected value Ê(Ym). This comparison is complicated by the
strong dependence in {Yt}. Instead we prefer to exploit the property that
if Zt ∼ GEVM(µ(t), σ, ξ) then Zt = µ(t) + Et, where µ(t) is the trend in Zt
and Et ∼ GEVM(0, σ, ξ). Then the estimated sequence of {Et} = {Zt − µ̂(t)}
for t = 1, . . . , n are IID. We use estimated values of {Et} to construct the P-P
and Q-Q plots for assessing the goodness of fit of the record progression data.

The initial step is to get the Et value. If Yt is a record then Zt = Yt, we get
Et = Yt−µ(t). Otherwise, if Yt is not a record then Zt > Yt−1 so Et > Yt−µ(t).
Data on {Et} are therefore censored when no record is broken. To estimate
the distribution of E we need to account for censoring, with the standard
approach being the Kaplan-Meier estimator. Let e(1) < . . . < e(m) denote
the residuals of the observed records and di be the number of {Et} > e(i).
The Kaplan-Meier estimate for a survival function is given by ĤKM (z) =∏
i:e(i)<z

(
1− 1

di

)
. The model-based estimate of the distribution function for

E is Ĥ(z) = 1 − exp

{
−
[
1− ξ̂

(
z
σ̂

)]−1/ξ̂
+

}
. By comparing the model-based

survival probability and empirical Kaplan Meier the P-P and Q-Q plots can
be constructed. Let e∗(j) be the jth largest of e1, . . . , en (i.e. observed and
censored values together) then the P-P plot is constructed by plotting

Ĥ(e∗(i)) against ĤKM (e∗(i)) for i = 1, . . . , n.
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and the Q-Q plot, using the exponential quantile plot, for the {ei} is

− log
[
1− Ĥ(e∗(i))

]
versus − log

[
1− ĤKM (e∗(i))

]
for i = 1, . . . , n.

The transformation exponential quantile scale changes the lower tail into the
upper tail.

3. Models and Inference for Actual Records

3.1 Point process model

First consider a stationary sequence {Xt}. We define the point process
Pn = {[i/(n+ 1), (Xi− bn)/an] : i = 1, . . . , n}, where the sequence of constants
{an > 0} and {bn} are such that

Pr

[
min(X1, . . . , Xn)− bn

an
> x

]
n→∞−−−−→ 1−H(x)

with H(x) a non-degenerate limit distribution. Then H(x) is GEVM(µ, σ, ξ)
given by (1.1), see Leadbetter et al. (1983). Let P be the limit as n → ∞ of
Pn. Let xF = min{x : FX(x) > 0} where FX is the distribution function of
{Xt}, and bl = limn→∞(xF − bn)/an. For A ⊆ [0, 1] × (−∞, bl) let Nn(A) be
the number of points of Pn that fall in A and N(A) be the number of points
of P in A. Following Pickands (1971) and Smith (1989) it follows that P is
non-homogeneous Poisson processes with intensity

λ(t, r) =
1

σ

[
1− ξ

(
r − µ
σ

)]−1−1/ξ
+

. (5)

Now, if we let A = [t0, t1] × (−∞, r), with 0 < t0 < t1 < 1 and r <
bl, the limiting distribution of Nn(A) is Poisson

(
Λ(A)

)
with Λ(A) = (t1 −

t0)
[
1− ξ

(
r−µ
σ

)]−1/ξ
+

. Now, we consider the non-stationary case with location
parameter µ(t). The intensity measure for this non-homogeneous Poisson pro-

cesses is then λ(t, r) = 1
σ

[
1− ξ

(
r−µ(t)
σ

)]−1−1/ξ
+

where here time is scaled onto

[0, 1] each for t in µ(t).

Suppose that between times t0 and tm+1 the times and values of a sequence
of m consecutive actual records are (t1, r1), . . . , (tm, rm), with ri the record
value obtained at time ti with r1 > · · · > rm−1 > rm. It is assumed that
the current record at time t0 is r0. We derive the likelihood for this actual
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record sequence in stages. Using the Poisson processes the probability of no
new record in the time interval (t0, t1) is

exp

[
−
∫ t1

t0

∫ r0

−∞
λ(t, r)drdt

]
= exp

{
−
∫ t1

t0

[
1− ξ

(
r0 − µ(t)

σ

)]−1/ξ
+

dt

}
.

The probability of one record in the interval (ri−δr, ri) in the time interval
(ti, ti + δt),

≈ λ(ti, ri)δrδt exp

{
−
∫ ti+δt

ti

∫ ri

ri−δr

1

σ

[
1− ξ

(
r − µ(t)

σ

)]−1−1/ξ
+

drdt

}
for small δr > 0 and δt > 0.

The probability of no record in the time interval (ti + δt, ti+1) is

exp

{
−
∫ ti+1

ti+δt

∫ ri

−∞

1

σ

[
1− ξ

(
r − µ(t)

σ

)]−1−1/ξ
+

drdt

}
.

So the joint probability of a record ri at time ti and then no record until
ti+1 is proportional to

λ(ti, ri) exp

{
−
∫ ti+1

ti

∫ ri

−∞

1

σ

[
1− ξ

(
r − µ(t)

σ

)]−1−1/ξ
+

drdt

}
.

The likelihood for the record progression from t0 to tm+1 is proportional to[
m∏
i=1

λ(ti, ri)

]
exp

{
−

m∑
i=0

∫ ti+1

ti

[
1− ξ

(
ri − µ(t)

σ

)]−1/ξ
+

dt

}
. (6)

As µ(t) changes slowly we expect the integral in Equation (6) to also change
smoothly with t, and so for numerical simplification we approximate the sum
of integrals in the log-likelihood function. In order to get an accurate value
of the approximation of the integral, we break the time from tj to tj+1 with
tj+1 = tj+∆kj , where kj is the number of partitions from tj to tj+1 with equal
distance of ∆ and sj,i = tj + (tj+1 − tj)(i− 1)/kj , i = 1, . . . , kj + 1 to give

m∑
i=0

ki∑
j=1

∆

[
1− ξ

(
ri − µ(sj,i)

σ

)]−1/ξ
+

. (7)
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As in Section 2 non-parametric inference for µ(t) can be obtained by penal-
ized likelihood with a penalty term identical to that in Equation (2).

3.2 Constructing tolerance bands

In order to develop new methods for diagnosing whether the model is accept-
able or not for the actual record data, we need to deal with two aspects which
are the time when the record occurred, t, and the value of the new record, r,
given that a record occurs at time t. Our first approach is to generate tolerance
intervals for the record progression under the assumption that the fitted model
is correct. In constructing such tolerance intervals, the fitted model is used
to simulate replicates of the record progression data. The resulting pointwise
tolerance intervals produced provide a region of values of record progressions
which can be used as a criteria for judging whether our fitted model is accept-
able when compared to the observed record progression data. The observed
record progression data should be within the region to indicate that the model
is good.

Critical to this approach is the need to be able to simulate a record progres-
sion for the fitted model. For efficiency reasons we only want to simulate record
times and values. To generate the record progression there are two stages given
a current record time tj and a current record value rj . The first stage is to gen-
erate the next record time tj+1 (tj+1 > tj) and the second stage is to generate
the next record value rj+1 (rj+1 < rj). Furthermore, we need an initialisation
stage given (t0, r0) and a way for terminating the simulation. We give details
of all these stages below. Fundamental to our approach in each case is the use
of the limiting non-homogeneous Poisson process P . Refer to Equation (5).

First let us derive the waiting time distribution for the next record given
that a record value of rj occurred at time tj . Let this waiting time random
variable be Wj+1. Then Pr(Wj+1 > w) = Pr( no points of P in Aj) where
Aj = [tj , tj + w]× (−∞, rj).

Pr( no points of P in Aj) = exp{−Λ(Aj)} = exp

[
−
∫ tj+w

tj

∫ rj

−∞
λ(s, r)drds.

]

To simulate Tj+1, the time of the (j + 1)th record value, we use the prob-
ability integral transformation for the survivor function of Wj+1. Specifically
if u is a realisation of U ∼ U(0, 1), then solving u = Pr(Wj+1 > w) gives a
realisation w from the waiting time distribution. The next record time is then
generated as tj+1 = tj + w, this is a realisation of Tj+1. Hence we solve for
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tj+1 in u = exp
[
−
∫ tj+1

tj

∫ rj
−∞ λ(s, r)drds

]
, we get

− log u =

∫ tj+1

tj

∫ rj

−∞
λ(s, r)drds ≈

kj+1∑
i=1

∆

{
1− ξ

σ
[rj − µ(si)]

}−1/ξ
+

. (8)

The second stage is to derive the distribution of the decrease Vj in the record
value given that the (j + 1)th record value occurs at time tj+1. The previous
record value rj is now a threshold for any further data to be the next new record
value rj+1 = rj − v for v > 0. The probability of getting a decrease in record
level greater than v at time tj+1 is Pr(Vj+1 < v|Tj+1 = tj+1) = Pr(Rj+1 <
rj − v|Rj+1 < rj , Tj+1 = tj+1) where Rj+1 is the new record progression at
tj+1. However,

Pr(Rj+1 < rj+1|Rj+1 < rj , Tj+1 = tj+1) =

{
1− ξ

[
v

σ − ξ(rj − µ(tj+1))

]}−1/ξ
+

,

is the Generalised Pareto type distribution, GPD(σ̃, ξ) with parameter σ̃ =
σ− ξ(rj − µ(ti+1)). We simulate a new record value from the decrease random
variable be Vi. To simulate rj+1 we use the probability integral transform for
the distribution function of Vi. Using the realisation u of U ∼ U(0, 1). Then
solving u = Pr(Vj < v) gives a realisation from getting new record value distri-
bution given time of new record occur. The next record value is then generated

as rj+1 = rj − v. Hence solve for v from u =
{

1− ξ
[

v
σ−ξ(rj−µ(tj+1))

]}−1/ξ
+

,

we get,

rj+1 = rj +

[
σ

ξ
− (rj − µ(tj+1))

]
(1− u−ξ). (9)

The algorithm for constructing the tolerance bands is as follows:

1. Initiate σ = σ̂rec, ξ = ξ̂rec and µµµ = µ̂µµ = {µ̂1, . . . , µ̂n}.

2. Selection of r0 (≤ r1) and t0 (≤ t1).

3. First stage: Simulate tj+1 from Equation (8) using tj and rj.

4. Second stage: Simulate rj+1 from Equation (9) using rj
and tj+1.

5. If tj+1 < T repeat steps 3 and 4 with T is the maximum time of
interest. Stop if tj+1 ≥ T.

Malaysian Journal of Mathematical Sciences 11
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We replicate the algorithm above k times to get k realisations of the record
progression process of fitted model. We used the pointwise quantiles as the
upper and lower bound of possible record value for the observed record pro-
gression. If the real record progression falls reasonably within the pointwise
acceptance bounds, it indicates than the estimated value of the parameters are
appropriate to the selected model and the model is reasonable description of
the data.

As already we knew that Zi ∼ GEVM(µi, σ, ξ) then Zi = µi + Ei, where
µi is the trend in Zi and Ei ∼ GEVM(0, σ, ξ). Then the sequence of {Ei}
for i = 1, . . . , n are independent and identically distributed by separating the
trend from the data. The Ei is used to construct the P-P and Q-Q plots for
assessing the goodness of fit of the record progression data.

The initial step is to get the Ei value. If Yi is a record then yi < yi−1 where
Zi = Yi, we get Ei = Yi − µi. Otherwise, if Yj is not a record then yj = yj−1
as Zj > Yj−1. We get Ej > yj−1 − µj−1.

Data on Ej are therefore censored when no record is broken. To estimate the
distribution of E we need to account for censoring, with the standard approach
being the Kaplan-Meier estimator. Initially we need to plot the Kaplan-Meier
estimate, KMj =

∏
j(1−

dj
tj

), to estimate the empirical survivor function of E,
where dj is the number of records occur until time j and tj is the number of
events left from time j. The model-based estimate of the survivor function for

Ei is Ŝ(z) = exp

{
−
[
1− ξ̂

(
z
σ̂

)]−1/ξ̂
+

}
= 1 − Ĥ(z). By comparing the model-

based survival probability and empirical Kaplan Meier estimate from graph,
the P-P and Q-Q plots can be constructed. When we plotting KMj against
S(e∗j ), where e∗j is the jth largest of e1, . . . , en value, or transformations of these
quantities give P-P and Q-Q plots. The P-P plot is constructed by plotting

Ĥ(e∗i ) = 1− Ŝ(e∗i ) versus 1−KMi for i = 1, . . . , n.

When studying the minima data, the fit of the upper tails is needed to relocate
to the right hand of the graph. The Q-Q plot using the exponential quantile
plot for the {ei} is

− log
[
Ŝ(e∗i )

]
versus − log [KMi] for i = 1, . . . , n.

In summary, to overcome the non-iid difficulties, we separate the trend from
the data to get the iid residual data. Then construct the P-P and Q-Q plots
from the residual data.
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4. Estimating Trend from Additional Data

As the record data do not provided enough information to fully separate
the record progression from a trend we need another different set of data from
similar type of process which is able to give additional information to enable
better separation. This additional source of data should be able to represent
whole data including the record data.

Adam (2007) shown the difficulties of analysing extreme value data using
parametric methods compared to non-parametric methods. The non-parametric
approach allows the data to "speak for themselves" with less assumptions being
made. Complex trends can be handled better using non-parametric approach
compared to parametric approach.

We assume that Z1, Z2, . . . are the extreme additional data which can pro-
vide an information of the model trend in location for the record progression
data. In this case we will using the annual minima type of data.

4.1 Non-parametric approach for GEVM

To allow for non-stationarity we replace µ with the smooth function g as
we are estimating the trend in location using non-parametric method in this
case of study. Then the density function of the GEVM at time t with smooth
function g(t) is defined as

ht(z) =
1

σ

[
1− ξ

(
z − g(t)

σ

)]−1−1/ξ
+

exp

{
−
[
1− ξ

(
z − g(t)

σ

)]−1/ξ
+

}
.

The penalized log-likelihood function for the GEVM distribution is

`λg
(zzz;ggg, σ, ξ)− λg

2
gggTKggg (10)

with ggg =
(
g(t1), . . . , g(tn)

)
= (g1, . . . , gn) and `λg (zi; gi, σ, ξ) is the log-likelihood

contribution for zzz = {z1, . . . , zn} where

`λg (zzz;ggg, σ, ξ) =− n log σ − (1 + 1/ξ)

n∑
i=1

log

[
1− ξ

(
zi − gi
σ

)]
+

−
n∑
i=1

[
1− ξ

(
zi − gi
σ

)]−1/ξ
+

(11)

and λg, the smoothing parameter value, is selected using the AICc criteria. We
smooth g through the penalty function of (10) and maximize (11), to get the
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best estimate values of ĝgg, σ̂ and ξ̂ using the Fisher’s scoring method explained in
Adam (2007). As our priority is to model and to analyse the record progression
data, the only information relevant from this inference is the estimated ĝgg.

4.2 Non-parametric approach to estimate µt in a Poisson
process model of record progression

To model µt Adam (2007) shown that using a non-parametric approach
is preferable. When a non-parametric is implemented in the analysis, the µt
values in Equation (7) are replaced by the smooth function gt at time t with
t = 1, . . . ,m. The log-likelihood function with gt is

`(rrr; gt, σ, ξ) = +

m∑
i=1

log λ(ti, ri)−
m∑
i=0

ki∑
j=1

∆

[
1− ξ

(
ri − gj
σ

)]−1/ξ
+

. (12)

In order to get an accurate value of approximation of the integration, we break
the time from ti to ti+1 to a small equal distance of ∆ from partitions [s0, s1]
to [ski−1, ski ] we get the modified log-likelihood as

`(rrr; gt, σ, ξ) = +

m∑
i=1

log λ(ti, ri)−
m∑
i=0

ki∑
j=1

∆

[
1− ξ

(
ri − gsj

σ

)]−1/ξ
+

(13)

where the distance from s0 to ski is the distance from ti to ti+1 for i = 1, . . . , n
with the distances between s0 to ski has been partitions to [s0, s1], . . . , [ski−1, ski ].

5. Application to Athletics Annual Records

The five fastest annual order statistics for women’s athletics 1500 m and
3000 m track events from recognized international events over the period of
1972-1992 are used in this study. See Robinson and Tawn (1995).

For this analysis we assume times run by every athlete in all events are
independent. There is a trend for both events, it is based on the exponential
decay of the annual minima over time. We use the trend, µt = α − β[1 −
exp(−γt)] where β > 0, γ > 0 and t is the year, taking 1971 as the base year.
This model was used by Robinson and Tawn (1995).

We redefined our record as Yi = min(Z1, . . . , Zi), i = 1972, . . . , 1992 as in
Figure 1. Let Zi ∼ GEVM(µ̂i, σ̂, ξ̂) for i = 72, . . . , 92, where this is indepen-
dent but not identically distributed random variables. The random variable for

14 Malaysian Journal of Mathematical Sciences



Modelling Record Times in Sport with Extreme Value Methods

the number of record broken over the 21 years is N21 =
∑92
i=72 Ii, where Ii = 1

if Zi < min(Z72, . . . , Zi−1) and is zero otherwise.

In Figure 3 the distribution of the number of records in annual minimum
is shown for three situations: firstly if the annual minima are iid; second for
the annual minima with trend and year to year variation as estimated for the
women’s athletics 1500 m data; finally the trend and year to year variation as
estimated for the women’s athletics 3000 m data. For iid case, it is possible
for the record not to be broken for long time intervals. The distribution of the
number of records is skewed to the right. For non-iid case, at least six records
broken is predicted for the women’s athletics 3000 m (5 times for the women’s
athletics 1500 m). This is because for the athletics, which is not identically
distributed as µ̂i gives some obvious trend early in the period, we predict that
the record tends to be broken frequently. The box-plot in Figure 3 summarise
the discussion of a numbers of breaking record for the women’s athletics 1500
m and 3000 m. In 1500 m track event the records have been broken 3 times

IID

m3000

m1500

5 10 15

Boxplot of IID , non−IID 3000m and non−IID 1500m

Numbers of record breaking

Figure 3: The box-plot of numbers of record breaking for annual minima for iid case and non-
iid case for the women’s athletics 3000 m and 1500 m, evaluated by Monte Carlo with 100000
repetitions.
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since 1972 and some breaking records is predicted to happen. The women’s
athletics 3000 m at 1992, current number of breaking record is 6 times and
more record also will be predicted to happen.

We now consider the women’s athletics 1500 m and 3000 m events of Fig-
ure 1, focusing on the record data only. This led to the maximum likelihood
estimate from Equation (2), we get the parameter estimates in Table 1. The 95
% CI for ξ for 1500 m and 3000 m events are (-5.585,5.018) and (-2.196,2.156).
This is are unacceptably large confidence intervals. When maximizing the log
likelihood with fixed α, β and γ values at their estimated values (using all
annual minima data), the standard error for the shape are lowered, this is be-
cause separating the trend from the record process is hard if only the record
are observed.

Table 1: The parameter estimation for record for the women’s athletics 1500 m and 3000 m track
events from 1972 to 1992.

Parameter α β γ σ ξ
1500 m 248(29) 8.9(31.1) 0.251(0.609) 4.79(14.03) -0.567(2.546)
3000 m 548(9) 37.7(13.9) 0.212(0.212) 4.12(7.23) -0.020(1.110)
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Figure 4: Kaplan-Meier estimates for the women’s athletics 1500 m and 3000 m of ei with the
dotted line is survival function, Ŝ(e∗).
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Figure 5: The P-P and Q-Q plots for the women’s athletics 1500 m and 3000 m, with record points
marked with black circle.

In order to fit the model, as the record data involving the censor data, we
replace the empirical density function with a Kaplan-Meier estimate in P-P and
Q-Q plots, see Figure 4. The P-P and Q-Q plots in Figure 5 shows that the
model’s fit is acceptable for the women’s athletics 1500 m and 3000 m events
as there are signs of linear pattern for in plots for censored data and the record
(solid circle). We noted an important point, i.e. a number of the record depend
wholly on the form of the trend of the mean.

6. Application to Actual Records Swimming

We applied the methods of analysis developed in this chapter using data on
the records progression of the men’s 400 m Freestyle swimming event with data
which are recognised all around the world by FINA. Additional information is
given by the men’s Olympic 400 m Freestyle data.

We implement the theory and fitting the model propose in Sections 2-3. We
used the men’s annual record progression for 400 m Freestyle swimming event
within 97 years time from 1908 to 2004. In the early stage of the competition,
the Freestyle event is also included the Breaststroke and the Butterfly until
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1953, when these two styles where separated from the Freestyle event.

Dealing with record data always led us to loose information regarding the
trend in mean of true performance of the men’s 400 m Freestyle. In order to
overcome this missing information from record progression data, we will used
the gold medallist of the men’s Olympic 400 m Freestyle swimming events from
1908 to 2004 to obtain the trend on the mean.

We initially minimize the Equation (10) for the Olympic event to obtain the
non-parametric trend in mean ĝt (not shown here). This Fisher scoring method
is capable in dealing with complexes trend in mean compared to parametric
method, see Adam (2007).

1920 1940 1960 1980 2000
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Figure 6: The maximum (upper line) and the minimum (lower line) value of the simulation record
progression withm = 33 wherem is the number of record have been simulated using ĝt, σ̂rec = 5.32

and ξ̂rec = −0.202.

Figure 6 shows that using the parameter estimates for the record progres-
sion using information from the men’s Olympic events gives a fairly good fit
compared to the observed records. More than 80% of the observed records are
within the acceptance area (between the maximum and the minimum of sim-
ulated records). In Figure 7, the proposed P-P and Q-Q plots showed a good
fit for the model.

We treated the event in 1908 as r0, which means that it is not a considered
as a record. Then there are 45 record have been recorded until 2004 for the
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Figure 7: The P-P (left) and Q-Q (right) plots using Kaplan Meier estimation for record progression
and censored data using method II in Section 3.

recognised men’s 400 m Freestyle swimming events. From simulation ofm = 33
times of record progression, the record have been broken between 34 to 50 times
tabulated in Table 2, inclusively with the average record breaking is 43 times
(further indicate that the simulated model is approximately similar with the
real model). Noted that we only considered the annual progression of the best
performance by men’s 400 m Freestyle swimmer each years.

Table 2: Summary result of the number of records broken from m = 33 of simulation data using
ĝt, σ̂rec and ξ̂rec.

m true minima median mean maximum
33 45 34 43 43.15 50

From the minimizing the log-likelihood of Equation (13), the parameter
estimates for σ̂rec is 5.32(0.79) and for ξ̂rec is -0.202(0.089). The estimate
of σrec values is quite similar with σOlympic (5.625) indicate that the model
proposed from Equation (6) is good.
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7. Concluding Remarks

We have introduced a new method to analysis the progression of record
data. We use the Poisson processes in order to build the joint density function
for the record data. We have also introduced a new test for goodness-o-fit for
the records. To account for trends in the underlying data the records are drawn
from we used information from another existing events e.g. for the swimming
record analysis we used the performance of the swimmers from Olympic event to
estimate the non-parametric trend in mean. We limited the study to annually
data which mean that if in a year few record broken events occurred we will
stick to the latter record in our study.

We have also introduced two goodness-of-fit methods how to test the fitting
model for the record progression data i.e. the tolerance regions of the model
using some simulation data from estimated parameters and if we treated the
record data as a censored type of extreme data, we used the P-P and Q-Q plots
as alternative model diagnostics. To proceed the tolerance regions and plots
we still need an information from another existing events.

The only drawback of the methods proposed here is that they require a
higher capability of computer power. Two main aspects consume most com-
puter ability: Fisher scoring method in estimating ĝt and when constructing
the tolerance region for the new proposed goodness of fit procedure.
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