14 research outputs found

    Recent developments in fibre optic shape sensing

    Get PDF
    This paper presents a comprehensive critical review of technologies used in the development of fibre optic shape sensors (FOSSs). Their operation is based on multi-dimensional bend measurements using a series of fibre optic sensors. Optical fibre sensors have experienced tremendous growth from simple bend sensors in 1980s to full three-dimensional FOSSs using multicore fibres in recent years. Following a short review of conventional contact-based shape sensor technologies, the evolution trend and sensing principles of FOSSs are presented. This paper identifies the major optical fibre technologies used for shape sensing and provides an account of the challenges and emerging applications of FOSSs in various industries such as medical robotics, industrial robotics, aerospace and mining industry

    Development of fibre-optic sensors for Australian mining industry

    No full text
    This paper presents recent development and utilisation of fibre-optic sensors for the Australian mining industry. The main opportunities and challenges for the fibreoptic sensors are discussed. This paper includes some of the projects on fibre-optic based monitoring systems for underground mine environment, gas drainage, methane gas, conveyor belt, roof deformation and crack development

    Advances in fibre optic based geotechnical monitoring systems for underground excavations

    No full text
    Geotechnical stability is a major concern for the long-term safety and integrity of underground infrastructures such as tunnels, railway stations, mine shafts and hydraulic power chambers. An effective geotechnical monitoring system is able to provide adequate warning to underground personnel prior to any unexpected major geotechnical failure. This paper reviews the conventional geotechnical monitoring sensors and the emerging Fibre Optic Sensing (FOS) techniques, pointing out their unique features and major differences. Recent advances in various FOS based monitoring systems, including Brillouin time domain distributed optical sensors and fibre Bragg grating (FBG) sensors, are investigated through a critical review of the laboratory studies and field applications used for underground geotechnical monitoring. Particular emphasis is given to fibre packaging, temperature compensation, installation methods and instrumentation performance in the underground environment. A detailed discussion of the advantages and limitations of each FOS monitoring system is also presented in this paper
    corecore