103 research outputs found
The cognitive effects of computational thinking: A systematic review and meta-analytic study
In this paper, we review and meta-analyze the findings of experimental studies published between 2006 and 2022 that examined the effects of coding and programming interventions on children's core and higher order executive functions (response inhibition, working memory, cognitive flexibility, planning and problem solving). The systematic review and meta-analysis aimed to address three research questions: 1) Which executive functions are most impacted by the teaching of CT? 2) Which instructional modality (educational robotics/virtual coding/unplugged coding) is most effective in enhancing executive function skills in learners aged 4–16 years? and 3) Does the cognitive effectiveness of coding vary with children's age? A total of 19 studies with 1523 participants met the selection criteria for the systematic review. The meta-analysis included 11 of those studies. The results reveal beneficial effects of structured virtual and tangible coding (educational robotics) activities for preschoolers and first graders, and significant effects of more unstructured virtual coding activities (e.g., Scratch-based) for older students. A multivariate fixed-effects model meta-analysis shows that the teaching of coding significantly improves problem-solving with the highest effect (dppc2 = 0.89), but also planning (dppc2 = 0.36), and inhibition and working memory with lower effects (dppc2 = 0.17, dppc2 = 0.20)
Online Fake News Opinion Spread and Belief Change: A Systematic Review
Fake news has been linked to the rise of psychological disorders, the increased disbelief in science, and the erosion of democracy and freedom of speech. Online social networks are arguably the main vehicle of fake news spread. Educating online users with explanations is one way of preventing this spread. Understanding how online belief is formed and changed may offer a roadmap for such education. The literature includes surveys addressing online opinion formation and polarization; however, they usually address a single domain, such as politics, online marketing, health, and education, and do not make online belief change their primary focus. Unlike other studies, this work is the first to present a cross-domain systematic literature review of user studies, methodologies, and opinion model dimensions. It also includes the orthogonal polarization dimension, focusing on online belief change. We include peer-reviewed works published in 2020 and later found in four relevant scientific databases, excluding theoretical publications that did not offer validation through dataset experimentation or simulation. Bibliometric networks were constructed for better visualization, leading to the organization of the papers that passed the review criteria into a comprehensive taxonomy. Our findings show that a person's individuality is the most significant influential force in online belief change. We show that online arguments that balance facts with emotionally evoking content are more efficient in changing their beliefs. Polarization was shown to be cross-correlated among multiple subjects, with politics being the central polarization pole. Polarized online networks start as networks with high opinion segregation, evolve into subnetworks of consensus, and achieve polarization around social network influencers. Trust in the information source was demonstrated to be the chief psychological construct that drives online users to polarization. This shows that changing the beliefs of influencers may create a positive snowball effect in changing the beliefs of polarized online social network users. These findings lay the groundwork for further research on using personalized explanations to reduce the harmful effects of online fake news on social networks
The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media
The original publication can be found at www.springerlink.comDeep bed filtration of particle suspensions in porous media occurs during water injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines migration in oil fields, industrial filtering, bacteria, viruses or contaminants transport in groundwater etc. The basic features of the process are particle capture by the porous medium and consequent permeability reduction. Models for deep bed filtration contain two quantities that represent rock and fluid properties: the filtration function, which is the fraction of particles captured per unit particle path length, and formation damage function, which is the ratio between reduced and initial permeabilities. These quantities cannot be measured directly in the laboratory or in the field; therefore, they must be calculated indirectly by solving inverse problems. The practical petroleum and environmental engineering purpose is to predict injectivity loss and particle penetration depth around wells. Reliable prediction requires precise knowledge of these two coefficients. In this work we determine these quantities from pressure drop and effluent concentration histories measured in one-dimensional laboratory experiments. The recovery method consists of optimizing deviation functionals in appropriate subdomains; if necessary, a Tikhonov regularization term is added to the functional. The filtration function is recovered by optimizing a non-linear functional with box constraints; this functional involves the effluent concentration history. The permeability reduction is recovered likewise, taking into account the filtration function already found, and the functional involves the pressure drop history. In both cases, the functionals are derived from least square formulations of the deviation between experimental data and quantities predicted by the model.Alvarez, A. C., Hime, G., Marchesin, D., Bedrikovetski, P
Humidity Disrupts Structural and Chiroptical Properties of Chiral 2D Perovskites
Chiral two-dimensional (2D) hybrid organic-inorganic metal halide perovskite semiconductors have emerged as an exceptional material platform with many design opportunities for spintronic applications. However, a comprehensive understanding of changes to the crystal structure and chiroptical properties upon exposure to atmospheric humidity has not been established. We demonstrate phase degradation to the 1D (MBA)PbI3 (MBA = methylbenzylammonium) and the hypothetical (MBA)3PbI5·H2O hydrate phases, accompanied by a reduction and disappearance of the chiroptical response. First-principle simulations show that water molecules preferentially locate at the interface between the organic cations and the inorganic framework, thereby disrupting the hydrogen bonding, impacting both the structural chirality and stability of the material. These findings provide critical insights into phase degradation mechanisms and their impact on chiroptical activity in chiral 2D perovskites
Recommended from our members
An unexpectedly shrunken bandgap in V2O5 nanoparticles
Synchrotron x-ray spectroscopy was employed to determine the effects of nanostructuring on electronic band structure in V2O5, a promising cathode material and widely used catalyst. V2O5nanoparticle and bulk powders were characterized via P-XRD, electron microscopy, and diffuse reflectance ultraviolet/visible/near-infrared spectroscopy to confirm the optical bandgap. X-ray emission spectroscopy revealed the nanoparticle valence band O 2pstates to be upshifted relative to the bulk, while x-ray absorption spectroscopy and resonant inelastic x-ray scattering showed the lowest V 3dconduction band states to be static. Together, these changes (in conjunction with an increased density of unoccupied lower conduction band states) produce a shrunken bandgap in the V2O5nanoparticles that defies the Burstein-Moss effect. Changes in nanoparticle band structure are generally attributed to oxygen vacancy defects. While nanostructure bandgap reduction is in line with much previous computational work, it is unexpected from most previous experimental results. To our knowledge, this is the first synchrotron x-ray spectroscopy study of a shrunken bandgap achieved in pure V2O5nanoparticles
A pattern of cerebral perfusion anomalies between major depressive disorder and Hashimoto thyroiditis
Background. This study aims to evaluate relationship between three different clinical conditions: Major Depressive Disorders (MDD), Hashimoto Thyroiditis (HT) and reduction in regional Cerebral Blood Flow (rCBF) in order to explore the possibility that patients with HT and MDD have specific pattern(s) of cerebral perfusion.
Methods. Design: Analysis of data derived from two separate data banks.
Sample: 54 subjects, 32 with HT (29 women, mean age 38.8 ± 13.9); 22 without HT (19 women, mean age 36.5 ± 12.25).
Assessment: Psychiatric diagnosis was carried out by Simplified Composite International Diagnostic Interview (CIDIS) using DSM-IV categories; cerebral perfusion was measured by 99 mTc-ECD SPECT. Statistical analysis was done through logistic regression.
Results. MDD appears to be associated with left frontal hypoperfusion, left temporal hypoperfusion, diffuse hypoperfusion and parietal perfusion asymmetry. A statistically significant association between parietal perfusion asymmetry and MDD was found only in the HT group.
Conclusion. In HT, MDD is characterized by a parietal flow asymmetry. However, the specificity of rCBF in MDD with HT should be confirmed in a control sample with consideration for other health conditions. Moreover, this should be investigated with a longitudinally designed study in order to determine a possible pathogenic cause. Future studies with a much larger sample size should clarify whether a particular perfusion pattern is associated with a specific course or symptom cluster of MDD
Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.
BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112
Management strategies of Eremanthus erythropappus (DC.) MacLeish under different initial spacing
ABSTRACT Eremanthus erythropappus, commonly known as candeia, is an income-generating tree native to Brazil. This is due to the high durability of its wood and its essential oil containing the active component alpha bisabolol. Despite this economic potential, until the early 2000's no studies existed to explore the sustainable management in areas in which the species naturally occurs or for establishing commercial plantations. This study proposes new management strategies based on an individual tree model, and evaluates the growth behavior of candeia trees planted in different spacing. The experiment was installed in March 2002, in Carrancas municipality, Minas Gerais state, Brazil. The experimental area was divided into 4 blocks with 4 different spacings as treatments. The individual model used to propose the best management system uses development of crown area as a function of DBH. The results showed that candeia trees were sensitive to initial spacing variation. With increased initial spacing, candeia trees reached competition later, as demonstrated by crown area development. Thus, candeia trees planted at a wider spacing maintain a desirable growth rate without need for thinning for a longer time, compared to trees planted at narrower spacing. The fitted individual tree model presented in this study showed consistent results and flexibility, providing alternatives for different management strategies. The best growth response was obtained for planting densities greater than 3.75 m² per tree, which corresponds to a spacing of 1.5 x 2.5 m
How Thioredoxin Dissociates Its Mixed Disulfide
The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx
- …
