99 research outputs found

    U12DB: a database of orthologous U12-type spliceosomal introns

    Get PDF
    U12-type introns are spliced by the U12-dependent spliceosome and are present in the genomes of many higher eukaryotic lineages including plants, chordates and some invertebrates. However, due to their relatively recent discovery and a systematic bias against recognition of non-canonical splice sites in general, the introns defined by U12-type splice sites are under-represented in genome annotations. Such under-representation compounds the already difficult problem of determining gene structures. It also impedes attempts to study these introns genome-wide or phylum-wide. The resource described here, the U12 Intron Database (U12DB), aims to catalog the U12-type introns of completely sequenced eukaryotic genomes in a framework that groups orthologous introns with each other. This will aid further investigations into the evolution and mechanism of U12-dependent splicing as well as assist ongoing genome annotation efforts. Public access to the U12DB is available at

    The repertoire of olfactory C family G protein-coupled receptors in zebrafish: candidate chemosensory receptors for amino acids

    Get PDF
    BACKGROUND: Vertebrate odorant receptors comprise at least three types of G protein-coupled receptors (GPCRs): the OR, V1R, and V2R/V2R-like receptors, the latter group belonging to the C family of GPCRs. These receptor families are thought to receive chemosensory information from a wide spectrum of odorant and pheromonal cues that influence critical animal behaviors such as feeding, reproduction and other social interactions. RESULTS: Using genome database mining and other informatics approaches, we identified and characterized the repertoire of 54 intact "V2R-like" olfactory C family GPCRs in the zebrafish. Phylogenetic analysis – which also included a set of 34 C family GPCRs from fugu – places the fish olfactory receptors in three major groups, which are related to but clearly distinct from other C family GPCRs, including the calcium sensing receptor, metabotropic glutamate receptors, GABA-B receptor, T1R taste receptors, and the major group of V2R vomeronasal receptor families. Interestingly, an analysis of sequence conservation and selective pressure in the zebrafish receptors revealed the retention of a conserved sequence motif previously shown to be required for ligand binding in other amino acid receptors. CONCLUSION: Based on our findings, we propose that the repertoire of zebrafish olfactory C family GPCRs has evolved to allow the detection and discrimination of a spectrum of amino acid and/or amino acid-based compounds, which are potent olfactory cues in fish. Furthermore, as the major groups of fish receptors and mammalian V2R receptors appear to have diverged significantly from a common ancestral gene(s), these receptors likely mediate chemosensation of different classes of chemical structures by their respective organisms

    The odorant receptor repertoire of teleost fish

    Get PDF
    BACKGROUND: Vertebrate odorant receptors comprise three types of G protein-coupled receptors: the OR, V1R and V2R receptors. The OR superfamily contains over 1,000 genes in some mammalian species, representing the largest gene superfamily in the mammalian genome. RESULTS: To facilitate an informed analysis of OR gene phylogeny, we identified the complete set of 143 OR genes in the zebrafish genome, as well as the OR repertoires in two pufferfish species, fugu (44 genes) and tetraodon (42 genes). Although the genomes analyzed here contain fewer genes than in mammalian species, the teleost OR genes can be grouped into a larger number of major clades, representing greater overall OR diversity in the fish. CONCLUSION: Based on the phylogeny of fish and mammalian repertoires, we propose a model for OR gene evolution in which different ancestral OR genes or gene families were selectively lost or expanded in different vertebrate lineages. In addition, our calculations of the ratios of non-synonymous to synonymous codon substitutions among more recently expanding OR subgroups in zebrafish implicate residues that may be involved in odorant binding

    Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis

    Get PDF
    In non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.info:eu-repo/semantics/publishedVersio

    Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis

    Get PDF
    In non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa

    Alteration in the Culex pipiens transcriptome reveals diverse mechanisms of the mosquito immune system implicated upon Rift Valley fever phlebovirus exposure

    Get PDF
    Rift Valley fever phlebovirus (RVFV) causes an emerging zoonotic disease and is mainly transmitted by Culex and Aedes mosquitoes. While Aedes aegypti-dengue virus (DENV) is the most studied model, less is known about the genes involved in infection-responses in other mosquito-arboviruses pairing. The main objective was to investigate the molecular responses of Cx. pipiens to RVFV exposure focusing mainly on genes implicated in innate immune responses. Mosquitoes were fed with blood spiked with RVFV. The fully-engorged females were pooled at 3 different time points: 2 hours post-exposure (hpe), 3- and 14-days post-exposure (dpe). Pools of mosquitoes fed with non-infected blood were also collected for comparisons. Total RNA from each mosquito pool was subjected to RNA-seq analysis and a de novo transcriptome was constructed. A total of 451 differentially expressed genes (DEG) were identified. Most of the transcriptomic alterations were found at an early infection stage after RVFV exposure. Forty-eight DEG related to immune infection-response were characterized. Most of them were related with the RNAi system, Toll and IMD pathways, ubiquitination pathway and apoptosis. Our findings provide for the first time a comprehensive view on Cx. pipiens-RVFV interactions at the molecular level. The early depletion of RNAi pathway genes at the onset of the RVFV infection would allow viral replication in mosquitoes. While genes from the Toll and IMD immune pathways were altered in response to RVFV none of the DEG were related to the JAK/STAT pathway. The fact that most of the DEG involved in the Ubiquitin-proteasome pathway (UPP) or apoptosis were found at an early stage of infection would suggest that apoptosis plays a regulatory role in infected Cx. pipiens midguts. This study provides a number of target genes that could be used to identify new molecular targets for vector control.info:eu-repo/semantics/publishedVersio

    A new variant of the addE-sat4-aphA-3 gene cluster found in a conjugative plasmid from a MDR Campylobacter jejuni isolate.

    Get PDF
    Campylobacter jejuni is a foodborne pathogen causing bacterial gastroenteritis, with the highest incidence reported in Europe. The prevalence of antibiotic resistance in C. jejuni, as well as in many other bacterial pathogens, has increased over the last few years. In this report, we describe the presence of a plasmid in a multi-drug-resistant C. jejuni strain isolated from a gastroenteritis patient. Mating experiments demonstrated the transference of this genetic element (pCjH01) among C. jejuni by plasmid conjugation. The pCjH01 plasmid was sequenced and assembled, revealing high similarity (97% identity) with pTet, a described tetracycline resistance encoding plasmid. pCjH01 (47.7 kb) is a mosaic plasmid composed of a pTet backbone that has acquired two discrete DNA regions. Remarkably, one of the acquired sequences carried an undescribed variant of the aadE-sat4-aphA-3 gene cluster, providing resistance to at least kanamycin and gentamycin. Aside from the antibiotic resistance genes, the cluster also carries genes coding for putative regulators, such as a sigma factor of the RNA polymerase and an antisigma factor. Homology searches suggest that Campylobacter exchanges genetic material with distant G-positive bacterial genera

    Tetracycline resistance transmission in Campylobacter is promoted at temperatures resembling the avian reservoir

    Get PDF
    Campylobacter is the causal agent of campylobacteriosis in humans, a self-limiting gastroenteritis. Campylobacteriosis is a zoonosis, commonly transmitted from contaminated chicken meat by either direct consumption or cross contamination during food manipulation. Presence of plasmids encoding for resistance to antibiotics such as tetracycline is common among Campylobacter isolates. In this report, we studied the effect of the temperature in the conjugation frequency of several tet(O) carrying plasmids, providing tetracycline resistance to the recipient cells. The conjugation frequency from donor cells carrying three previously characterized plasmids (pCjA13, pCjA9 and pTet) and from two clinical isolates was determined. Two temperatures, 37 and 42 °C, mimicking the conditions encountered by C. jejuni in the human and broiler chicken gastrointestinal tracts, respectively, were assessed. Our results clearly indicate that the conjugation process is promoted at high temperature. Accordingly, the transcriptional expression of some putative conjugative apparatus genes is thermoregulated, being induced at 42 °C. The two plasmids present in the clinical isolates were sequenced and assembled. Both plasmids are highly related among them and to the pTet plasmid. The high identity of the genes putatively involved in the conjugation process among the plasmids is in agreement with the similar behavior regarding the temperature dependency of the conjugative process. This report suggest that conjugation of plasmids carrying antibiotic resistance genes occurs preferentially at temperatures that resemble the gastrointestinal tract of birds, the main reservoir of C. jejuni

    Epigenetic regulation of gene expression in response to a changing environment in CHO cell batch culture

    Get PDF
    Chinese Hamster Ovary (CHO) cells have been the workhorse for industrial production of recombinant therapeutic proteins since 1987. Variations in cellular environment and phenotypes that occur throughout the bioprocess can bring about significant changes in productivity and quality of recombinant proteins. This can potentially lead to rejection of the production lot. Hence, there is interest in an in-depth understanding of cell-line behavior and control to achieve more predictable and reliable process performance. Biological systems undergo dynamic changes over time, where individual genes are turned “on”, “off” or “paused” as and when required. So far, there is very little information available for CHO cell lines, that elucidates the effect of dynamic epigenetic regulation on temporal expression of genes in response to altered substrate availability and culture conditions. While DNA methylation levels around TSS induce either expression or silencing of genes, transcriptional regulation is primarily considered to be an interplay of transcription factors and chromatin modifiers. On top of these, there is a rapid increase in indications that connects phase-specific long non-coding RNAs (lncRNAs) in transcriptional and post-transcriptional gene regulation. Unfortunately, the mechanism of interaction of these lncRNAs with coding genes have not been studied extensively. In this study, the gene transcription dynamics throughout a batch culture of CHO cells was examined by analyzing expression profiles and histone modifications in regular 12-24 hour intervals. Chromatin states and differential methylation profiles were used to understand the role of epigenetic modifiers in the regulation of gene expression. A good correlation between expression level and absence of DNA-methylation in the promoter regions was observed. Genes having all essential active chromatin marks - specific for promoter activity, genic enhancer and active transcription, also showed significantly high positive correlation between the changes in expression levels and histone marks. Both transcription and chromatin modifications during different growth phases were found to be highly dynamic. Clusters of genes showing similar trends of expression depict gradual and continuous adaptation to the changing substrate concentrations. Less narrowly spaced temporal analyses would have prevented detection of critical regulators involved in transient changes during the batch culture. Here, we also report a plausible mode of interaction of lncRNAs with the coding genes mediated by RNA-DNA-DNA triplex formations. Based on the identified interactions, we could predict possible gene targets and the target sites for the expressed lncRNAs and show high level of correlation of expression levels between interacting pairs. To the best of our knowledge this is the first and most comprehensive report of genome wide transcriptional regulation by epigenetic modifiers for CHO. Please click Additional Files below to see the full abstract
    corecore