14 research outputs found

    Real-Time Physiological Simulation and Modeling toward Dependable Patient Monitoring Systems

    Get PDF
    We present a novel approach to describe dependability measures for intelligent patient monitoring devices. The strategy is based on using a combination of methods from system theory and real-time physiological simulations. For the first time not only the technical device but also the patient is taken into consideration. Including the patient requires prediction of physiology which is achieved by a real-time physiological simulation in a continuous time domain, whereby one of the main ingredients is a temporal reasoning element. The quality of the reasoning is expressed by a dependability analysis strategy. Thereby, anomalies are expressed as differences between simulation and real world data. Deviations are detected for current and they are forecasted for future points in time and can express critical situations. By this method, patient specific differences in terms of physiological reactions are described, allowing early detection of critical states

    PhysioSim – A Full Hard- And Software Physiological Simulation Environment Applying A Hybrid Approach Based On Hierarchical Modeling Using Algebraic And Differential Systems and Dynamic Bayesian Networks

    Full text link
    A system for physiological modeling and simulation is presented. The architecture is considering hardware and software support for real-time physiological simulators, which are very important for medical education and risk management. In contrary to other modeling methods, in this work the focus is to provide maximal modeling flexibility and extensibility. This is provided on the one hand by a hierarchical modeling notation in XML and on other hand by extending current methods by dynamic stochastic system modeling. Dynamic Bayesian Networks as well as deterministic system modeling by systems of algebraic and differential equations lead towards a sophisticated environment for medical simulation. Specific simulations of haemodynamics and physiological based pharmacokinetics and pharmacodynamics are performed by the proposed methods, demonstrating the applicability of the approaches. In contrary to physiological modeling and analysis tools, for an educational simulator, the models have to be computed in real-time, which requires extensive design of the hardware and software architecture. For this purpose generic and extensible frameworks have been suggested and realized. All the components together lead to a novel physiological simulator environment, including a dummy, which emulates ECG, SaO2 and IBP vital signals in addition to software signal simulation. The modeling approaches with DBN are furthermore analyzed in the domains of psychological and physiological reasoning, which should be integrated into a common basis for medical consideration. Furthermore the system is used to show new concepts for dependable medical data monitoring, which are strongly related to physiological and psychological simulations

    Using Parahydrogen Induced Polarization to Study Steps in the Hydroformylation Reaction.

    Get PDF
    A range of iridium complexes, Ir(η3-C3H5)(CO)(PR2R’)2 (1a-1e) [where 1a, PR2R’ = PPh3, 1b P(p-tol)3, 1c PMePh2, 1d PMe2Ph and 1e PMe3] were synthesized and their reactivity as stoichiometric hydroformylation precursors studied. Para-hydrogen assisted NMR spectroscopy detected the following intermediates: Ir(H)2(η3-C3H5)(CO)(PR2R’) (2a-e), Ir(H)2(η1-C3H5)(CO)(PR2R’)2 (4d-e), Ir(H)2(η1-C3H5)(CO)2(PR2R’) (10a-e), Ir(H)2(CO-C3H5)(CO)2(PR2R’) (11a-c), Ir(H)2(CO-C3H7)(CO)2(PR2R’) (12a-c) and Ir(H)2(CO-C3H5)(CO)(PR2R’)2 (13d-e). Some of these species exist as two geometric isomers according to their multinuclear NMR characteristics. The NMR studies suggest a role for the following 16 electron species in these reactions: Ir(η3-C3H5)(CO)(PR2R’), Ir(η1-C3H5)(CO)(PR2R’)2, Ir(η1-C3H5)(CO)2(PR2R’), Ir(CO-C3H5)(CO)2(PR2R’), Ir(CO-C3H7)(CO)2(PR2R’) and Ir(CO-C3H5)(CO)(PR2R’)2. Their role is linked to several 18 electron species in order to confirm the route by which hydroformylation and hydrogenation proceeds

    Investigating associations between physical activity, stress experience, and affective wellbeing during an examination period using experience sampling and accelerometry

    Get PDF
    Abstract Previous studies reported that physical activity could buffer the negative association of psychological stress with affective wellbeing. However, the studies that examined this relation in everyday life have assessed physical activity only by self-report but not with objective measures such as accelerometry. We therefore investigated the associations of both subjectively and objectively measured physical activity with stress experiences and affective wellbeing. A total of 90 university students participated in a 10-day experience sampling and diary study during their examination period and reported about stress experiences, physical activity, and affective states. Physical activity was additionally assessed using accelerometry in 50 of the participants. Subjectively assessed physical activity and objectively assessed light physical activity were associated with feeling less stressed in the evening. Also, light physical activity during the day was associated with a smaller increase/higher decrease in feeling stressed from morning to evening. The association of stress experience with negative affect was moderated by objective light physical activity. No interactive effects of stress intensity and physical activity on affective wellbeing were found. On stressful days, physical activity may buffer the negative association between stress and affective wellbeing. Particularly light physical activity as assessed with accelerometry seems to play an important role. It may be beneficial for students' affective wellbeing to increase or at least maintain physical activity during examination periods

    Iridium Models of Rhodium Intermediates in Hydroformylation Catalysis: Isolation and Molecular Structures of Fluxional ae and ee Isomers

    No full text
    We report the synthesis and single-crystal molecular structures of two stereoisomers of trigonal-bipyramidal hydrido dicarbonyl Ir complexes [(L<sub>2</sub>)­Ir­(H)­(CO)<sub>2</sub>] with ae (axial–equatorial) and ee (equatorial–equatorial) ligand P coordination and fluxional behavior in solution. L<sub>2</sub> is a new chelating bisphosphite with unprecedented high selectivity in Rh-catalyzed bis-hydroformylation of butadiene to adipic aldehyde. These Ir analogues are ideal stabilized structural models for nonseparable ae and ee Rh-hydroformylation resting state isomers [(L<sub>2</sub>)­Rh­(H)­(CO)<sub>2</sub>]. With Ir, both stereoisomers with the same ligand could be characterized independently for the first time
    corecore