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Abstract. We present a novel approach to describe dependability measures for 
intelligent patient monitoring devices. The strategy is based on using a 
combination of methods from system theory and real-time physiological 
simulations. For the first time not only the technical device but also the patient 
is taken into consideration. Including the patient requires prediction of 
physiology which is achieved by a real-time physiological simulation in a 
continuous time domain, whereby one of the main ingredients is a temporal 
reasoning element. The quality of the reasoning is expressed by a dependability 
analysis strategy. Thereby, anomalies are expressed as differences between 
simulation and real world data. Deviations are detected for current and they are 
forecasted for future points in time and can express critical situations. By this 
method, patient specific differences in terms of physiological reactions are 
described, allowing early detection of critical states.  

Keywords: Physiological Simulation, Real-Time, Risk Assessment, Patient 
Specific Modeling, Dependability 

1. Introduction 

Physiological modeling and simulation are very useful for various purposes in the 
medical domain (e.g. medical education, medical training simulators, interventional 
planning and understanding of physiological phenomena therein; as well as for 
prognostic modeling). Due to the multidimensionality of the problem, normally the 
overall modeling is a complex task (>4000 variables for quantitative circulatory 
physiology (QCP) [1]). In addition there are substantial uncertainties in the modeling 
data. Due to computational complexity, many approaches only apply population 
models and thus restrict to statistical information. Applying individualized 
physiologically based models including metabolism and transportation for different 
organs and tissues, however, allows for individualized simulations. Compared with 
population model based simulations, these individualized approaches are thus 
expected exhibiting the same advantages as we see them when comparing 
physiological based pharmacokinetic (PBPK) [2] with population pharmacokinetic 
(PopPK) [3] approaches.  
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We provide a new hybrid approach by combining stochastic modeling with 
integrative system, which provides realistic, patient individual and real-time capable 
simulations of physiological reactions to induced events e.g. given by medication or 
interventions. We present a novel methodology how approaches from system theory 
and dependability analysis therein can be applied to use real-time physiological 
simulations for patient risk assessment based on standard monitoring of high 
frequency physiological vital parameter addressing intelligent monitoring systems in 
clinical workspace. 

 

2. State of the Art 

One can find various micro and macro models considering special physiological 
interactions in human body. The main strategy focuses on using integrative models 
formulated by systems of ordinary differential equations (ODE) [4]. By Physiome [5] 
and QCP [1] a substantial step towards a platform for overall physiological modeling 
was established. Additionally, by these platforms it was possible for combine 
different smaller models into overall physiological descriptions and a general 
modeling language is supported, which allows building model data bases. The 
disadvantages are the lack of supporting real-time simulation, overcome model 
complexity issues as well as uncertainty of model parameters.  

Thus, stochastic approaches are considered in our ap-proach as well. Especially 
dynamic Bayesian networks (DBN) [6] (as generalization of Markovian decision 
processes) are selected for medical simulations [7]. As shown earlier, the combination 
of integrative and stochastic approaches are well suited for real-time and realistic 
physiological simulations [8], and thus are essential as a basis for our risk assessment 
approaches.    

System dependability, considered as a mixture of availability, reliability, safety, 
confidentiality, integrity and maintainability [9], is, unfortunately, not defined 
uniquely in literature and often it is system and mission specific dealing with errors, 
faults and failures. For dynamic systems, dependability is formally specified by the 
description of system behavior, such that the system trajectory remains in a certain 
predefined region/boundary [10]. Due to the fact that human factor is an important 
part of a monitoring system [11], diverse approaches consider the human in the 
context of dependability analysis [12]. Yet, no approach considers the patient’s 
dependability additionally to technical systems so far. Even in the concrete field of 
patient monitoring, recent work on risk analysis only considers the system without 
patient [13]. We consider this as a systematic weakness, which we want to address 
and overcome with our new methodology by applying methods from systems theory 
in combination with dynamic simulations to provide a better and sophisticated way 
for risk assessment. The feasibility of our dependability strategy is demonstrated in a 
simulator environment extending a vital parameter monitoring system from the 
intensive care unit (ICU). 
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3. Methods 

3.1.  General Framework 

 

Fig. 1: System theoretical view: Event based real-time simulations have been used to simulate 
and predict the outcome of patient’s vital signals, which can be measured/observed. The 

differences in signal outcome of the real and simulated patients have been used to describe 
dependability measures and provide an extended monitoring system. 

Fig. 1 shows an extended patient monitoring represented in a system theoretic 
way. The upper part of the diagram shows real patient block, being a black box model 
and including some observable and non-observable internal states. This block 
describes the physiology (behavior) of the patient, in other words the patient’s health 
states, which could be multiparametric. According to system dynamics – subsequent 
patient states are correlated to earlier ones – a dynamic feedback loop is necessary. As 
mentioned before, we are unable to observe and measure all patient internal 
parameters, which is depicted by a patient observer block. In the lower part of the 
diagram a corresponding network is found, which is a description of the virtual 
model, being a simulation model of the real patient. This system is, again, composed 
of patient model block, a dynamic feedback, and an observer block. The patient model 
may be any mixture of time-invariant dynamic systems even containing non-
stationary probabilistic temporal models.  

If the virtual model is mimicking/simulating the real world perfectly, there will be 
no difference in both observations. A difference, however, is interpreted as error 
given by the simulation, which – as depicted in the intermediate layer – allows 
extending the monitoring by providing more knowledge about patient states and even 
extend to patient dependability and risk analysis. Normally, if the virtual patient 
model is accurate and well suited, the error is a significant sign for a deviation 
between real patient states and virtual patient states. Such a deviation may be 
interpreted as a deviation from safety boundaries and hints towards possible safety 
critical situations.  
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3.2. Physiological Simulation Framework 

As mentioned earlier, for the simulation engine a mixture of deterministic and 
probabilistic methods have been used, which provides better modeling capabilities 
especially by including stochastic causal influences, which can also have dynamic 
character. For this purpose, in addition to compartment models (Figure 2. left) DBNs 
(Figure 2. right) have been applied [16].  A DBN is a pair (G,P), where G is a directed 
acyclic graph which nodes correspond to a set of random variables x of a stochastic 
time dependent process X={Xt: t T}. P=P(X) is the joint probability distribution 
(JPD) of variables of the random process X. Essentially, G describes the dependency 
by how far a variable is conditional or unconditional to other variables, i.e. a 
representation for causal influences between variables. The strength of influence is 
given by the conditional probability distribution CPD, which can be described for 
discrete and continuous space. For discrete space, the CPD can be specified by a finite 
conditional probability table (CPT), which is not restricting the CPD to predefined 
distributions e.g. a Gaussian. The main aspect of BN/DBN is the probabilistic 
inference, i.e. if the probability of a certain variable/node – called evidence 
variable/node – is known to affect the conditional probability of other 
variables/nodes. Various algorithms exist for performing exact inference, mainly 
based on applying Bayesian rule and d-separation on the JPD. On the contrary, 
approximate inference additionally supports large BN/DBNs and additionally 
operates on incomplete evidence in the network. In case of DBNs, the inference of 
nodes of future temporal slices corresponds to the prediction of future outcome and is 
therefore called temporal reasoning.  

  

Fig. 1. Left: A 2-Compartment model. Right: The corresponding BN/DBN mixture containing 
static anchor nodes I1 and O2 from BN and two dynamic nodes C1, C2 from DBN.   

 
3.3.  Dependability and Risk Assessment Model 

In clinical monitoring, a patient observer (Fig. 1) analyzes and monitors patient’s 
vital parameters, especially heart rate, blood pressure, oxygen saturation. Usually, 
these parameters are defined in a signal space S. By definition, monitoring devices 
adjust alarms, when a parameter exceeds a certain limit or boundary in the signal 
space. This procedure induces a subspace ζ ≤ S, where the signal is representing a 
non-critical and safe state. If ζ is time invariant with regard to the system dynamics it 
represents a constant interval, which is well-known from given alarm boundaries of 
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patient monitoring devices. We define the window dependability of a signal trajectory 
as shown in Eq. (1). tw is describing the time window of interest and εζ

2(t) is the 
squared error given by the Euclidian distance of the signal value and a given 
boundary ζ.  
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This formalism has two impacts; on the one hand the boundary ζ does not need to 
be a constant and on the other hand the integrative window shows how the boundary 
error is behaving over time. Additionally, dependability is defined with respect to a 
special mission [[9]]. In our case, stabilizing a patient’s health state by an intervention 
or a medication is describing exactly such a mission and corresponding mission 
trajectories. For such a case, we define the mission dependability as given in Eq. (2). 
tm is describing the mission time which is given by the time for an intervention or a 
medication. ε∂

2(t) is the quadratic error, which is given by the Euclidian distance of 
the real signal value and the simulated virtual signal value.  

0

2 21 1
1 ( ) ( )

wt tt

m
wt t

futurepast

D d d
t t      



   


 (2) 

Hereby, one focus is on the dependability during a certain event based mission 
(from a starting time t0 to an actual time t). The second focus lies on predicting 
dependability in future (from the actual time t to the prediction horizon tw). Thus, the 
formula consists of two parts; one error-formula for the past and one for the future. 
The error formula for the past can be interpreted on one hand as a measure for the 
quality of the simulation model. If the model is not simulating the real world 
accurately the error is large and the model is not well suited. By adding additional 
knowledge e.g. changing model parameters one adapts the model to the real world. 
This is either realized by user interaction or by applying multivariate optimization 
techniques. On the other hand if the model is designed well for healthy patients. The 
error term for the past is thus a good measure for the health state of a patient, taking 
time-variant information into account as well. Deviations to the health state is 
considered as reduced dependability like in system theory.   

In our architecture, as shown in Fig. 1, we assume that there is a model which 
simulates and predicts the dynamic time-invariant changes of a monitored signal. 
Generally, such models are rare, because one needs to know the trajectory of the 
system states as well as the environmental influences. Therefore, probabilistic models 
are typically used to allow prediction of future system (in our case patient) states. 

 
3.4.  Quality of Service 

According to our proposed architecture, it is possible to update the internal states 
of the dynamic system model by the knowledge of the real world observation. This 
process (which is called “smoothing” for probabilistic dynamic systems) will lead to 
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another prognosis for the next prognosis time window horizon tw [[13]]. Assuming 
that we can apply Nw updates on the patient model within the time window tw will 
result in a measure for the quality of the predictions for future outcome, as shown in 
Eq. (3). The quadratic error ε(i)

∂
2(t) is given by the Euclidian distance of the signal 

value and the predicted value ∂(i)(t) at time t for i=1..Nw model updates (smoothing) 
within in the prediction horizon. One has to consider that the entropy for probabilistic 
inference and thus the amount of uncertainty is increasing with the amount of 
reasoning steps Nw and the prediction time tw [[14]]. Generally, in our terms this will 
lead automatically to worst quality of service for the predictive model. 
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4. Results 

 

Fig. 2: Emulated vital parameter signals (ECG, IBP, SaO2) are detected by a monitoring 
system. An extended monitoring is supported due to the proposed methodology. Dependability 
and quality of service (QoS) are the major impacts of this method. 

Our system developed for real-time-physiological simulations is using a hybrid 
approach applying ODEs and DBN for simulation of physiological interactions [5]. It 
is based on a hierarchical model description such that basic models for circulatory can 
be connected with e.g. models for drug interaction or interventional models as well. 
This system has been used to show the feasibility of the suggested approaches in a 
central monitoring environment.  

We prepared a setup for a virtual ICU monitoring environment, as one can see in 
Fig. 3. A simulator dummy can simulate a real patient whose dynamics are 
represented by a set of models (e.g. circulatory system, medication, respiration 
defined in a XML model library) and patient specific parameters.  

A similar simulation model is running virtually on the central monitoring system, 
while here the model parameters could be others. The virtual model updates internal 
states due to real measurements, emulated by the simulator dummy. The model 
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prognosis is analyzed regarding quality of service as well as dependability aspects for 
risk assessment.  

In Fig. 4 we use a case study to show the feasibility of our methods on a 
medication with epinephrine, which is e.g used for the treatment of bardycardia. On 
the one hand a simulation (basic circulatory system in combination with simple 3-
compartment PBPK) is running to forecast a prognosis for the effects on the heart rate 
(HR), on the other hand a similar simulation is running on the physiological simulator 
dummy to simulate the vital parameter in real-time. The measured data are processed 
by a monitoring system and emulate real data, although they are not from real 
patients. The error between forecasted and real data is used to compute the 
dependability value for the HR, given by the induced medication event. In fact, the 
error here is due to different parameter (clearance factor) given by the patient 
physiological model.  

 

Fig. 3 Case Study: Effect of epinephrine on heart rate (HR) changes. One can see the forecasted 
HR due to the medication (Prognosis) and the real data extracted from the monitoring system. 
The error leads to a decreasing dependability value.  

5. Conclusion and Future work 

Applying dependability analysis on the human patient leads to interesting new 
methods for clinical monitoring. Physiological simulations are playing a key role in 
the proposed architecture, as far as they are addressed to take into account patient 
individual parameters as well as model updating and reasoning abilities. Once such 
models are available, the reasoning of events as medication or intervention for a 
specific patient based on the monitoring of vital parameter and other knowledge e.g. 
history, age and gender can be used for an individual risk assessment.  

A general framework to access the dependability of patient states without forcing 
fault-tree modeling or similar approaches known from the reliability/dependability 
analysis have been provided by our methodology. The dependability measure for 
future risk and past model differences is a new view on patient’s critical situations, 
which also considers dynamic attributes in addition to static ones, given by the well 
known alarm borders. Additionally the quality of service is a measure for the 
applicability of the virtual physiological model, which is currently in use.   

We are preparing in vivo experiments on rats to test our methodology for vital 
parameter monitoring based on dedicational injection, showing how such a system 
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can be used to develop better and more specific models for drug interactions and 
provide a proof for the suggested concepts. By now, the applicability in terms of 
modeling and computational feasibility has been demonstrated as shown in Figure 4.  
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