research

Real-Time Physiological Simulation and Modeling toward Dependable Patient Monitoring Systems

Abstract

We present a novel approach to describe dependability measures for intelligent patient monitoring devices. The strategy is based on using a combination of methods from system theory and real-time physiological simulations. For the first time not only the technical device but also the patient is taken into consideration. Including the patient requires prediction of physiology which is achieved by a real-time physiological simulation in a continuous time domain, whereby one of the main ingredients is a temporal reasoning element. The quality of the reasoning is expressed by a dependability analysis strategy. Thereby, anomalies are expressed as differences between simulation and real world data. Deviations are detected for current and they are forecasted for future points in time and can express critical situations. By this method, patient specific differences in terms of physiological reactions are described, allowing early detection of critical states

    Similar works