4,928 research outputs found
The CMS Modular Track Finder boards, MTF6 and MTF7
To accommodate the increase in energy and luminosity of the upgraded LHC, the CMS Endcap Muon Level 1 Trigger system has to be significantly modified. To provide the best track reconstruction, the Trigger system must now import all available trigger primitives generated by Cathode Strip Chambers and by other regional subsystems, such as Resistive Plate Chambers. In addition to massive input bandwidth, this also requires a significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit for muon track finding is being designed. This unit follows the micro-TCA standard recently adopted by CMS. It consists of three modules. The Core Logic module houses the large FPGA that contains the processing logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Look-Up Table module contains a large amount of low-latency memory that is used to assign the final transverse momentum of the muon candidate tracks. The name of the unit â Modular Track Finder â reflects the modular approach used in the design. Presented here are the details of the hardware design of the prototype unit based on Xilinx's Virtex-6 FPGA family, MTF6, as well as results of the conducted tests. Also presented are plans for the pre-production prototype based on the Virtex-7 FPGA family, MTF7
Recommended from our members
The Predictive Relationship between Earthquake Intensity and Tweets Rate for Real-Time Ground Motion Estimation
The standard measure for evaluation of the immediate effects of an earthquake on people and man-made structures is intensity. Intensity estimates are widely used for emergency response, loss estimation, and distribution of public information after earthquake occurrence (Wood and Neumann, 1931; Brazee, 1976). Modern intensity assessment procedures process a variety of information sources. Those sources are primarily from two main categories: physical sensors (seismographs and accelerometers) and social sensors (witness reports). Acquiring new data sources in the second category can help to speed up the existing procedures for intensity calculations. One potentially important data source in this category is the widespread microblogging platform Twitter, ranked ninth worldwide as of January 2016 by number of active users, similar to 320 million (Twitter, 2016). In our previous studies, empirical relationships between tweet rate and observed modified Mercalli intensity (MMI) were developed using data from the M 6.0 South Napa, California, earthquake (Napa earthquake) that occurred on 24 August 2014 (Kropivnitskaya et al., 2016). These relationships allow us to stream data from social sensors, supplementing data from other sensors to produce more accurate real-time intensity maps. In this study, we validate empirical relationships between tweet rate and observed MMI using new data sets from earthquakes that occurred in California, Japan, and Chile during March-April 2014. The statistical complexity of the validation test and calibration process is complicated by the fact that the Twitter data stream is limited for open public access, reducing the number of available tweets. In addition, in this analysis only spatially limited positive tweets (marked as a tweet about the earthquake) are incorporated into the analysis, further limiting the data set and restricting our study to a historical data set. In this work, the predictive relationship for California is recalibrated slightly, and a new set of relationships is estimated for Japan and Chile
Search for Doubly-Charged Higgs Boson Production at HERA
A search for the single production of doubly-charged Higgs bosons H^{\pm \pm}
in ep collisions is presented. The signal is searched for via the Higgs decays
into a high mass pair of same charge leptons, one of them being an electron.
The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment
at HERA. No evidence for doubly-charged Higgs production is observed and mass
dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs
boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only
decays into an electron and a muon via a coupling of electromagnetic strength
h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the
H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged
Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3,
masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
- âŚ