255 research outputs found
Multi-contrast imaging and digital refocusing on a mobile microscope with a domed LED array
We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope--a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities
Transparency and Liquidity: A Controlled Experiment on Corporate Bonds.
Abstract This paper reports the results of an experiment designed to assess the impact of last-sale trade reporting on the liquidity of BBB corporate bonds. Overall, adding transparency has either a neutral or positive effect on liquidity. Increased transparency is not associated with greater trading volume. Except for very large trades, spreads on newly-transparent bonds decline relative to bonds that experience no transparency change. However, we find no effect on spreads for very infrequently traded bonds. The observed decrease in transactions costs is consistent with investors' ability to negotiate better terms of trade once they have access to broader bond pricing data
Credit Rating Agency Announcements and the Eurozone Sovereign Debt Crisis
This paper studies the impact of credit rating agency (CRA) announcements on the value of the Euro and the yields of French, Italian, German and Spanish long-term sovereign bonds during the culmination of the Eurozone debt crisis in 2011-2012. The employed GARCH models show that CRA downgrade announcements negatively affected the value of the Euro currency and also increased its volatility. Downgrading increased the yields of French, Italian and Spanish bonds but lowered the German bond's yields, although Germany's rating status was never touched by CRA. There is no evidence for Granger causality from bond yields to rating announcements. We infer from these findings that CRA announcements significantly influenced crisis-time capital allocation in the Eurozone. Their downgradings caused investors to rebalance their portfolios across member countries, out of ailing states' debt into more stable borrowers' securities
Identification of KasA as the cellular target of an anti-tubercular scaffold
Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis
Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development
The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.Cambridge-MIT InstituteMassachusetts Institute of Technology. (Seed Grant program)Shell Oil CompanyNational Institute of Allergy and Infectious Diseases (U.S.)United States. National Institutes of HealthNational Institutes of Health. Department of Health and Human Services (Contract No. HHSN272200900006C
Binding adaptation of GS 441524 diversifies macro domains and downregulate SARS CoV 2 de MARylation capacity
Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host cell homoeostasis. One of these mechanisms is ADP ribosylation, a fundamental post translational modification PTM characterized by the addition of ADP ribose ADPr on substrates. Poly ADP ribose polymerases PARPs are implicated in this process and they perform ADP ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains MDs are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro D type class because of their properties to recognize and revert the ADP ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA dependent RNA polymerase RdRp . Herein, GS 441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS 441524 selectively modifies SARS CoV 2 MD de MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD GS 441524 complexes, using solution NMR and X ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS CoV 2 M
Timing of embryonic quiescence determines viability of embryos from the calanoid copepod, Acartia tonsa (Dana)
<div><p>Like 41 other calanoid copepods, <i>Acartia tonsa</i>, are capable of inducing embryonic quiescence when experiencing unfavorable environmental conditions. The ecdysone-signaling cascade is known to have a key function in developmental processes like embryogenesis and molting of arthropods, including copepods. We examined the role of <i>ecdysteroid-phosphate phosphatase</i> (<i>EPPase</i>), <i>ecdysone receptor</i> (<i>EcR</i>), <i>ß fushi tarazu transcription factor 1</i> (<i>ßFTZ-F1</i>), and the <i>ecdysteroid-regulated early gene E74</i> (<i>E74</i>), which represent different levels of the ecdysone-signaling cascade in our calanoid model organism. Progression of embryogenesis was monitored and hatching success determined to evaluate viability. Embryos that were induced quiescence before the gastrulation stage would stay in gastrulation during the rest of quiescence and exhibited a slower pace of hatching as compared to subitaneous embryos. In contrast, embryos developed further than gastrulation would stay in gastrulation or later stages during quiescence and showed a rapid pace in hatching after quiescence termination. Expression patterns suggested two peaks of the biological active ecdysteroids, 20-hydroxyecdysone (20E). The first peak of 20E was expressed in concert with the beginning of embryogenesis originating from yolk-conjugated ecdysteroids, based on <i>EPPase</i> expression. The second peak is suggested to originate from <i>de novo</i> synthesized 20E around the limb bud stage. During quiescence, the expression patterns of <i>EPPase</i>, <i>EcR</i>, <i>ßFTZ-F1</i>, and <i>E74</i> were either decreasing or not changing over time. This suggests that the ecdysone-signaling pathway play a key role in the subitaneous development of <i>A</i>. <i>tonsa</i> embryogenesis, but not during quiescence. The observation is of profound ecological and practical relevance for the dynamics of egg banks.</p></div
The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence
Trost E, Ott L, Schneider J, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics. 2010;11(1): 728
Early evolution of the biotin-dependent carboxylase family
<p>Abstract</p> <p>Background</p> <p>Biotin-dependent carboxylases are a diverse family of carboxylating enzymes widespread in the three domains of life, and thus thought to be very ancient. This family includes enzymes that carboxylate acetyl-CoA, propionyl-CoA, methylcrotonyl-CoA, geranyl-CoA, acyl-CoA, pyruvate and urea. They share a common catalytic mechanism involving a biotin carboxylase domain, which fixes a CO<sub>2 </sub>molecule on a biotin carboxyl carrier peptide, and a carboxyl transferase domain, which transfers the CO<sub>2 </sub>moiety to the specific substrate of each enzyme. Despite this overall similarity, biotin-dependent carboxylases from the three domains of life carrying their reaction on different substrates adopt very diverse protein domain arrangements. This has made difficult the resolution of their evolutionary history up to now.</p> <p>Results</p> <p>Taking advantage of the availability of a large amount of genomic data, we have carried out phylogenomic analyses to get new insights on the ancient evolution of the biotin-dependent carboxylases. This allowed us to infer the set of enzymes present in the last common ancestor of each domain of life and in the last common ancestor of all living organisms (the cenancestor). Our results suggest that the last common archaeal ancestor had two biotin-dependent carboxylases, whereas the last common bacterial ancestor had three. One of these biotin-dependent carboxylases ancestral to Bacteria most likely belonged to a large family, the CoA-bearing-substrate carboxylases, that we define here according to protein domain composition and phylogenetic analysis. Eukaryotes most likely acquired their biotin-dependent carboxylases through the mitochondrial and plastid endosymbioses as well as from other unknown bacterial donors. Finally, phylogenetic analyses support previous suggestions about the existence of an ancient bifunctional biotin-protein ligase bound to a regulatory transcription factor.</p> <p>Conclusions</p> <p>The most parsimonious scenario for the early evolution of the biotin-dependent carboxylases, supported by the study of protein domain composition and phylogenomic analyses, entails that the cenancestor possessed two different carboxylases able to carry out the specific carboxylation of pyruvate and the non-specific carboxylation of several CoA-bearing substrates, respectively. These enzymes may have been able to participate in very diverse metabolic pathways in the cenancestor, such as in ancestral versions of fatty acid biosynthesis, anaplerosis, gluconeogenesis and the autotrophic fixation of CO<sub>2</sub>.</p
Multi-omics for studying and understanding polar life
Polar ecosystems are experiencing amongst the most rapid rates of regional warming on Earth. Here, we discuss ‘omics’ approaches to investigate polar biodiversity, including the current state of the art, future perspectives and recommendations. We propose a community road map to generate and more fully exploit multi-omics data from polar organisms. These data are needed for the comprehensive evaluation of polar biodiversity and to reveal how life evolved and adapted to permanently cold environments with extreme seasonality. We argue that concerted action is required to mitigate the impact of warming on polar ecosystems via conservation efforts, to sustainably manage these unique habitats and their ecosystem services, and for the sustainable bioprospecting of novel genes and compounds for societal gain
- …