33 research outputs found

    A machine learning approach for the discrimination of theropod and ornithischian dinosaur tracks

    Get PDF
    Fossil tracks are important palaeobiological data sources. The quantitative analysis of their shape, however, has been hampered by their high variability and lack of discrete margins and landmarks. We here present the first approach using deep convolutional neural networks (DCNNs) to study fossil tracks, overcoming the limitations of previous statistical approaches. We employ a DCNN to discriminate between theropod and ornithischian dinosaur tracks based on a total of 1372 outline silhouettes. The DCNN consistently outperformed human experts on an independent test set. We also used the DCNN to classify tracks of a large tridactyl trackmaker from Lark Quarry, Australia, the identity of which has been subject to intense debate. The presented approach can only be considered a first step towards the wider application of machine learning in fossil track research, which is not limited to classification problems. Current limitations, such as the subjectivity and information loss inherent in interpretive outlines, may be overcome in the future by training neural networks on three-dimensional models directly, though this will require an increased uptake in digitization among workers in the field

    Vibrio parahaemolyticus Diarrhea, Chile, 1998 and 2004

    Get PDF
    Analysis of clinical isolates of Vibrio parahaemolyticus from outbreaks in Chile in the cities of Puerto Montt in 2004 and in Antofagasta in 1998 indicated that 23 of 24 isolates from Puerto Montt and 19 of 20 from Antofagasta belonged to the pandemic clonal complex that emerged in Southeast Asia in 1996

    The Evolution of Fangs, Venom, and Mimicry Systems in Blenny Fishes

    Get PDF
    Venom systems have evolved on multiple occasions across the animal kingdom, and they can act as key adaptations to protect animals from predators. Consequently, venomous animals serve as models for a rich source of mimicry types, as non-venomous species benefit from reductions in predation risk by mimicking the coloration, body shape, and/or movement of toxic counterparts. The frequent evolution of such deceitful imitations provides notable examples of phenotypic convergence and are often invoked as classic exemplars of evolution by natural selection. Here, we investigate the evolution of fangs, venom, and mimetic relationships in reef fishes from the tribe Nemophini (fangblennies). Comparative morphological analyses reveal that enlarged canine teeth (fangs) originated at the base of the Nemophini radiation and have enabled a micropredatory feeding strategy in non-venomous Plagiotremus spp. Subsequently, the evolution of deep anterior grooves and their coupling to venom secretory tissue provide Meiacanthus spp. with toxic venom that they effectively employ for defense. We find that fangblenny venom contains a number of toxic components that have been independently recruited into other animal venoms, some of which cause toxicity via interactions with opioid receptors, and result in a multifunctional biochemical phenotype that exerts potent hypotensive effects. The evolution of fangblenny venom has seemingly led to phenotypic convergence via the formation of a diverse array of mimetic relationships that provide protective (Batesian mimicry) and predatory (aggressive mimicry) benefits to other fishes. Our results further our understanding of how novel morphological and biochemical adaptations stimulate ecological interactions in the natural world

    Microevolution of Pandemic Vibrio parahaemolyticus Assessed by the Number of Repeat Units in Short Sequence Tandem Repeat Regions

    Get PDF
    The emergence of the pandemic strain Vibrio parahaemolyticus O3:K6 in 1996 caused a large increase of diarrhea outbreaks related to seafood consumption in Southeast Asia, and later worldwide. Isolates of this strain constitutes a clonal complex, and their effectual differentiation is possible by comparison of their variable number tandem repeats (VNTRs). The differentiation of the isolates by the differences in VNTRs will allow inferring the population dynamics and microevolution of this strain but this requires knowing the rate and mechanism of VNTRs' variation. Our study of mutants obtained after serial cultivation of clones showed that mutation rates of the six VNTRs examined are on the order of 10−4 mutant per generation and that difference increases by stepwise addition of single mutations. The single stepwise mutation (SSM) was deduced because mutants with 1, 2, 3, or more repeat unit deletions or insertions follow a geometric distribution. Plausible phylogenetic trees are obtained when, according to SSM, the genetic distance between clusters with different number of repeats is assessed by the absolute differences in repeats. Using this approach, mutants originated from different isolates of pandemic V. parahaemolyticus after serial cultivation are clustered with their parental isolates. Additionally, isolates of pandemic V. parahaemolyticus from Southeast Asia, Tokyo, and northern and southern Chile are clustered according their geographical origin. The deepest split in these four populations is observed between the Tokyo and southern Chile populations. We conclude that proper phylogenetic relations and successful tracing of pandemic V. parahaemolyticus requires measuring the differences between isolates by the absolute number of repeats in the VNTRs considered

    PCR-TTGE Analysis of 16S rRNA from Rainbow Trout (Oncorhynchus mykiss) Gut Microbiota Reveals Host-Specific Communities of Active Bacteria

    Get PDF
    This study assessed the relative contributions of host genetics and diet in shaping the gut microbiota of rainbow trout. Full sibling fish from four unrelated families, each consisting of individuals derived from the mating of one male and one female belonging to a breeding program, were fed diets containing either vegetable proteins or vegetable oils for two months in comparison to a control diet consisting of only fish protein and fish oil. Two parallel approaches were applied on the same samples: transcriptionally active bacterial populations were examined based on RNA analysis and were compared with bacterial populations obtained from DNA analysis. Comparison of temporal temperature gradient gel electrophoresis (TTGE) profiles from DNA and RNA showed important differences, indicating that active bacterial populations were better described by RNA analysis. Results showed that some bacterial groups were significantly (P<0.05) associated with specific families, indicating that microbiota composition may be influenced by the host. In addition, the effect of diet on microbiota composition was dependent on the trout family

    Manus track preservation bias as a key factor for assessing trackmaker identity and quadrupedalism in basal ornithopods.

    Get PDF
    BACKGROUND: The Las Cerradicas site (Tithonian-Berriasian), Teruel, Spain, preserves at least seventeen dinosaur trackways, some of them formerly attributed to quadrupedal ornithopods, sauropods and theropods. The exposure of new track evidence allows a more detailed interpretation of the controversial tridactyl trackways as well as the modes of locomotion and taxonomic affinities of the trackmakers. METHODOLOGY/PRINCIPAL FINDINGS: Detailed stratigraphic analysis reveals four different levels where footprints have been preserved in different modes. Within the tridactyl trackways, manus tracks are mainly present in a specific horizon relative to surface tracks. The presence of manus tracks is interpreted as evidence of an ornithopod trackmaker. Cross-sections produced from photogrammetric digital models show different depths of the pes and manus, suggesting covariance in loading between the forelimbs and the hindlimbs. CONCLUSIONS/SIGNIFICANCE: Several features (digital pads, length/width ratio, claw marks) of some ornithopod pes tracks from Las Cerradicas are reminiscent of theropod pedal morphology. This morphological convergence, combined with the shallow nature of the manus tracks, which reduces preservation potential, opens a new window into the interpretation of these tridactyl tracks. Thus, trackmaker assignations during the Jurassic-Cretaceous interval of purported theropod trackways may potentially represent ornithopods. Moreover, the Las Cerradicas trackways are further evidence for quadrupedalism among some basal small- to medium-sized ornithopods from this time interval

    A standard protocol for documenting modern and fossil ichnological data

    Get PDF
    The collection and dissemination of vertebrate ichnological data is struggling to keep up with techniques that are becoming common place in the wider palaeontological field. A standard protocol is required in order to ensure that data is recorded, presented, and archived in a manner that will be useful both to contemporary researchers, and to future generations. Primarily, our aim is to make the 3D capture of ichnological data standard practice, and to provide guidance on how such 3D data can be communicated effectively (both via the literature and other means), and archived openly and in perpetuity. We recommend capture of 3D data, and the presentation of said data in the form of photographs, false-colour images, and interpretive drawings. Raw data (3D models of traces) should always be provided in a form usable by other researchers, i.e. in an open format. If adopted by the field as a whole, the result will be a more robust and uniform literature, supplemented by unparalleled availability of datasets for future workers
    corecore