310 research outputs found

    Use of complementary and alternative medicine by patients presenting to a paediatric Emergency Department

    Get PDF
    Although the popularity of complementary and alternative medicine (CAM) has risen in the last decade, information about its use by paediatric patients presenting to an Emergency Department is still sparse. We report here the results of a cross-sectional survey of paediatric patients presenting to an urban, tertiary paediatric Emergency Department between October 2006 and March 2007. In total, 1143 questionnaires (68% of those distributed) were completed and available for analysis. Of these, 58% (n = 665) of all respondents admitted that their child had received some form of CAM therapy, while 25% (n = 291) admitted that their child was receiving CAM for the present illness. In 31% of the respondents (n = 354), CAM had been prescribed by a physician, while 50% (n = 575) used CAM as self-medication. Patients presented to the Emergency Department mostly because of an infection (42% of total; 29% of these used CAM) or a trauma (38% of total; 19% of these used CAM). Parents of CAM-users were significantly older, more often born in Switzerland and had significantly higher school education than those of the non-users. Nearly two-thirds of the administered CAM therapies were not prescribed by a physician, and 50% of the families using CAM did not discuss this with their general practitioner. Parental requirements implied that medical professionals on a paediatric Emergency Department should know the effects and side-effects of CAM therapies and even be able to recommend them. The study population, even trauma patients, frequently used CAM. The use of CAM is characterised by a high rate of self-medication and the exclusion of the physicians from the decision-making process. The parents of paediatric patients frequently demand that CAM be considered as a possible treatment option and wish to have an open discussion with the medical professionals on this topi

    Appearance of effective surface conductivity - an experimental and analytic study

    Full text link
    Surface conductance measurements on p-type doped germanium show a small but systematic change to the surface conductivity at different length scales. This effect is independent of the structure of the surface states. We interpret this phenomenon as a manifestation of conductivity changes beneath the surface. This hypothesis is confirmed by an analysis of the classical current flow equation. We derive an integral formula for calculating of the effective surface conductivity as a function of the distance from a point source. Furthermore we derive asymptotic values of the surface conductivity at small and large distances. The actual surface conductivity can only be sampled close to the current source. At large distances, the conductivity measured on the surface corresponds to the bulk value.Comment: 11 pages, 8 figure

    Higher acenes by on‐surfacedehydrogenation : from heptacene to undecacene

    Get PDF
    A unified approach to the synthesis of the series of higher acenes up to previously unreported undecacene has been developed through the on‐surface dehydrogenation of partially saturated precursors. These molecules could be converted into the parent acenes by both atomic manipulation with the tip of a scanning tunneling and atomic force microscope (STM/AFM) as well as by on‐surface annealing. The structure of the generated acenes has been visualized by high‐resolution non‐contact AFM imaging and the evolution of the transport gap with the increase of the number of fused benzene rings has been determined on the basis of scanning tunneling spectroscopy (STS) measurements

    Fermi level pinning at the Ge(001) surface - A case for non-standard explanation

    Full text link
    To explore the origin of the Fermi level pinning in germanium we investigate the Ge(001) and Ge(001):H surfaces. The absence of relevant surface states in the case of Ge(001):H should unpin the surface Fermi level. This is not observed. For samples with donors as majority dopants the surface Fermi level appears close to the top of the valence band regardless of the surface structure. Surprisingly, for the passivated surface it is located below the top of the valence band allowing scanning tunneling microscopy imaging within the band gap. We argue that the well known electronic mechanism behind band bending does not apply and a more complicated scenario involving ionic degrees of freedom is therefore necessary. Experimental techniques involve four point probe electric current measurements, scanning tunneling microscopy and spectroscopy.Comment: 5 pages, 4 figure

    Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

    Get PDF
    Self-assembly of iron(II) phthalocyanine (FePc) molecules on a Ge(001):H surface results in monolayer islands extending over hundreds of nanometers and comprising upright-oriented entities. Scanning tunneling spectroscopy reveals a transport gap of 2.70 eV in agreement with other reports regarding isolated FePc molecules. Detailed analysis of single FePc molecules trapped at surface defects indicates that the molecules stay intact upon adsorption and can be manipulated away from surface defects onto a perfectly hydrogenated surface. This allows for their isolation from the germanium surface

    Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery.

    Get PDF
    Sequential multispectral imaging is an acquisition technique that involves collecting images of a target at different wavelengths, to compile a spectrum for each pixel. In surgical applications it suffers from low illumination levels and motion artefacts. A three-channel rigid endoscope system has been developed that allows simultaneous recording of stereoscopic and multispectral images. Salient features on the tissue surface may be tracked during the acquisition in the stereo cameras and, using multiple camera triangulation techniques, this information used to align the multispectral images automatically even though the tissue or camera is moving. This paper describes a detailed validation of the set-up in a controlled experiment before presenting the first in vivo use of the device in a porcine minimally invasive surgical procedure. Multispectral images of the large bowel were acquired and used to extract the relative concentration of haemoglobin in the tissue despite motion due to breathing during the acquisition. Using the stereoscopic information it was also possible to overlay the multispectral information on the reconstructed 3D surface. This experiment demonstrates the ability of this system for measuring blood perfusion changes in the tissue during surgery and its potential use as a platform for other sequential imaging modalities

    Exploiting Nested Parallelism on Heterogeneous Processors

    Get PDF
    Heterogeneous computing systems have become common in modern processor architectures. These systems, such as those released by AMD, Intel, and Nvidia, include both CPU and GPU cores on a single die available with reduced communication overhead compared to their discrete predecessors. Currently, discrete CPU/GPU systems are limited, requiring larger, regular, highly-parallel workloads to overcome the communication costs of the system. Without the traditional communication delay assumed between GPUs and CPUs, we believe non-traditional workloads could be targeted for GPU execution. Specifically, this thesis focuses on the execution model of nested parallel workloads on heterogeneous systems. We have designed a simulation flow which utilizes widely used CPU and GPU simulators to model heterogeneous computing architectures. We then applied this simulator to non-traditional GPU workloads using different execution models. We also have proposed a new execution model for nested parallelism allowing users to exploit these heterogeneous systems to reduce execution time

    Designing Effective Logic Obfuscation: Exploring Beyond Gate-Level Boundaries

    Get PDF
    The need for high-end performance and cost savings has driven hardware design houses to outsource integrated circuit (IC) fabrication to untrusted manufacturing facilities. During fabrication, the entire chip design is exposed to these potentially malicious facilities, raising concerns of intellectual property (IP) piracy, reverse engineering, and counterfeiting. This is a major concern of both government and private organizations, especially in the context of military hardware. Logic obfuscation techniques have been proposed to prevent these supply-chain attacks. These techniques lock a chip by inserting additional key logic into combinational blocks of a circuit. The resulting design only exhibits correct functionality when a correct key is applied after fabrication. To date, the majority of obfuscation research centers on evaluating combinational constructions with gate-level criteria. However, this approach ignores critical high-level context, such as the interaction between modules and application error resilience. For this dissertation, we move beyond the traditional gate-level view of logic obfuscation, developing criteria and methodologies to design and evaluate obfuscated circuits for hardware-oriented security guarantees that transcend gate-level boundaries. To begin our work, we characterize the security of obfuscation when viewed in the context of a larger IC and consider how to effectively apply logic obfuscation for security beyond gate-level boundaries. We derive a fundamental trade-off underlying all logic obfuscation that is between security and attack resilience. We then develop an open-source, GEM5-based simulator called ObfusGEM, which evaluates logic obfuscation at the architecture/application-level in processor ICs. Using ObfusGEM, we perform an architectural design space exploration of logic obfuscation in processor ICs. This exploration indicates that current obfuscation schemes cannot simultaneously achieve security and attack resilience goals. Based on the lessons learned from this design space exploration, we explore 2 orthogonal approaches to design ICs with strong security guarantees beyond gate-level boundaries. For the first approach, we consider how logic obfuscation constructions can be modified to overcome the limitations identified in our design space exploration. This approach results in the development of 3 novel obfuscation techniques targeted towards securing 3 distinct applications. The first technique is Trace Logic Locking which enhances existing obfuscation techniques to provably expand the derived trade-off between security and attack resilience. The second technique is Memory Locking which defines an automatable approach to processor design obfuscation through locking the analog timing effects that govern the function of on-chip SRAM arrays. The third technique is High Error Rate Keys which protect probabilistic circuits against a SAT-based attacker by hiding the correct secret key value under stochastic noise. We demonstrate that all 3 techniques are capable of overcoming the limitations of obfuscation when viewed beyond gate-level boundaries in their respective applications. For the second approach, we consider how architectural design decisions can influence hardware security. We begin by exploring security-aware architecture design, an approach where minor architectural modifications are identified and applied to improve security in processor ICs. We then develop resource binding algorithms for high-level synthesis that optimally bind operations onto obfuscated functional units to amplify security guarantees. In both cases, we show that by designing logic obfuscation using architectural context a designer can secure ICs beyond gate-level boundaries despite the presence of the rigid trade-off that rendered prior obfuscation techniques insecure
    corecore