
ABSTRACT

Title of dissertation: DESIGNING EFFECTIVE LOGIC
OBFUSCATION: EXPLORING BEYOND
GATE-LEVEL BOUNDARIES

Michael Jeffrey Zuzak
Doctor of Philosophy, 2022

Dissertation directed by: Professor Ankur Srivastava
Department of Electrical and
Computer Engineering

The need for high-end performance and cost savings has driven hardware

design houses to outsource integrated circuit (IC) fabrication to untrusted man-

ufacturing facilities. During fabrication, the entire chip design is exposed to these

potentially malicious facilities, raising concerns of intellectual property (IP) piracy,

reverse engineering, and counterfeiting. This is a major concern of both government

and private organizations, especially in the context of military hardware. Logic

obfuscation techniques have been proposed to prevent these supply-chain attacks.

These techniques lock a chip by inserting additional key logic into combinational

blocks of a circuit. The resulting design only exhibits correct functionality when a

correct key is applied after fabrication. To date, the majority of obfuscation research

centers on evaluating combinational constructions with gate-level criteria. However,

this approach ignores critical high-level context, such as the interaction between

modules and application error resilience. For this dissertation, we move beyond

the traditional gate-level view of logic obfuscation, developing criteria and method-

ologies to design and evaluate obfuscated circuits for hardware-oriented security

guarantees that transcend gate-level boundaries.

To begin our work, we characterize the security of obfuscation when viewed in

the context of a larger IC and consider how to effectively apply logic obfuscation for

security beyond gate-level boundaries. We derive a fundamental trade-off underlying

all logic obfuscation that is between security and attack resilience. We then develop

an open-source, GEM5-based simulator called ObfusGEM, which evaluates logic

obfuscation at the architecture/application-level in processor ICs. Using Obfus-

GEM, we perform an architectural design space exploration of logic obfuscation in

processor ICs. This exploration indicates that current obfuscation schemes cannot

simultaneously achieve security and attack resilience goals. Based on the lessons

learned from this design space exploration, we explore 2 orthogonal approaches to

design ICs with strong security guarantees beyond gate-level boundaries.

For the first approach, we consider how logic obfuscation constructions can

be modified to overcome the limitations identified in our design space exploration.

This approach results in the development of 3 novel obfuscation techniques targeted

towards securing 3 distinct applications. The first technique is Trace Logic Locking

which enhances existing obfuscation techniques to provably expand the derived

trade-off between security and attack resilience. The second technique is Memory

Locking which defines an automatable approach to processor design obfuscation

through locking the analog timing effects that govern the function of on-chip SRAM

arrays. The third technique is High Error Rate Keys which protect probabilistic

circuits against a SAT-based attacker by hiding the correct secret key value under

stochastic noise. We demonstrate that all 3 techniques are capable of overcoming

the limitations of obfuscation when viewed beyond gate-level boundaries in their

respective applications.

For the second approach, we consider how architectural design decisions can

influence hardware security. We begin by exploring security-aware architecture

design, an approach where minor architectural modifications are identified and

applied to improve security in processor ICs. We then develop resource binding

algorithms for high-level synthesis that optimally bind operations onto obfuscated

functional units to amplify security guarantees. In both cases, we show that by

designing logic obfuscation using architectural context a designer can secure ICs

beyond gate-level boundaries despite the presence of the rigid trade-off that rendered

prior obfuscation techniques insecure.

DESIGNING EFFECTIVE LOGIC OBFUSCATION: EXPLORING
BEYOND GATE-LEVEL BOUNDARIES

by

Michael Jeffrey Zuzak

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor Ankur Srivastava, Chair/Advisor
Professor Manoj Franklin
Professor Bruce Jacob
Professor Donald Yeung
Professor Samrat Bhattacharjee

Dedication

To my wife and family, for standing by me throughout.

ii

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Ankur Srivastava,

for his mentorship. Without his dedication to my development, the late-night meet-

ings, and his constant guidance and advice, I would have never pursued academia

at all, nor achieved the academic and personal successes I have had along the way.

His enthusiasm for research will always be both motivation and something to strive

for as I move forward. It was always a pleasure to learn from him.

I would also like to thank Prof. Donald Yeung, Prof. Manoj Franklin, and

Prof. Bruce Jacob for their advice and guidance throughout my PhD. The research

and career discussions I had with each of them were invaluable.

I am grateful to my advisory committee, Prof. Manoj Franklin, Prof. Bruce

Jacob, Prof. Donald Yeung, and Prof. Bobby Bhattacharjee, for the time and

valuable feedback they have provided to improve this dissertation.

I also extend my thanks to my colleagues in Prof. Ankur Srivastava’s research

lab. I am grateful for the senior members, Yuntao Liu, Ankit Mondal, Abhishek

Chakraborty, Yang Xie, and Zhiyuan Yang, for their camaraderie, guidance, and

feedback. I am grateful for the junior members, Daniel Xing, Isaac McDaniel,

Nina Jacobsen, Abir Akib, and Olsan Ozbay, for challenging me and bringing their

infectious enthusiasm to every research discussion.

iii

I would also like to express my gratitude to my friends, Ian Olver, Michael

Titus, Rachel Cosgray, Kevin Merchant, Alana Merchant, Danny Kim, and Rebekah

Kim, for their constant encouragement and support. They always found the time to

watch presentation dry runs, read manuscripts, and give advice which strengthened

my work and led to some great times in the process.

Finally, I would like to express my deepest gratitude to my wife, Manal Zuzak,

and my parents, Gary Zuzak and Alison Zuzak. Their dedication to my success and

their unwavering support throughout my life has made all of this possible.

iv

Table of Contents

Dedication ii

Acknowledgments iii

List of Tables ix

List of Figures x

List of Abbreviations xii

List of Publications xiv

1 Introduction 1
1.1 Security Concerns During IC Fabrication 1
1.2 Hardware-Oriented Security Through Obfuscation 4
1.3 Contributions and Proposed Work . 5

1.3.1 Evaluating the Security of Obfuscated Circuits Beyond Gate-
Level Boundaries . 6

1.3.2 Obfuscation Techniques for Security Beyond Gate-Level Bound-
aries . 7

1.3.3 Design Methodologies for Security Beyond Gate-Level Bound-
aries . 9

1.4 Organization of the Dissertation . 10

2 Related Work 11
2.1 Logic Obfuscation Techniques . 12
2.2 Attacks on Logic Obfuscation . 14
2.3 Moving Beyond Gate-Level Security with Logic Obfuscation 15
2.4 State-of-the-Art Logic Obfuscation Techniques 16
2.5 Probabilistic Circuits and Obfuscation 17
2.6 Boolean Satisfiability Attacks Against Probabilistic Circuits 18
2.7 Logic Obfuscation During High-Level Synthesis 19

3 Preliminaries 21
3.1 Logic Obfuscation . 21
3.2 Attacker Model . 23
3.3 SAT-Based Attacks . 24
3.4 Stripped Functionality Logic Locking (SFLL) 25
3.5 Estimating Bit Error Ratio (BER) in Probabilistic Circuits 26
3.6 StatSAT Attack on Logic Obfuscation in Probabilistic Circuits 27
3.7 High-Level Synthesis (HLS) . 30

v

4 Evaluating the Security of Obfuscated Circuits Beyond Gate-Level Bound-
aries 32
4.1 Deriving the Parametric Space of Logic Locking 35

4.1.1 Understanding the Derived Parametric Space 39
4.1.2 Understanding SAT Attack Iteration Runtime 42

4.2 ObfusGEM Simulation Framework 43
4.2.1 ObfusGEM Supported Attacker Models 45
4.2.2 Overview of the ObfusGEM Framework 45
4.2.3 Simulator Overview . 47
4.2.4 Relationship to Prior Art . 48

4.3 Assessing Security in Processors Beyond the Gate Level 50
4.3.1 Logic Locking Attack Methodology 51
4.3.2 Limitations Imposed by the Parametric Space of Locking . . . 55

4.4 Exploring the Design Space of Processor Design Obfuscation 56
4.4.1 Experimental Methodology . 57
4.4.2 Quantifying SAT Attack Resilience 61
4.4.3 Analysis of Design Space Exploration 62

4.5 Conclusions . 64

5 Obfuscation Techniques for Security Beyond Gate-Level Boundaries 65
5.1 Trace Logic Locking (TLL) . 67

5.1.1 Foundations of TLL . 68
5.1.1.1 TLL as a Logic Locking Enhancement 69
5.1.1.2 Comparison of TLL and FSM-Based Locking 70

5.1.2 Enhancing SFLL-Fault With TLL 72
5.1.2.1 Enhancing SFLL-Fault With 2-State TLL 73
5.1.2.2 Example TLLSFLL−Fault Implementation 77
5.1.2.3 Example 2-State TLL Functionality 78
5.1.2.4 A Generalized Construction of TLLSFLL−Fault 79

5.1.3 Mathematical Foundations of TLLSFLL−Fault 83
5.1.3.1 SAT Resilience of TLLSFLL−Fault 84
5.1.3.2 Removal Resistance of TLLSFLL−Fault 90
5.1.3.3 Re-Design Resistance of TLLSFLL−Fault 91
5.1.3.4 Structural Resilience of TLLSFLL−Fault 92

5.1.4 Enhancing Alternative Techniques With TLL 94
5.1.5 Experimental Analysis of TLLSFLL−Fault 96

5.1.5.1 Experiment 1: SAT Resilience of TLLSFLL−Fault . . . 97
5.1.5.2 Experiment 2: ADP Overhead of TLLSFLL−Fault . . 98
5.1.5.3 Experiment 3: Security of TLL Beyond the Gate Level100

5.1.6 Conclusion . 104
5.2 Memory Locking . 104

5.2.1 Memory Locking Construction and Implementation 105
5.2.1.1 Memory Locking Example 106

5.2.2 Relationship to Prior Work 108
5.2.2.1 Locking Large Scale SRAM Arrays 108

vi

5.2.2.2 Memory Locking Implementation 110
5.2.3 Security Analysis of Memory Locking 112

5.2.3.1 Tool-Driven Approach 112
5.2.3.2 SAT Based Approach 112
5.2.3.3 Removal Attack . 113
5.2.3.4 Redesign Based Attacks 113

5.2.4 Memory Locking Security Beyond the Gate Level 114
5.2.4.1 Simulator Overview 114
5.2.4.2 Simulation Results 115

5.2.5 Conclusion . 118
5.3 High Error Rate Keys (HERK) . 119

5.3.1 Overview of High Error Rate Keys (HERK) 120
5.3.2 Evaluation of High Error Rate Keys (HERK) 122

5.3.2.1 StatSAT Resilience 122
5.3.2.2 HERK Attack Resilience 124
5.3.2.3 Experimental Analysis 125
5.3.2.4 Removal Resistance 128
5.3.2.5 Overhead Analysis 129
5.3.2.6 Implementing HERKs Alongside Prior Art 130

5.3.3 Conclusion . 131

6 Design Methodologies for Security Beyond Gate-Level Boundaries 132
6.1 Factors Limiting Security . 134

6.1.1 Input Space Non-Uniformity 134
6.1.2 Processor Error Resilience . 136

6.2 Security-Aware Architecture Design 137
6.2.1 Design Methodology . 137

6.2.1.1 Identifying Candidate Design Modifications 139
6.2.1.2 Increasing Locked Module Input Utilization/Diversity:139
6.2.1.3 Amplifying the Impact of Locking: 140

6.2.2 Evaluating Security-Aware Design 141
6.2.2.1 Experiment 1: Security-Aware On-Chip Memory De-

sign . 142
6.2.2.2 Experiment 2: Security-Aware Data Path Design . . 144
6.2.2.3 Experimental Design Overhead 145
6.2.2.4 Analysis of Security-Aware Designs 147
6.2.2.5 Summary of Security-Aware Design 151

6.2.3 Conclusion . 152
6.3 A Resource Binding Approach to Logic Obfuscation 152

6.3.1 Motivational Example: Security-Aware Binding 153
6.3.1.1 Motivational Example: Overview 154
6.3.1.2 Example 1: Obfuscation-Aware Binding 156
6.3.1.3 Example 2: Binding-Obfuscation Co-Design 156
6.3.1.4 Security-Aware Binding Problem Formulations . . . 157

6.3.2 Problem 1: Obfuscation-Aware Binding 158

vii

6.3.2.1 Obfuscation-Aware Objective Cost Function 159
6.3.2.2 Obfuscation-Aware Binding Algorithm 160
6.3.2.3 Analysis of Obfuscation-Aware Binding Algorithm . 162

6.3.3 Problem 2: Binding-Obfuscation Co-Design 165
6.3.3.1 Binding-Informed Obfuscation Algorithm 165
6.3.3.2 Analysis of Binding-Obfuscation Co-Design 167
6.3.3.3 Binding-Time Logic Locking Design Methodology . . 169

6.3.4 Experimental Evaluation of Proposed Algorithms 170
6.3.4.1 Experimental Analysis 172

6.3.5 Conclusion . 175

7 Conclusions and Future Research Directions 176
7.1 Future Work . 178

7.1.1 Security-Aware Logic Synthesis 178
7.1.2 Hardware Security in the Physical Design Realm 179
7.1.3 Hardware Security and Artificial Intelligence 180

Bibliography 182

viii

List of Tables

4.1 SAT attack runtime for processor logic. 52

5.1 Error map for a module with a 2-bit primary input secured with
2-state TLL. The locked trace is in = i1, i0. Correct key functionality
is denoted with highlighted cells. 80

5.2 ADP overhead for TLL-secured 80186 core. 103
5.3 Locked benchmark circuit characteristics. 126

6.1 Design overhead for x86 and ARM core redesigned with a security-
aware on-chip memory architecture. Note that these numbers include
locking overhead in addition to the overhead of any architectural
redesign. 147

6.2 Design overhead for x86 and ARM core redesigned with a security-
aware data path architecture. Note that these numbers include lock-
ing overhead in addition to the overhead of any architectural redesign. 148

ix

List of Figures

1.1 Overview of fabless business model for IC fabrication. 2

3.1 Configuration of a logic locked module. 22

4.1 Inverse relationship between error severity and SAT resilience for logic
locking (|k| =16, c=1) from Theorem 4.2. 41

4.2 SAT attack runtime with corresponding area, delay, and power over-
head for Full-Lock [33] in b14 netlist. 43

4.3 Block diagram of the ObfusGEM simulation framework. 47
4.4 Empirically derived relationship between error severity and SAT at-

tack resilience in locked 80186 processor data path. 54
4.5 ObfusGEM results quantifying the application-level security of lock-

ing in an x86 and ARM A53 core. 59

5.1 2-state TLL-secured module. A) Block diagram of 2-state TLL for
input sequence “i1, i0”. B) Original c17 netlist. C) Stripped func-
tionality selection and compression for TLL. D) C17 netlist secured
with 2-state TLL. 75

5.2 4-state TLL configuration with 2 locked primary inputs per cycle.
Secured input sequence: i0 ∨ i1, i2 ∨ i3, i4 ∨ i5, i6 ∨ i7. 83

5.3 A) Configuration of structural miter attack on TLLSFLL−Fault B)
Miter-attack-resistant TLLSFLL−Fault. 93

5.4 2-state TLL-enhanced Anti-SAT construction. 95
5.5 Comparison of the theoretical and experimental SAT resilience achieved

with TLL(s=11,l={1,2,3},c=1). 98
5.6 ADP overhead of TLL(s=128,l=2,c=2). The average ADP overhead

of an equal error rate SFLL(s=128,c=2) construction is shown for
reference. 99

5.7 Average area, delay, and power overhead of trace length scaling for
TLL(s=128,l={2,3,4},c=2). 100

5.8 SAT attack resilience of a locked 80186 netlist with varying trace
length TLL constructions. 101

5.9 Experimentally derived error severity for TLL-secured 80186 netlist
running PARSEC workloads. 102

5.10 Memory-locked SRAM cell. 105
5.11 100% unique ϕ value memory locked 3x3 SRAM. 109
5.12 Memory locking security/timing overhead trade-off. 111
5.13 Error rate and severity results for optimal Memory Locking configu-

rations of 80186 core running PARSEC suite. 116
5.14 Average obfuscation timing overhead on 80186 core running PARSEC.117
5.15 Sample HERK insertion into probabilistic circuit. 121

x

5.16 Runtime, SAT iterations, and SAT instances required by StatSAT to
unlock each HERK-secured benchmark circuit. An ‘x’ for any data
point indicates that StatSAT was not able to locate a functionally
correct key. 127

6.1 X86 core adder input utilization for Blackscholes. 135
6.2 The effect of on-chip memory hierarchy redesign on the security of

L1 D-cache controller locking. 142
6.3 The effect of on-chip memory hierarchy redesign on the hardware

security of L2 cache controller and DRAM controller logic locking. . . 144
6.4 The effect of modified FU count and scheduler redesign on the appli-

cation level security of FPU adder locking. 145
6.5 The effect of modified FU count on the application level security of

integer adder locking. 146
6.6 Sample scheduled DFG and corresponding binding solutions. 155
6.7 Obfuscation-aware binding algorithm for clock 1 (t=1). 161
6.8 Experimental flow to generate benchmarks. 169
6.9 Impact of security-aware binding on the application errors caused by

locking during a typical workload compared to area-aware [30] and
power-aware [16] binding. Adder/multiplier binding were considered
separately. No multipliers were present in the ecb enc4 benchmark. . 172

6.10 Impact of locking configuration on errors caused by security-aware
binding. All results are normalized to the errors caused by the same
locking configuration applied after area/power-aware binding. 173

6.11 Design overhead of proposed security-aware binding algorithms com-
pared to area-aware and power-aware binding algorithms. 174

xi

List of Abbreviations

ADP Area, Delay, Power
ALU Arithemtic Logic Unit

BER Bit Error Rate

DFG Data Flow Graph
DI Distinguishing Input
DIP Distinguishing Input Pair
DRAM Dynamic Random Access Memory

FPU Floating Point Unit
FSM Finite State Machine
FU Functional Unit

HERK High Error Rate Key
HLS High-Level Synthesis

I/O Input/Output
IC Integrated Circuit
IP Intellectual Property

LVI Laser Voltage Imaging

MWP Minterm-Wrong Key Pair

OP Operation
ObfusGEM Obfuscated GEM5

PI Primary Input
PO Primary Output

RM Restore Multiplexer
RTL Register Transfer Logic

SAT Boolean Satisfiability Solver
SF Stripped Functionality
SFLL Stripped Functionality Logic Locking
SRAM Static Random Access Memory
StatSAT Statistical Boolean Satisfiability Attack

TDB Tunable Delay Buffer
TLL Trace Logic Locking

xii

TPLUT Tamper-Proof Look-Up Table

VLSI Very Large Scale Integration

XNOR Exclusive Negated Or
XOR Exclusive Or

xiii

List of Publications

Journals:

1. M. Zuzak, A. Mondal, and A. Srivastava, “Evaluating the Security of Logic-
Locked Probabilistic Circuits,” in IEEE Trans. on Computer Aided Design of
Integrated Circuits and Systems (TCAD), 2021

2. Y. Liu, M. Zuzak, Y. Xie, A. Chakraborty, and A. Srivastava, “Robust and
Attack Resilient Logic Locking with a High Application-Level Impact,” in
ACM Trans. on Design Automation of Electronic Systems (TODAES), 2021

3. M. Zuzak, Y. Liu, and A. Srivastava, “Trace Logic Locking: Improving the
Parametric Space of Logic Locking,” in IEEE Trans. on Computer Aided
Design of Integrated Circuits and Systems (TCAD), 2020

4. A. Chakraborty, N. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu, A.
Srivastava, Y. Xie, M. Yasin, and M. Zuzak, “Keynote: A Disquisition on
Logic Locking,” in IEEE Trans. on Computer Aided Design of Integrated
Circuits and Systems (TCAD), 2019

5. D. Gerzhoy, X. Sun, M. Zuzak, and D. Yeung, “Exploiting Nested MIMD-
SIMD Parallelism on Heterogeneous Microprocessors,” in ACM Transactions
on Architecture and Code Optimization (TACO), 2019

Conferences:

1. Y. Liu, M. Zuzak, D. Xing, I. McDaniel, P. Mittu, O. Ozbay, A. Akib, and A.
Srivastava, “A Survey on Side-Channel-based Reverse Engineering Attacks on
Deep Neural Networks,” in Proceedings of the IEEE International Conference
on Artificial Intelligence Circuits and Systems (AICAS), 2022

2. M. Zuzak, Y. Liu, and A. Srivastava, “A Resource Binding Approach to Logic
Obfuscation,” in Proceedings of the Design Automation Conference (DAC),
2021 (Best Paper Candidate)

3. B. Tan, S. Garg, R. Karri, Y. Liu, M. Zuzak, A. Chakraborty, A. Srivastava,
Et Al., “Independent Verification & Validation (IV&V) of Security-Aware
CAD Tools,” in Proceedings of the Design Automation Conference (DAC),
2021

4. M. Zuzak and A. Srivastava, “ObfusGEM: Enhancing Processor Design Ob-
fuscation Through Security-Aware On-Chip Memory and Data Path Design,”
in Proceedings of the International Symposium on Memory Systems (MEM-
SYS), 2020

5. A. Mondal, M. Zuzak, and A. Srivastava, “StatSAT: A Boolean Satisfiability
Attack on Logic Locking for Probabilistic Circuits,” in Proceedings of the
Design Automation Conference (DAC), 2020

xiv

6. Y. Liu, M. Zuzak, Y. Xie, A. Chakraborty, and A. Srivastava, “Strong Anti-
SAT: Secure and Effective Logic Locking,” in Proceedings of the International
Symposium on Quality Electronic Design (ISQED), 2020

7. Y. Liu, A. Mondal, A. Chakraborty, M. Zuzak, N. Jacobson, D. Xing, and A.
Srivastava, “A Survey on Neural Trojans,” in Proceedings of the International
Symposium on Quality Electronic Design (ISQED), 2020

8. M. Zuzak, M. Fitelson, S. Montano, and A. Srivastava, “Provable Detection
and Location of Hardware Trojans with Linear Hybrid Cellular Automata,” in
Proceedings of the Government Microcircuit Applications and Critical Tech-
nology Conference, 2020

9. M. Zuzak and A. Srivastava, “Memory Locking: An Automated Approach to
Processor Design Obfuscation,” in Proceedings of the IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2019

10. Z. Yang, M. Zuzak, and A. Srivastava, “HMCTherm: A Cycle-accurate
HMC Simulator Integrated with Detailed Power and Thermal Simulation,” in
Proceedings of the International Symposium on Memory Systems (MEMSYS),
2018

11. M. Zuzak and D. Yeung, “Exploiting Multi-Loop Parallelism on Hetero-
geneous Microprocessors,” in Proceedings of the International Workshop on
Programmability and Architectures for Heterogeneous Multicores (MULTI-
PROG), 2017 (Awarded Best Paper)

Book Chapters:

1. Y. Liu, A. Mondal, A. Chakraborty, M. Zuzak, N. Jacobson, D. Xing, and
A. Srivastava, “Neural Trojans,” in Encyclopedia of Cryptography, Security
and Privacy, 2021

Technical Reports:

1. B. Tan, R. Karri, N. Limaye, A. Sengupta, ..., M. Zuzak, A. Srivastava, et
al., “Benchmarking at the Frontier of Hardware Security: Lessons from Logic
Locking,” in arXiv preprint arXiv:2006.06806, 2021

Posters:

1. M. Zuzak, “Designing Obfuscated Systems for Enhanced Hardware-Oriented
Security,” at SIGDA Design Automation Conference (DAC) PhD Forum, 2021

2. M. Zuzak, “Securing Hardware in a Globalized Supply-Chain,” at ARCS
Scholar Reception, 2020

3. M. Zuzak, “Building Functional ICs with Approximate Keys,” at CSAW’19
Logic Locking Conquest Finals, 2019

xv

4. M. Zuzak, “Achieving Hardware Security: Design and Fabrication of Secure
Integrated Circuits,” at ARCS Scholar Reception, 2019

5. M. Zuzak and A. Srivastava, “Memory Locking: An Automated Approach
to Processor Design Obfuscation,” in Design Automation Conference (DAC),
2019

xvi

Chapter 1: Introduction

Custom IC design has surged in popularity for both military and commercial

applications. As improving technology continues to drive demand for custom de-

vices, the cost to create and maintain leading edge fabrication facilities increases

as well. In 2008, a state-of-the-art foundry was estimated to cost $5 billion [18].

By 2020, this number has more than tripled, with startup costs estimated at $15-20

billion to setup a fabrication line for the smallest transistor size [89]. The substantial

cost of these facilities has driven IC design companies to go fabless, relying on large

unaffiliated foundries to fabricate their IP. This results in a number of security risks,

which we consider throughout this dissertation.

1.1 Security Concerns During IC Fabrication

When a fabless business model is adopted by a design house, semiconductor

fabrication is exported to an unaffiliated third party known as an untrusted foundry.

By doing so, fabless design companies assume significant risk as untrusted foundries

can reverse engineer, pirate, counterfeit, overproduce, or maliciously modify ICs [69].

We have included a block diagram of an extremely simplified fabless IC fabrication

model in Figure 1.1.

1

Logic Design
and Synthesis

Physical
Synthesis

Original Netlist
Fabrication

Layout

Test and
Packaging

Wafer

DistributionIC Utilization

7 4

8 3
1

6

2

5

IC

ChipsProduct

Untrusted User Untrusted Supply Chain

Figure 1.1: Overview of fabless business model for IC fabrication.

As shown in Figure 1.1, ICs are initially developed by a design house, who in-

tegrates both internal and purchased IP into a unified design to meet some specified

functionality and performance requirements. This design undergoes logic synthesis

to produce a netlist for the design. The physical synthesis process then converts this

netlist into a layout that can be fabricated into an IC. At this point, a fabless business

model distinguishes itself from a more traditional in-house fabrication model. A

fabless design house exports their IC’s physical design, in the form of GDSII files, to

an unaffiliated foundry to fabricate it. The resulting wafers are then provided to a

test and packaging facility to verify their functionality and incorporate them into a

usable form factor. Finally, the packaged and tested ICs are returned to the design

house for distribution, sale, or internal use.

There are 2 unique adversaries considered in Figure 1.1, an untrusted supply-

chain entity (i.e. foundry or test facility) and an untrusted end-user. Regardless

of the considered adversary, their goal (as considered in this dissertation) is funda-

2

mentally the same: to use design IP in an illegitimate or unauthorized fashion.

Due to the cost and complexity of modern ICs, this design IP has substantial

value, making such malicious activity especially attractive to an adversary. We

list several commonly considered security threats brought about by the fabrication

process outlined in Figure 1.1 below.

1. Reverse-Engineering: An untrusted foundry or malicious end-user can ex-

tract intimate design details (i.e. the netlist) from the GDSII files provided

for fabrication [69]. This can be used either to gain competitive advantage or

to enable piracy/counterfeiting of design IP.

2. Piracy and Counterfeiting: If a design is reverse engineered, design IP can

be either counterfeited, integrated into counterfeit devices, or sold as-is on the

gray market for lower prices.

3. Overbuilding: An untrusted foundry can produce additional unauthorized

copies of a design that can be sold on the gray market.

4. Hardware Trojans: An untrusted foundry can maliciously alter a design

prior to or during fabrication. For example, a kill-switch or security override

procedure can be added [97]. These modifications are then present in all ICs

fabricated by the foundry.

3

Each of these threats constitute a significant financial and security risk for IC

design houses, especially in the context of military hardware. In this dissertation, we

explore logic obfuscation as a means to mitigate hardware-oriented security concerns

brought on by a fabless business model.

1.2 Hardware-Oriented Security Through Obfuscation

To mitigate the security risks identified in the previous section, researchers

developed logic obfuscation (also called logic locking or logic encryption), a family of

gate-level hardware security techniques that render IC functionality dependent on a

secret key [64, 102, 70, 92, 94, 98, 103, 75, 104, 74, 68, 66, 111, 76, 33, 114, 45, 46, 34].

Without the correct secret key, logic obfuscation deterministically injects multi-bit

errors at the output of any locked module. Given a sufficient error injection rate

(i.e. the number of inputs that produce corrupt output compared to the size of

the input space), a locked IC becomes unusable. By withholding the key from

unauthorized users (e.g. an untrusted foundry), logic obfuscation can prevent the

theft or unauthorized use of intellectual property (IP). Fundamentally, the goal of

logic obfuscation is two-fold: 1) Error Severity: injecting sufficient error to render

an IC unusable for any wrong key and 2) Attack Resilience: resisting attacks

against it.

Despite logic obfuscation being proposed and implemented as a combinational,

gate-level obfuscation technique, it cannot be evaluated at this level. This is the case

because to ensure error severity, the first goal of logic obfuscation, gate-level error

4

injection alone is insufficient. For error severity, gate-level errors must critically

impact the application being run on an IC in order to prevent unauthorized use.

Therefore, any effective obfuscation technique must induce sufficient gate-level error

to thwart application-level IC functionality. This has been noted in related works as

well, which argue that obfuscation cannot achieve security without considering an IC

as a whole [114, 45, 46, 73, 60, 13, 58]. Despite research recognizing the importance

of moving beyond gate-level boundaries, there has been no systematic evaluation of

obfuscation or comprehensive approach to achieve security at this level.

This motivates the dissertation. The community has clearly shown that achiev-

ing security with logic obfuscation is necessarily a problem that must consider the

entire IC. Therefore, considerations beyond the gate level must be taken into account

in order to understand the security of logic obfuscation. In this dissertation, we

aim to both evaluate security and develop the obfuscation techniques and design

methodologies necessary to ensure that arbitrarily specified hardware security goals

can be met in a broader IC, rather than solely within gate-level boundaries.

1.3 Contributions and Proposed Work

In this dissertation, we explore the hardware-oriented security of obfuscated

ICs as a whole. This includes developing evaluation criteria, secure obfuscation

techniques, and security-aware design methodologies. The major contributions of

our work can be divided into the following 3 categories.

5

1.3.1 Evaluating the Security of Obfuscated Circuits Be-

yond Gate-Level Boundaries

For this research direction, we begin by deriving a fundamental trade-off

between error severity and attack resilience, the 2 primary goals underlying all logic

obfuscation, regardless of construction. This relationship forces integrated circuit

(IC) designers to sacrifice the error severity of logic obfuscation to increase its attack

resilience and vice versa.

We proceed by exploring the consequences of this trade-off by developing

an architectural logic obfuscation simulation framework for processor ICs called

ObfusGEM. First, we use ObfusGEM to simulate 9 benchmarks from the PARSEC

[7] benchmark suite on a cycle-accurate GEM5 [8] model of 2 locked processor netlists

(MIPS and 80186). We find that the identified trade-off prevents logic obfuscation

configurations with feasible area, delay, and power overheads from achieving error

severity and attack resilience in either core.

To generalize this result, we perform a Monte-Carlo-style design space ex-

ploration of logic obfuscation in a software model of 2 modern processor ICs (x86

and ARM A53). Specifically, we perform 50,400 trials incorporating unique locking

configurations sweeping over the entire obfuscation design space throughout each

processor. We find that state-of-the-art locking techniques are incapable of simul-

taneously achieving both error severity and attack resilience in either of these ICs

when applied blindly at the gate level (as proposed by prior work [64, 102, 70, 92, 94,

98, 103, 75, 68, 66, 76, 33, 34, 74]). Because this trade-off exists regardless of logic

6

obfuscation scheme, these results not only identify limitations of existing art, but

also indicate that novel logic obfuscation techniques utilizing conventional gate-level

strategies/constructions will also experience similar challenges.

1.3.2 Obfuscation Techniques for Security Beyond Gate-

Level Boundaries

We proceed by developing 3 novel obfuscation techniques capable of over-

coming the limitations identified by our design space exploration in the previous

chapter. First, we propose Trace Logic Locking, a novel enhancement of gate-level

logic locking which enables existing art to secure arbitrary length sequences of input

minterms, referred to as traces. Doing so injects an additional degree of freedom

into the parametric space of locking, enabling locking techniques to overcome the

limitations of our derived trade-off. We both theoretically and empirically prove this

by using Trace Logic Locking to enhance cutting edge obfuscation techniques. In

10 large benchmarks, we show that Trace-Logic-Locking-enhanced logic obfuscation

provides exponentially stronger attack resilience than conventional locking with only

modest additional overhead. Finally, we demonstrate the efficacy of Trace Logic

Locking in a processor IC using architectural simulations. Despite prior art being

unable to secure this IC, we find that Trace Logic Locking concurrently achieves

strong error severity and attack resilience.

7

Second, we propose Memory Locking, an automatable logic obfuscation tech-

nique capable of denying application-level functionality to the adversary while main-

taining SAT resistance. We target on-chip SRAM circuitry due to the 50-90%

of transistor count dominated by SRAM-related circuitry in modern processors

[59]. This creates significant flexibility in obfuscatable location and functional-

ity. Additionally, the analog effects governing SRAM make it resistant to many

proposed attack methodologies such as SAT-based attacks. We then demonstrate

the application-level effectiveness of Memory Locking compared to prior art with

ObfusGEM simulations.

Third, we propose High Error Rate Keys (HERK) to thwart StatSAT and other

prominent attacks on probabilistic circuits. HERKs leverage high error wires, caused

by probabilistic behavior, to hide the correct key under stochastic noise. HERKs can

be integrated alongside prior deterministic logic obfuscation schemes for strong IP

protection in probabilistic circuits. We demonstrate the efficacy of HERKs in several

benchmark circuits, empirically verifying their resilience to StatSAT and other SAT-

style attacks. As such, HERKs can exploit characteristics unique to probabilistic

circuits to enable high-error obfuscation to be used without sacrificing SAT attack

resilience, thereby enabling obfuscation configurations that are simultaneously high

in error severity and attack resilience.

8

1.3.3 Design Methodologies for Security Beyond Gate-Level

Boundaries

For our third research direction, we explore how high-level (i.e. architecture,

application, system) design decisions can influence hardware-oriented security. First,

we explore the possibility of a security-aware architecture design approach to en-

hance logic obfuscation techniques. To this end, we direct our attention to the most

commonly proposed candidate modules for logic obfuscation: 1) the on-chip memory,

such as cache controllers [13] or SRAM memory [114], and 2) the data path, such

as ALUs [45, 46] or alternative compute units [73, 58]. Within these candidate

locations, we propose and evaluate a quantitative, tool-driven design approach

for both on-chip memory and data path architectures to enhance application-level

security guarantees with logic obfuscation.

Next, we consider using the architectural context available during the resource

binding phase of high-level synthesis (HLS) to co-design architectures and locking

configurations capable of high error severity and SAT resilience simultaneously. To

do so, we propose 2 security-focused binding/locking algorithms and apply them

to bind/lock 11 MediaBench benchmarks. The resulting circuits showed a 26x

and 99x average increase in the application errors of a fixed locking configuration

while maintaining SAT resilience and incurring minimal overhead compared to other

binding schemes.

9

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides

a survey of related/prior work on topics in hardware security and logic obfusca-

tion. Chapter 3 provides background context and preliminary information on logic

obfuscation and other relevant concepts relied on in this dissertation. Chapter 4

develops evaluation criteria for logic obfuscation, derives theoretical limitations

based on this criteria, and presents the results of a design space exploration of

logic obfuscation in processor ICs. Chapter 5 develops 3 novel logic obfuscation

constructions with comprehensive hardware security guarantees beyond gate-level

boundaries. Chapter 6 highlights 2 methodologies that utilize architectural design

decisions to produce obfuscated ICs with hardware security guarantees beyond

gate-level boundaries. Chapter 7 concludes the dissertation and suggests several

directions for future research based on this work.

10

Chapter 2: Related Work

A large amount of work has been conducted to address the untrusted foundry

problem. In this chapter, we provide a systematic overview of the work in this

space. We begin with a review of the literature on logic obfuscation, a prominent

research direction aimed at addressing the untrusted foundry problem. This review

is relevant to and referenced in all chapters of this dissertation.

Following this review of prior logic obfuscation research, we highlight prior

art on logic obfuscation pursuing security guarantees beyond gate-level boundaries.

This work informs Chapter 4, where we introduce criteria to evaluate logic ob-

fuscation beyond the gate level, considering the IC as a whole, and perform a

design space exploration based on this criteria. Next, we provide an overview of

current state-of-the-art logic obfuscation techniques, including research investigating

obfuscation in probabilistic circuits. This work informs Chapter 5, where we develop

3 architecturally secure logic obfuscation constructions and evaluate them against

this state-of-the-art. Finally, we consider work on logic obfuscation during the

high-level synthesis (HLS) process. This work informs Chapter 6, where we explore

security-aware architectural design methodologies.

11

2.1 Logic Obfuscation Techniques

To mitigate hardware security risks caused by an untrusted foundry (see

Section 1.1), a family of hardware security techniques known as logic obfuscation,

also called logic locking and logic encryption, has been proposed [5, 22, 64, 65, 70,

94, 92, 98, 114, 99, 103, 74, 75, 68, 66, 76, 102, 33, 34, 45, 46, 73]. A comprehensive

survey of logic obfuscation research can be found in [11, 69, 79]. Logic obfuscation

protects ICs from unauthorized use by inserting auxiliary combinational logic into

IC modules. This added logic is designed to link locked module functionality to ad-

ditional primary inputs, known as key inputs. By doing so, IC functionality becomes

dependent on these key inputs. Only by applying the correct value to key inputs,

known as the secret key, can correct IC functionality be unlocked. Fundamentally,

the goal of logic obfuscation is two-fold: 1) Error Severity: injecting sufficient error

to render an IC unusable for any wrong key and 2) Attack Resilience: resisting

attacks against it.

Early research into logic obfuscation was dominated by approaches involving

the insertion of key-driven accessory logic such as XOR/XNOR gates, multiplexers,

or look-up tables into combinational modules within an IC [69]. In response to

these techniques, an oracle-based attack, known as a SAT attack, was developed

[88, 24] and expanded [83, 77, 4, 108, 23]. SAT attacks use a Boolean satisfiability

(SAT) solver to iteratively eliminate all incorrect keys from the key-space, thereby

locating the secret key. These attacks proved to be quite potent, quickly unlocking

most existing locking techniques [5, 22, 64, 65, 70]. As a result, logic obfuscation

12

began to incorporate SAT attack resilience guarantees [94, 92, 98, 114, 99, 103, 74,

75, 68, 66, 76, 106, 33, 45, 46]. Generally, these techniques can be characterized

by 2 approaches: 1) non-digital obfuscation (i.e. delay locking [93], performance

locking [105], mixed signal locking [32, 39], etc.) and 2) SAT resistant logic blocks

(i.e. Anti-SAT block [94, 92], SARLock [98], CAS-Lock [76], SFLL [103, 75, 74],

etc.). Recent work in [12] and [40] proposed the TimingSAT attack which was

able to unlock delay-based obfuscation techniques such as [93] using a modified

SAT-style attack procedure. On the other hand, many SAT-resistant techniques,

such as Anti-SAT and SARLock, are resistant to conventional SAT attacks, but

succumb to approximate SAT attacks, such as AppSAT [77] and Double DIP [83].

These approximate SAT-style attacks relax full functional correctness guarantees in

favor of quickly finding a high-fidelity key. By relying on inherent error resilience

properties of ICs, these approximate keys enable ICs to successfully execute most

intended workloads, rendering locking ineffective [115, 114, 111].

Recent research has expanded on this result, suggesting that logic obfuscation

cannot induce a sufficient number of errors to critically impact a locked IC (error

severity) while maintaining resilience to a SAT attack (attack resilience) [81, 115].

This is due to a fundamental trade-off between the number of locked inputs and

SAT attack resilience that has been identified underlying obfuscation [107, 109, 45,

46, 103]. To explore this relationship, researchers have provided limited derivations

of it for specific techniques [103] and loose generic bounds for locking as a whole

[107, 109, 45, 46]. This trade-off requires that locking corrupt only a small number of

input/output pairs to be SAT resilient. A small number of locked inputs causes only

13

a small number of errors, which are often inadequate to overcome the error resilience

of ICs [42]. This creates a dilemma. High SAT resilience requires low combinational

module corruption, however, we also need high application corruption for wrong

keys. To overcome it, we must move beyond the gate-level, instead taking an

architectural view of locking. This dilemma defines current state-of-the-art logic

obfuscation research that aims to provide extremely tunable constructions that

exhibit provable security guarantees within this trade-space [103, 75, 74, 111, 45, 46].

We further elaborate on current state-of-the-art logic obfuscation techniques in

Section 2.4.

2.2 Attacks on Logic Obfuscation

The prevalence of logic obfuscation prompted the development of a variety of

attacks against it. These attacks can be divided into two families: 1) logical and 2)

physical. Logical attacks infer the key based on information leaked by the Boolean

behavior or structural topology of the obfuscated circuit [88, 24, 4, 14, 85, 77, 83,

101, 96]. One of the most prolific logical attacks is the Boolean satisfiability (SAT)

attack which identifies the secret key using a SAT solver to compare the logical

function of a locked circuit and an unlocked (i.e. correctly-functioning) circuit,

known as an oracle [88, 24, 4, 77, 83]. Conversely, physical attacks infer the key

based on empirical side-channel data collected from an oracle IC [82, 37, 63]. These

attacks often employ non-invasive radiation measurements to gather side-channel

data. For example, electro-optical probing attacks employ an optical laser (i.e. a

14

probe) to illuminate a die feature, usually a small number of transistors, and measure

the corresponding reflected power. The index of refraction of the illuminated die

feature is dependent on its sensitization (i.e. the signals applied to it). This allows

attacks, such as [63], to analyze the spectral components of the power reflected by

key register output buffers to infer the key of an obfuscated circuit. This is known

as an electro-optical frequency mapping (EOFM) attack on obfuscation.

Countermeasures have been developed to address both logical and physical

families of attacks. For example, logical attacks, such as the SAT attack [88, 24, 4,

77, 83], are thwarted by adding SAT-resilient [94, 75, 74, 103] or SAT-Hard [33, 34]

instances. These are Boolean functions that yield an unduly complex circuit when

viewed through a SAT-based lens. Conversely, physical attacks, such as electro-

optical probing [82, 63], rely on a rigid approach capable of extracting leakage only

from key registers. A designer can include scatterers or noisy components alongside

key registers to blur the side-channel and mitigate these attacks [82, 61].

2.3 Moving Beyond Gate-Level Security with Logic Obfus-

cation

Despite logic obfuscation being proposed and implemented as a gate-level

locking technique, it cannot be evaluated at this level. This is the case because

to ensure error severity, the first goal of logic obfuscation, gate-level error injection

alone is insufficient. For error severity, gate-level error must critically impact the

application being run on an IC. Therefore, any effective obfuscation technique must

15

induce sufficient gate-level error to thwart application-level IC functionality. Logic

obfuscation research has begun to recognize that security must move beyond the

gate-level, extending the the IC as a whole, by noting that obfuscation cannot

achieve security without considering an IC’s unique architecture [114, 45, 46, 73, 60].

However, despite the presence of research that recognizes the importance of moving

beyond gate-level considerations for security, there has been no systematic evaluation

of logic obfuscation or design approach to achieve security at this higher level. For

example, the work in [73] secures a large, multi-million gate chip with a focus

on system-level impact, however, it performs only qualitative analysis to do so.

Alternatively, [58, 60] merely recognizes the need for architectural considerations,

but does not delve into the specifics of obfuscation at this level. On the other hand,

[45, 46, 13, 114] provide a limited evaluation of their proposed techniques in a specific

architecture, but do not provide any methods to design or verify architecturally

secure obfuscation configurations. Therefore, while these works provide substantial

evidence that architectural potency is necessary, they fall short of providing a

quantitative understanding of architectural security or a method to reliably achieve

it.

2.4 State-of-the-Art Logic Obfuscation Techniques

There exists a diverse array of state-of-the-art logic obfuscation techniques

[111, 76, 33, 74, 103, 75, 45, 46]. The locking techniques with the most traction

in the community can be classified into 2 families, denoted 1) critical minterm

16

locking and 2) exponential SAT iteration runtime locking. Critical minterm locking

schemes include techniques such as Stripped Functionality Logic Locking (SFLL)

[103, 75, 74], Strong Anti-SAT [45, 46], and Trace Logic Locking [111]. These

techniques allow an IC designer to select specific critical input minterms in a locked

module and force them to produce errant output for a large subset of wrong keys.

Such techniques usually guarantee that the expected number of SAT iterations scales

exponentially in key length. Exponential SAT iteration runtime locking schemes

include techniques such as Full-Lock [33], InterLock [34], LoPher [71], and Cross-

Lock [78]. These techniques cause the runtime of successive SAT attack iterations

to increase exponentially.

2.5 Probabilistic Circuits and Obfuscation

Probabilistic circuits, in terms of architecture [110, 27], design methodology

[36, 91], and modeling [3, 43], have been heavily studied. Probabilistic IP is most

often considered in signal processing, machine learning, or embedded applications

where error tolerance is high and power savings are required to meet specifications

[27]. Within these applications, arithmetic logic (e.g. adder, multiplier, etc.) is

among the most commonly considered targets for probabilistic behavior [110, 27].

Arithmetic circuits are some of the largest combinational blocks in modern systems,

making them ideal obfuscation candidates [104, 112]. This makes the obfuscation

of probabilistic design IP an attractive option. On the other hand, the use of

probabilistic gates has been explored as a possible obfuscation technique as well.

17

For example, [55] and [56] propose using probabilistic giant spin Hall effect gates in

order to obfuscate a circuit. The authors argue that the non-deterministic behavior

of these probabilistic gates mitigate deterministic SAT attack strategies, enabling

stronger security guarantees. However, [56, 51] demonstrated that modified SAT-

style attacks could be launched to unlock obfuscation schemes relying on these

probabilistic gates.

2.6 Boolean Satisfiability Attacks Against Probabilistic Cir-

cuits

The conventional SAT attack [88, 24, 4] is good for deterministic circuits, but

not for probabilistic ones because the latter exhibits inconsistent behavior which

can be detrimental to the progress of the attack. Research has suggested exploiting

these limitations of the conventional SAT attack by inserting probabilistic gates

within otherwise deterministic circuits to protect them [55]. In response to these

limitations, the work in [56] proposes a Probabilistic SAT (PSAT) attack to handle

this.

In [56], the authors first show that the probabilistic behavior of the gates in

the oracle misguides the attacker (and hence a SAT solver) as they can be tricked

into using a wrong output for a DI. This causes the standard SAT attack, described

in Sec. 3.3, to fail even at barely significant error levels1. They then propose

1An approximate SAT attack proposed in both [77, 83] also cannot be applied to unlock a

probabilistic circuit because it too requires a deterministic oracle.

18

a modified version of the SAT attack, called Probabilistic SAT (PSAT), wherein

the oracle is queried multiple times for a certain DI instead of just once. This is

done to circumvent the inconsistency of the oracle’s output. If the most frequently

occurring output pattern is dominant (see [56] for the meaning of dominant), it is

considered the correct output2. Otherwise, one of the output patterns is sampled

with a probability equal to its frequency of occurrence and is chosen as the correct

output. The PSAT attack produces better results than the conventional SAT

attack. The StatSAT attack was introduced in [51, 113] to improve upon the

PSAT attack and enable obfuscated probabilistic IP with a higher error rate to

be successfully attacked. Such attacks demonstrate that an untrusted foundry can

steal the IP of approximate/probabilistic chips potentially employed in systems

wherein probabilistic computing is a sought-after framework through SAT-style

attack methodologies [56, 51, 113].

2.7 Logic Obfuscation During High-Level Synthesis

Prior work has explored high-level synthesis (HLS) in the context of logic

obfuscation [58, 104, 17, 57, 31, 53, 112]. The TAO technique [58] suggested trans-

formations to obfuscate a design during HLS. However, TAO assumes a restrictive

attacker model where the adversary cannot have access to a working chip. This

limits the use of TAO to a small subset of logic obfuscation use cases where the IC

2A correct output is what the oracle would output if it was not probabilistic.

19

is never distributed beyond the design house (e.g. government fabrication of military

ICs). Doing so restricts the use of the SAT attack [88, 24, 83, 77, 4, 108, 23], which

quickly unlocks the high-error locking used by TAO [88], limiting its utility.

SFLL-HLS proposes an extra HLS step to identify IC modules with a sufficient

number of inputs to support locking [104]. Then, based on simulations of the RTL

design, they tune the size of their locking configuration to ensure security. While this

approach occurs during HLS, it does not directly integrate with HLS algorithms to

inform either the design’s RTL, or the configuration of logic obfuscation to improve

security. Rather, it serves as an argument that supports architectural consideration

for logic obfuscation.

DECOY presents a tighter integration with HLS, however, it still does not in-

tegrate into any phase/algorithm of HLS [17]. Instead, DECOY adds an HLS step to

partition the design into critical and non-critical IP. Critical IP is then implemented

in a separate eFPGA, with non-critical IP implemented in an ASIC. As a result, the

eFPGA, which exhibits strong reverse-engineering protection, obfuscates the critical

IP. While this yields security, it also introduces substantial design complexity and

overhead. Such an approach is often untenable.

While both SFLL-HLS and DECOY recognize the importance of HLS’s con-

text, they fail to capitalize on the RT-level design decisions made during this phase.

Instead, they rely on standard HLS algorithms that optimize for parameters such as

switching activity [16], or register re-use [30]. This is a missed opportunity as these

algorithms can make RT-level design decisions to optimize and inform supply-chain

security instead, as we later show in Chapter 6.

20

Chapter 3: Preliminaries

This chapter provides a brief background on topics explored in this disserta-

tion. We begin the chapter with a basic introduction to logic obfuscation (also called

logic locking or logic encryption) constructions. We then formalize the untrusted

foundry attacker model considered in this work and introduce the mathematics guid-

ing Boolean satisfiability-based attacks, which are potent under this attacker model.

Next, we provide an overview of the state-of-the-art stripped-functionality logic

locking (SFLL) technique, which is used for comparison and evaluation throughout

this work. We also consider obfuscation and attack strategies against obfuscation

in the context of probabilistic circuits, an application which is addressed in Chapter

5. Finally, we briefly introduce the high-level synthesis (HLS) process, which is

modified to enable obfuscation-aware design in Chapter 6.

3.1 Logic Obfuscation

Logic obfuscation (also called logic locking or logic encryption) is a diverse

family of combinational hardware security techniques aimed at preventing unautho-

rized IC use, such as piracy, counterfeiting, overproduction, and reverse engineering,

by untrusted elements in an IC’s fabrication supply chain [64, 70, 94, 92, 98, 114,

99, 103, 74, 75, 68, 66, 76, 102, 33, 73, 77, 83, 81, 80, 88, 4, 108, 45, 46, 111, 33, 34].

21

It is characterized by the introduction of accessory combinational logic into modules

within an IC. This accessory logic is driven by both internal logic signals and an

added set of primary inputs, known as key inputs, which are driven by a tamper-proof

memory included in the design. Following fabrication, this tamper-proof memory

is loaded with a user-defined value known as the secret key of the logic locking

construction.

i0

i2
i1

i0

i2
i1

k0

k1

o1
o1

Originally Designed Circuit Logic Locked Circuit

Tamper Proof
Memory

Logic Locked
Circuit

Loaded with secret key by
designer after fabrication

k0,k1

Primary Input i0,i1,i2

Block Diagram of Locked Circuit

o2 o2

 Added Locking Logic
 Original Logic

Figure 3.1: Configuration of a logic locked module.

Through this construction, the functionality of a locked module becomes de-

pendent on this secret key. This means that an IC will exhibit incorrect functionality

(i.e. deterministic multi-bit error injections) whenever some key other than the

correct secret key is applied. By sufficiently corrupting IC functionality, a locked IC

becomes unusable. Hence, by withholding the secret key from any unauthorized user,

logic locking will render the IC unusable for these entities, restricting unauthorized

use. In order to be successful, logic locking must achieve 2 primary goals: 1) Error

Severity: injecting sufficient error to render an IC unusable for any wrong key

and 2) Attack Resilience: resisting attacks against it. Error severity is generally

related to the wrong key error rate of the logic locking construction, defined as the

22

average number of inputs that produce errant outputs for a wrong key compared

to the total possible input combinations. Attack resilience is usually defined as the

time or number of attack iterations required to recover the secret key for a given

locking construction. A generic example of a logic locked module is shown in Figure

3.1.

3.2 Attacker Model

In this dissertation, we consider the most common adversary used in recent

research to assess hardware-oriented security in the presence of an untrusted foundry

[94, 92, 98, 114, 99, 103, 74, 75, 68, 66, 76, 102, 33, 73, 77, 83, 81, 80, 88, 4, 108, 45,

46, 111, 76, 33, 34]. Specifically, we consider an adversary who takes some strategy

utilizing:

1. A locked netlist of the IC, C, which can be obtained through reverse engineer-

ing the GDSII file provided for fabrication [69].

2. A correctly-keyed, black-box oracle IC, Co. This can be obtained through the

open market or IC testing facilities. The adversary can query the black box

oracle with an input and record the correct output, denoted as y ← Co(x).

The goal of the attacker (e.g. an untrusted foundry) is to create an IC sufficient

for sale or IP piracy. Because ICs are designed to run a set of specific applications,

any successful defense strategy must ensure critical failures in these workloads for

wrong keys. Therefore, the attacker’s goal is to obtain an IC capable of running

these specific applications. In this dissertation, we quantify this with application

23

failure rate and mean time to failure. A higher failure rate or shorter time to

failure indicates more secure locking. While such success criteria allows experimental

evaluations, it is too informal to enable theoretical derivations. To this end, we

formally define the attacker’s goal to be finding a key, k, such that {∀x,C(x, k) =

Co(x)}.

3.3 SAT-Based Attacks

In response to logic locking, a Boolean satisfiability attack (SAT attack) was

proposed which quickly unlocked most existing logic locking art [88, 24, 83, 77, 4,

108, 23]. The goal of this attack was to locate a key (k) that when applied to the

locked IC (C), yielded identical output (y) to an unlocked oracle IC (Co), regardless

of input (x). Hence, a key satisfying {∀x,C(x, k) = Co(x)}. To perform this attack,

we must convert the locked circuit to conjunctive normal form (CNF): Ccnf (x, k, y).

This form evaluates to true only if an assignment of x, k, and y can be found such

that y = C(x, k). By using a CNF-SAT solver on the CNF circuit, the attack

proceeds as follows:

1. An input (xdi) and 2 keys (k1, k2) must be found such that when this input is

applied to the locked circuit, each key produces a different output (y1, y2).

Ccnf (xdi, k1, y1) ∧ Ccnf (xdi, k2, y2) ∧ (y1 ̸= y2) (3.1)

This input, xdi, is called a distinguishing input (DI).

2. The DI is applied to Co and the output, ydi, is recorded.

24

3. During each iteration, a pair of keys k1, k2 must be found which produce correct

output for all previously located DIs (xj) along with an additional new DI,

xdi.

Ccnf (xdi, k1, y1) ∧ Ccnf (xdi, k2, y2) ∧ (y1 ̸= y2)

i−1∧
j=1

(Ccnf (xj, k1, yj) ∧ Ccnf (xj, k2, yj))

(3.2)

4. The SAT solver operates on (3.2) until it is unsatisfiable. This indicates that

no further DIs remain. A final key is found which matches the oracle’s output

on all tested DIs. This key is functionally equivalent to the correct key.

3.4 Stripped Functionality Logic Locking (SFLL)

SFLL is a prominent gate-level locking scheme under the SAT attack model

[103, 75, 73, 74]. At the core of SFLL is the idea of functionality stripping, defined

as the incorrect and permanent alteration of the output produced when specific

inputs are applied to a locked module. This stripped functionality is then corrected

by some added logic, known as the restore unit, when a correct key is applied. By

functionality stripping more or smaller minterms, the wrong key error rate of an

SFLL construction can be modified. This makes SFLL a uniquely tunable locking

construction. The work in [103, 75, 73, 74] introduces multiple locking constructions,

however, we focus on SFLL-Fault [75].

SFLL-Fault [75] is a fault injection and automatic test pattern generation

(ATPG) driven strategy to implement the SFLL-Flex construction outlined in [103].

The construction of SFLL-Fault consists of a functionality stripped module and

25

a tamper-proof look-up table (TPLUT) as the restore unit. In SFLL-Fault, the

TPLUT is indexed by the secret key. When the input to the locked module matches

the index of the TPLUT (secret key), a restore signal is provided which inverts the

locked module’s output. In the presence of a correct key, the restore signal will

correct output errors induced by stripped functionality. In the presence of a wrong

key, the restore signal will corrupt correct outputs, causing more error.

3.5 Estimating Bit Error Ratio (BER) in Probabilistic Cir-

cuits

Consider a 2-input gate G with input signal probabilities p1 and p2 and input

error probabilities ϵ1 and ϵ2. These inputs can be erroneous if they are outputs

of probabilistic gates. Further, let ϵg be the error probability of G itself, which

is the probability that G produces wrong output irrespective of its inputs. The

error probability ϵ at the output of G can be modeled in terms of the above known

quantities using Boolean Difference Calculus [50, 87]. This is done by propagating

the errors at the inputs of a gate to its output.

For any circuit, the output BERs can be estimated for any input vector and

gate error ϵg using the Boolean Difference Calculus [50]. It is done by modeling the

error probability at the output of each gate in terms of its input signal and error

probabilities. This propagates the errors at the inputs of a gate to its output. For

a 2-input AND gate, the output error rate is:

ϵ = ϵg + (1− 2ϵg)(ϵ1p2 + ϵ2p1 + ϵ1ϵ2(1− 2(p1 + p2) + 2p1p2)) (3.3)

26

Notice that this error probability (and that of an OR gate) depends on both the

input error and signal probabilities, whereas that of the XOR gate depends only on

the error probabilities. This is because the AND and OR gates have skewed outputs,

whereas the XOR gate has symmetric outputs.

ϵXOR = ϵg + (1− 2ϵg)(ϵ1 + ϵ2 − 2ϵ1ϵ2) (3.4)

By chaining these equations together such that they match a circuit’s topology, an

input vector can be propagated through them to estimate each output’s BER for

that input vector.

3.6 StatSAT Attack on Logic Obfuscation in Probabilistic

Circuits

Obfuscated probabilistic IP is a challenging target for a SAT-based adversary.

To show this, consider a common approach to probabilistic adders [110, 43], where

high-order bits are implemented deterministically and low-order bits probabilisti-

cally. If we assume the 8 least significant output bits use probabilistic logic, thereby

producing a correct output 90% of the time (independent of other outputs), we

can calculate the probability of an entirely correct output pattern to be 0.98 < 50%.

Thus, the circuit is more likely to produce an incorrect output pattern than a correct

one. However, the average effective error (i.e. the mean difference between the

probabilistic and deterministic sum) is only
∑7

i=0 0.1 ∗ 2i = 25.5 for this circuit.

If we consider the full range of a 16-bit adder, this error amounts to only a small

deviation (0.04%) from the intended sum. These properties combine to create a

27

design with a small effective error that produces incorrect output patterns with a

high probability. The high likelihood of incorrect output makes deterministic attacks

(e.g. SAT), which rely on discovering the intended I/O relationship, challenging.

The Probabilistic SAT (PSAT) attack was developed to overcome the chal-

lenges of SAT-style attacks against obfuscated probabilistic IP [56]. To do so, the

PSAT attack queries the black-box oracle circuit multiple times for a certain DI

instead of just once. This is done to circumvent the inconsistency of the oracle’s

output. If the most frequently occurring output pattern is dominant (see [56] for the

meaning of dominant), it is considered the correct output1. Otherwise, one of the

output patterns is sampled with a probability equal to its frequency of occurrence

and is chosen as the correct output. The PSAT attack produces better results than

the conventional SAT attack, however, was still shown to fail at quite low error rates

in [51]. The work in [51, 113] expands upon the PSAT attack by developing the

StatSAT attack to overcome the following limitations of PSAT.

• The PSAT attack treats output patterns from the oracle as a whole and

considers only a single correct pattern for any DI in the SAT-CNF formula.

However, a probabilistic circuit (e.g. the black-box oracle) may not produce

the correct output with the highest frequency. For example, if output patterns

0110, 0010, and 0001 are produced by the oracle for a given DI 11, 7 and 2

times, then 0110 will be considered to be the correct output by PSAT since it

is dominant, even if the correct output is 0010.

1A correct output is what the oracle would output if it was not probabilistic.

28

• For a circuit with many primary outputs (PO), the probability that a fully

correct output is produced may be exponentially small [50]. As a result, PSAT

fails to return any key when the number of POs are large, or as the error levels

in the circuit increase.

The StatSAT attack overcomes these limitations by introducing a “don’t care”

condition into a conventional SAT attack [88]. This “don’t care” condition is used

to leave primary output values with a high uncertainty and/or bit error rate (BER)

unspecified in DIs present in Eqn. 3.2, which guides the SAT attack (see Sec.

3.3 for a description of the conventional SAT attack procedure). This makes it

statistically unlikely for the StatSAT attack to latch a logically incorrect value,

caused by probabilistic behavior, into Eqn. 3.2. Note that if an incorrect value

were to be latched into Eqn. 3.2, this would cause the correct key to be eliminated,

thereby causing the SAT attack to fail.

As a result of introducing a “don’t care” condition for high BER/uncertainty

primary outputs in DIs, it is possible that an insufficient number of primary output

bits in a DI are specified to enable the attack to progress (i.e. to eliminate further

keys from the keyspace). In this case, the StatSAT attack would stall. To address

this, the StatSAT attack leverages a forking mechanism whereby the SAT attack

forks into two instances, one with each possible logical value (0/1) for an unspecified

primary output. Doing so produces two independent SAT attack instances where

there previously was one and ensures that at least one of them characterizes the in-

tended logical behavior of the circuit. Ideally, the forked instance with the incorrect

29

logical value specified will produce an unsatisfiable formulation, allowing this forked

SAT instance to be quickly terminated and eliminated from consideration. If this

does not occur, all keys returned by independent SAT attack instances are evaluated

for closeness to the behavior of the correctly-keyed, black-box oracle circuit. The

secret key producing behavior most closely mirroring the behavior of the oracle

circuit is then chosen as the correct secret key. Through such a procedure, the

StatSAT attack is shown to be capable of unlocking obfuscated probabilistic circuits,

even with reasonably large error rates [51, 113]. This leaves obfuscated probabilistic

IP vulnerable to theft, reverse engineering, and piracy. A comprehensive explanation

of the StatSAT attack is in [51, 113].

3.7 High-Level Synthesis (HLS)

HLS is an automated design process that converts a behavioral description of

a digital system into an RT-level design. HLS consists often utilizes 3 design opti-

mizations: allocation, scheduling, and binding. Allocation determines the type and

number of resources necessary to implement a design. After this design optimization,

a list of functional units (FUs) (e.g. adders, memories, etc.) to implement a design is

created. Scheduling partitions a design into control steps, called operations, which

can be completed in one clock cycle. After this design optimization, a schedule,

usually represented as a scheduled data flow graph (DFG), is created. In the DFG,

nodes are operations that must be completed and edges are dependencies between

operations. Binding maps (or binds) each operation to an FU allocated during

30

the allocation phase. Common binding approaches target 1) minimizing required

registers/multiplexers [30] and 2) minimizing switching activity [16, 86]. During

this design optimization, knowledge of the ICs input space is assumed to be known.

This allows the power ramifications of binding decisions to be evaluated [16, 86].

31

Chapter 4: Evaluating the Security of

Obfuscated Circuits Beyond Gate-Level

Boundaries

To begin this chapter, we diverge from the common assumption in logic obfus-

cation research that gate-level security guarantees are adequate to thwart IP theft

[64, 102, 70, 94, 92, 98, 103, 75, 104, 74, 68, 66, 76, 33, 74, 34]. Instead, we argue

that the attacker’s goal is to sufficiently unlock a system so that it can be used to

execute target applications successfully. While the prior view is prevalent, recent

years have seen views which move beyond the gate-level becoming more common (see

Section 2.3 for a literature review). Notice that this higher-level (i.e. architecture,

application, system) view of obfuscation does not necessarily require that individual

locked modules be fully unlocked and error free. This subtle change in attacker

model requires entirely new evaluation methods and criteria capable of assessing

the impacts of obfuscation in an IC as a whole, rather than at the gate-level. In

this chapter, we aim to formalize these methods and provide a robust exploration of

logic obfuscation beyond the gate-level. We later apply these methods and results to

inform design techniques that provide strong hardware-oriented security guarantees

in an IC as a whole.

32

We begin by presenting a theoretical derivation of the limits of logic obfusca-

tion techniques. To protect against an untrusted foundry, logic obfuscation must

1) inject sufficient error to ensure critical application failures for any wrong key

(error severity) and 2) resist any attack against it (attack resilient). Recently, an

inverse relationship between the error severity and the SAT attack resilience of logic

obfuscation has been identified [107, 109, 45, 103]. To explore this relationship,

researchers have provided limited derivations of it for specific techniques [103] and

loose generic bounds for locking as a whole [107, 109, 45]. Unfortunately, the

specificity/weakness of these results provides little insight into the impact of such

a relationship on logic obfuscation design goals. Therefore, we begin this chapter

by rigorously deriving the exact relationship, rather than a loose bound, between

the average error injection rate and the number of SAT attack iterations required to

unlock logic obfuscation. As a result of this derivation, once a locking configuration’s

error rate is fixed, the corresponding SAT attack resilience can be directly quantified

(and vice versa). Therefore, our derivation defines provable limits on conventional

logic obfuscation.

The derived trade-off relates gate-level, rather than architectural, criteria. To

understand how this trade-off affects security, we must assess its impact at the

architecture level. To do so, we developed obfuscated GEM5 (ObfusGEM), a com-

prehensive logic obfuscation simulation framework based on the GEM5 simulator

[8]. ObfusGEM is an open-source tool1 to enable the design and evaluation of logic

obfuscation techniques in processor ICs as a whole (i.e. at the architecture and

1ObfusGEM is available at: “https://github.com/mzuzak/ObfusGEM ”

33

application level). We used ObfusGEM to quantify the architecture-level impact of

our derived trade-off by simulating 9 benchmarks from the PARSEC [7] benchmark

suite on a cycle-accurate GEM5 [8] model of 2 locked processor netlists. Our results

show that the identified trade-off prevents logic obfuscation configurations with

feasible area, delay, and power overheads from achieving error severity and attack

resilience simultaneously. Because this trade-off exists regardless of logic obfuscation

scheme, these results not only identify limitations of existing art, but also indicate

that novel logic obfuscation techniques utilizing conventional constructions (that

remain bounded by this same trade-off) will also experience these limitations.

To build on this result, we broaden our view and present a more holistic design

space exploration of logic obfuscation in modern processor ICs. For this exploration,

we obfuscated 14 common modules in a software model of an ARM and x86 processor

core. We then assess the impact of logic obfuscation by performing Monte-Carlo

simulations sweeping over the obfuscation design space. In total, we perform 50,400

Monte Carlo trials, each with a unique logic obfuscation configuration. By com-

bining the results of our theoretical derivation and this experimental design space

exploration, we find that logic obfuscation techniques applied with solely gate-level

criteria, as is proposed by prior work [64, 102, 70, 94, 92, 98, 103, 75, 104, 74,

68, 66, 76, 33, 74, 34], are entirely inadequate to secure modern processors. This

formalizes a central theme of this work: a challenging trade-off exists between the

design goals for all combinational logic obfuscation techniques. In order to achieve

34

a high amount of application corruptibility, the gate-level corruptibility must be

very high. However, a high gate-level corruptibility inevitably makes the locked IC

susceptible to SAT-type attacks.

4.1 Deriving the Parametric Space of Logic Locking

We begin by identifying and deriving a parametric space which exists under-

lying every logic obfuscation technique. Specifically, we show that an increase in

the wrong key error rate of a fixed logic obfuscation construction, while improving

error severity, must reduce the average number of SAT queries required to find an

unlocking key. As a result, an IC secured with logic locking that simultaneously

achieves the highest error severity and SAT resilience can be shown to be to have

an infeasible design overhead.

While prior work has identified this trade-off for specific techniques [103] or

as loose asymptotic bounds applying to more generic logic locking constructions

[107, 109, 45], it has not yet been precisely quantified. Hence, our work constitutes

the first derivation that directly quantifies, without reliance on asymptotic bounds,

the wrong key error rate (error severity) and SAT attack resilience of any logic

locking construction.

Let the input and key of an arbitrary locked module be of length n and |k|

bits respectively (2n total inputs and 2|k| total keys). There exists c correct keys

for the locking construction, therefore, 2|k| − c incorrect keys exist which corrupt

35

the output corresponding to q inputs on average. Each of these inputs, on average,

produces corrupt output for x wrong keys. This implies that the average wrong key

error rate, ϵ, is ϵ = q/2n. With this notation, we define Lemma 4.1.

Lemma 4.1. The average number of wrong keys corrupting the output of each

input minterm, x, is defined as x = (2|k| − c)ϵ.

Proof. Given the arbitrary logic locked module which we have defined, let us refer

to (xj, ki) as a minterm-wrong key pair (MWP) if the input minterm xj produces

corrupt output for the wrong key ki. Based on this, we can write the equation:

|MWP | = (2|k| − c)q = 2nx, so, x = (2|k| − c)ϵ

Theorem 4.2. The expected number of SAT attack queries required to unlock an

arbitrary logic locked module, λ, is:

λ =

log

(
2|k| − c− ϵ(2|k| − c)

ϵ(2|k| − c)(2|k| − c− 1)

)
log

(
2|k| − c− ϵ(2|k| − c)

2|k| − c− 1

)
 (4.1)

Proof. A SAT-based adversary attacking an arbitrary technique will locate the un-

locking key when all wrong keys within the key-space are eliminated. To accomplish

this, we assume the SAT-based attacker randomly samples the input space for DIs2.

The merits of this assumption are discussed in Section 5.1.3.1. Therefore, in each

SAT query, the attacker selects a DI and removes all wrong keys that corrupt the

2An input is not a DI if it does not produce corrupt output for any wrong key. So, if locking

never corrupts the output for some input, that input should be excluded from the input space for

this derivation as it is not a valid DI

36

output for this DI that have not previously been eliminated. Let ai be the expected

total number of wrong keys eliminated up to iteration i. Hence, the expected number

of wrong keys eliminated by SAT iteration i is ai − ai−1.

Lemma 4.1 indicates that each DI enables x wrong keys to be eliminated on

average. However, some portion of these x keys could have been eliminated during

prior SAT iterations and cannot be eliminated again. This must be addressed. By

definition, a DI selection must eliminate at least 1 undiscovered wrong key to be

valid. Therefore, a given SAT iteration eliminates 1 wrong key and a fraction of the

x − 1 remaining wrong keys that have not been eliminated by prior DIs. Because

DIs are randomly selected from the input-space, excluding the 1 wrong key we are

guaranteed to eliminate, the likelihood for any wrong key not having been eliminated

equals the ratio of # wrong keys that have not been eliminated, (2|k|− c−aa−1−1),

to # total wrong keys, (2|k| − c− 1). Therefore, ai − ai−1 is defined by:

ai − ai−1 = 1 + (x− 1) · 2
|k| − c− ai−1 − 1

2|k| − c− 1
(4.2)

We continue by simplifying the above form:

ai = β · ai−1 + x where β = 1− x− 1

2|k| − c− 1
(4.3)

Let us create an intermediate variable, δ, defined as x = δ− βδ, which can be

substituted into the above equation:

ai − δ = β · (ai−1 − δ) where δ =
x

1− β
(4.4)

37

Let us define the expected number of SAT queries necessary for a successful

attack as λ. Using this, we can form the following set of equations that define the

expected number of eliminated keys after each SAT query.

a1 − δ = β(a0 − δ)

a2 − δ = β(a1 − δ)

...

aλ − δ = β(aλ−1 − δ)

(4.5)

Prior to launching a SAT attack, no wrong keys are eliminated. This provides

an initial condition, a0 = 0, enabling induction to be applied. By induction, we

arrive at:

aλ = δ + βλ · (a0 − δ) = (1− βλ)δ (4.6)

For a successful SAT attack, all wrong keys must be eliminated, therefore,

aλ = 2|k| − c.

2|k| − c = δ + βλ · (a0 − δ) = (1− βλ)δ (4.7)

We substitute for the intermediate terms, β and δ, and solve for λ. λ is a

positive integer so we require a ceiling function.

λ =

log

(
2|k| − c− x

x(2|k| − c− 1)

)
log

(
2|k| − c− x

2|k| − c− 1

)
 (4.8)

Finally, we apply Lemma 4.1 to arrive at the final form:

λ =

log

(
2|k| − c− ϵ(2|k| − c)

ϵ(2|k| − c)(2|k| − c− 1)

)
log

(
2|k| − c− ϵ(2|k| − c)

2|k| − c− 1

)
 (4.9)

38

Let us briefly explore an approximate form of this result. Assume that the

total number of keys (2|k|) is much greater than the number of correct keys (c). If

this were not the case, there is a sizable probability that a random key guess would

produce a functional IC, making these configurations largely useless. This allows us

to assume 2|k| − c ≈ 2|k|. Similarly, let us assume 2|k| ≫ 1, so 2|k| − 1 ≈ 2|k|. This

yields:

λ ≈ 1− log(ϵ · 2|k|)
log(1− ϵ)

(4.10)

However, as ϵ(2|k| − c)→ 1, the removed c and −1 terms become increasingly

relevant, degrading Equation 4.10. Equation 4.10 should be avoided in this case.

4.1.1 Understanding the Derived Parametric Space

Prior to analyzing this result, we emphasize its fundamental nature. Because

the key length and the number of correct keys are generally fixed locking constraints,

Theorem 4.2 quantifies a direct relationship between 2 primary goals of locking:

wrong key error rate (error severity) and SAT resilience. Therefore, in addition

to proving that these 2 primary goals are in direct contention, this also enables

an IC designer to directly quantify the provable security of their locking technique

regardless of construction. By doing so, one can consciously trade between the error

severity and SAT attack resilience of locking to ensure the design of a provably

secure locking configuration.

39

To analyze the derived result, we visualize the parametric space created by

Theorem 4.2 as a line in Figure 4.1. In the figure, we have fixed the key length

(|k|=16) and number of correct keys (c=1). This was done because key length is

generally determined by the allowable design overhead and number of correct keys is

determined by the locking construction utilized. We note, however, that the shape

of the plot is nearly identical regardless of the value selected for these parameters.

Finally, note that the number of SAT attack iterations cannot be larger than the

size of a locked module’s input space. As described in Section 3.3, a SAT-based

attacker selects specific input combinations as DIs which are used to eliminate all

incorrect keys. Once all possible inputs have been selected, the SAT attack has

provably eliminated all incorrect keys. Therefore, regardless of the key length, the

number of SAT iterations will never exceed the size of the locked module’s input

space. These restrictions produce the parametric space in Figure 4.1.

Despite the opacity of the form of Theorem 4.2, the resulting parametric space

is quite intuitive. The trade-off between error severity and SAT attack resilience can

be characterized by a monomial inverse relationship. We note that point-function-

based locking techniques (such as [98, 102]) reside at the far right of Figure 4.1,

achieving the maximum possible SAT resilience and minimum possible wrong key

error rate. This is unsurprising as these techniques were introduced to maximize

SAT attack resilience. On the other hand, high error rate logic locking techniques

(such as [5, 22, 64, 65, 70]) reside at the far left side of Figure 4.1, achieving a

40

high error rate and an extremely low SAT attack resilience. Once again, this is

unsurprising as these techniques were designed prior to the SAT attack [88] and

therefore did not consider SAT attack resilience.

Finally, we have evaluated several locking configurations to experimentally

support Theorem 4.2. To this end, we locked an 8-bit adder (n=16) using Anti-SAT

[94, 92] and SARLock [98]. Each netlist was then attacked with the open-source

SAT attack from [88]. The resulting number of SAT queries to unlock each netlist

was compared to the expected number of SAT queries from Theorem 4.2. We have

plotted this comparison in Figure 4.1. The empirical SAT queries closely match

the expected SAT queries. Hence, Theorem 4.2 appears to correctly quantify the

relationship between average error rate and SAT resilience.

101 102 103 104 105

Expected SAT Queries to Locate Secret Key
(SAT Attack Resilience)

10 5

10 4

10 3

10 2

10 1

Av
g.

 W
ro

ng
 K

ey
 E

rr
or

 R
at

e
(E

rr
or

 S
ev

er
it

y)

Anti-SAT(= 2 2)
Anti-SAT(= 2 4)

Anti-SAT(= 2 6)
Anti-SAT(= 2 8)

SARLock(= 2 16)

Theoretical
Anti-SAT
SARLock

Figure 4.1: Inverse relationship between error severity and SAT resilience for logic locking

(|k| =16, c=1) from Theorem 4.2.

41

4.1.2 Understanding SAT Attack Iteration Runtime

Theorem 4.2 quantifies the number of SAT attack iterations necessary to

unlock logic locking. Prior research, such as [94, 92, 98, 99, 103, 74, 75, 76, 45, 46],

has relied upon this metric to demonstrate SAT resilience. However, recent works,

such as Full-Lock [33, 34], have taken an alternative approach to SAT resilience,

attempting to make the runtime of successive SAT iterations scale exponentially.

To consider this, we expand our view to total SAT attack runtime, modeled by

TSAT =
∑λ

i=1 T (i), where T (i) is the runtime of SAT iteration i.

Each SAT attack iteration must solve an NP-complete problem. Hence, no

efficient algorithm to solve each SAT query exists, only a variety of heuristics. Thus,

the time to solve each SAT query (T (i)) is variable and specific to 1) the design

topology, 2) the Boolean SAT solver algorithm, and 3) the specifications of the

machine running the attack. Hence, the runtime of each SAT query is unpredictable

and empirically dependent. Regardless, the derivation in Theorem 4.2 holds true,

even for Full-Lock-style schemes.

An analysis of SAT iteration runtime is necessary for a full view of prior art.

However, due to the empirical nature of this metric, we must rely on experimental

analysis. So, we have implemented Full-Lock in the ∼ 10k gate b14 benchmark

from ITC’99 [19]. The resulting SAT attack runtime for each configuration is in

Figure 4.2. Notice that the SAT runtime did increase exponentially in the size of

Full-Lock. However, we still unlocked each configuration within 10 minutes, despite

42

144 288 384
Full-Lock Key Length (Bits)

0

200

400

600

SA
T

Ru
nt

im
e

(s
)

144 288 384
Full-Lock Key Length (Bits)

0

100

200

Lo
ck

in
g

Ov
er

he
ad

 (%
)

Area Delay Power

Figure 4.2: SAT attack runtime with corresponding area, delay, and power overhead for

Full-Lock [33] in b14 netlist.

the presence of large keys, up to 384 bits. Despite exponentially increasing SAT

runtime, Full-Lock did not exhibit significant SAT resilience for reasonably sized

configurations.

We also calculated the overhead of each Full-Lock configuration using the

Cadence Encounter RTL Compiler and the Synopsys 90nm SAED library. Full-Lock

showed large overheads, with nearly a 200% increase in power and 60% increase in

area for the largest tested scheme. This supports our assertion in Section 4.1 that

design overhead restricts locking from simultaneously being error severe and SAT

resilient.

4.2 ObfusGEM Simulation Framework

Later in this chapter, we empirically evaluate the trade-off derived in Sec.

4.1 to assess its ramifications with respect to the architecture-level attacker model

defined in Sec. 3.2. However, such an evaluation requires some way to quantify

43

the error severity of a locking construction, which varies among configurations

and locked ICs. This currently does not exist. Therefore, prior to presenting the

results of our design space exploration, we first introduce the ObfusGEM Simulation

Framework3 that we have developed for this work to enable the design space explo-

ration of logic obfuscation beyond the gate-level, at the architecture/application

level. ObfusGEM is an open-source tool-set which allows users to apply logic

locking techniques to custom processor netlists, attack them with cutting edge

attack methodologies, and then simulate custom workloads on the resulting ICs

in a precise, cycle-accurate fashion. By observing any locking induced workload

failures in these ICs, the application level security of logic locking can be quantified.

Therefore, ObfusGEM enables the quantitative exploration of logic locking at the

application level. As noted in Section 2.3, prior work has identified the importance

of architecture/application level considerations for logic locking. ObfusGEM serves

as the first systematic way to explore these considerations, regardless of locking

technique. Throughout this work, we will utilize the ObfusGEM framework to

enable us to both design and evaluate secure logic obfuscation techniques and

architecture design methodologies.

3An open-source copy of the ObfusGEM Simulation Framework can be found at:

“https://github.com/mzuzak/ObfusGEM ”.

44

4.2.1 ObfusGEM Supported Attacker Models

ObfusGEM is attacker model agnostic. This allows the user to evaluate any

attacker model they consider realistic. Also, because ObfusGEM operates on real

models of locked ICs, it can utilize any attack methodology or locking approach

without modification.

4.2.2 Overview of the ObfusGEM Framework

To introduce ObfusGEM, we start with a brief overview. A block diagram of

the process to quantify locking at the application level is in Figure 4.3. We discuss

each step below.

1. A netlist is selected and logic locked. Any number or combination of modules

can be locked within an IC.

2. Any attack (SAT/SMT [88, 4], structural [84, 96], removal [100], etc.) can

be applied to the IC to locate a key. We note that a real netlist is used so

any proposed attack can be applied without modification. This allows the

effectiveness of specific attacks against logic locking to be quantified at the

application level.

3. The attacker’s key is applied to each locked module and a fault analysis locates

any corrupted input minterms within any locked module. This essentially

creates a truth table defining the functionality of each locked module.

45

4. The on-chip memory/processor architecture, intended IC workloads, locking

configuration, and any corrupted minterms for each module are specified in

configuration files.

5. The ObfusGEM simulator, described in Section 4.2.3, uses these configuration

files to perform cycle-accurate simulations of a locked and an unlocked oracle

processor running specified workloads. By tracking the divergence of these

cores, the effects of locking are measured.

6. Steps 2-5 are repeated in a Monte Carlo fashion, randomizing parameters

including the simulated application, applied locking key, or adversarial attack

methodology.

By aggregating the results of many Monte Carlo simulations, the application

failure rate and the mean time to failure can be calculated for a locked processor.

Additionally, because ObfusGEM is based on the GEM5 simulator [8], performance

and power analysis details can also be obtained for the locked IC. Given sufficient

Monte Carlo trials, these data points quantify the usability and overhead of a locked

processor after attacked by an untrusted foundry. Because the attacker’s goal is to

produce an IC sufficient for open market sale or piracy, the more usable an IC, the

more successful the attacker. Therefore, the data produced by ObfusGEM directly

quantifies the architectural effectiveness of logic locking. We use ObfusGEM for the

remainder of this work, first to systematically explore the logic locking design space

46

for both on-chip memory and data path locking and then to enable the tool-driven

security-aware design approach that we introduce for on-chip memory and data path

design in Section 6.2.

ObfusGEM Config

Attack Locked
IC Netlist

Invalid I/O

Locking
Configuration

Simulation
Parameters

ObfusGEM Simulator

Locked
Processor

Processor
Model

Unlocked
Processor

 Comparison
Window

Execution
Trace

Filesystem

Trace Resynchronize

Logic Lock
IC Netlist

1 2

Fault Analysis
of Keyed IC

3
4

5

ObfusGEM Output

Processor
Final State

Processor
Trace Diff

Presence of
Fatal Error

Cycles
Before Fail

6

Figure 4.3: Block diagram of the ObfusGEM simulation framework.

4.2.3 Simulator Overview

Now, we discuss the simulator block of the ObfusGEM framework, displayed

as step 5 of Figure 4.3. To construct this simulator, we relied upon stochastic fault

injection research by the error resilience community [42, 52]. Building upon the

outline laid out in [52], we implemented our own custom fault injection simulator

with one critical difference: faults injected by logic locking are deterministic, not

stochastic in nature. This means that locked primary inputs must always inject

error when applied as input to a locked module. This mitigates the impact of

error detection and many other error recovery procedures relied upon in the error

resilience community.

Specifically, we perform application level simulations of a locked and an un-

locked instance of an identical processor in GEM5 [8]. In the locked simulation

instance, corrupted module output (located via a fault analysis of the locked netlist)

are mapped to a deterministic error state. As errors are injected, their severity

47

is classified by comparing the processor state of the locked and unlocked GEM5

simulation over a variable number of clock cycles. A divergence of the locked from

the unlocked core which is not corrected or rendered latent in the variable clock

cycle window is classified as an unrecoverable/critical application error. If the locked

processor returns to a state exhibited by the unlocked processor at any point after

the fault injection, we re-synchronize each processor trace (to reset the variable

timing window and enable new faults to be analyzed) and consider the fault to be

masked and therefore architecturally irrelevant.

4.2.4 Relationship to Prior Art

The concept of error resilience simulation is not new. It has been heavily

studied by the research community, primarily focusing on either radiation-induced

soft errors or manufacturing defect related errors. To facilitate soft error research,

a series of error resilience simulators have been developed [54, 25]. While the

ObfusGEM simulator relies heavily on the lessons learned by these tools, they are

not interchangeable. This is due to the difference between the probabilistic, on-chip

memory errors caused by cosmic rays which are modeled by soft error simulators

and the deterministic, gate level errors caused by logic locking which are modeled by

ObfusGEM. To effectively model soft errors, these simulators “fast-forward” through

a random number of processor clock cycles, maintaining only the overall processor

48

state. In the extremely unlikely probability of an error, the processor execution is

halted, a small number of bit-flips are injected into on-chip memory, and a detailed

simulation mode proceeds until the impact of the injected error is determined.

As described in Section 4.2.3, the functionality of ObfusGEM differs signifi-

cantly. Because the errors injected by ObfusGEM are deterministic, rather than

probabilistic, we are unable to use a “fast-forward” mode. Deterministic error

injection requires that the current state of each module is maintained at all times

and compared to any corrupted I/O during each clock cycle. Prior simulators

lack the detailed tracking and comparison mechanisms necessary for deterministic

error injection. Additionally, even if comparison logic was added, the detailed

simulation mode would be necessary at all times. This would yield prohibitively

slow performance.

Alternatively, there exists fault simulators focused on modeling errors related

to manufacturing defects or degradation [9, 67]. While these simulators do explore

deterministic error injections, they rely on quite detailed netlist modeling to do so.

In general, fault simulators utilize full-scale Verilog simulations of the IC under test.

These detailed models make the simulation of operating systems or workloads, as is

necessary for logic locking research, prohibitively slow. ObfusGEM, while based on

a netlist representation, simulates only a functional model of the IC using GEM5.

This not only reduces execution time, but also enables the user to easily model and

modify IC architectures. By leveraging the customizability of the GEM5 simulator

in ObfusGEM, one can easily explore the effect of architecture design on supply

chain security.

49

4.3 Assessing Security in Processors Beyond the Gate Level

In Section 4.1, a rigid parametric space was identified that placed 2 primary

goals of locking, error severity and SAT resilience, into contention. Because effective

locking must achieve both goals, this raises major security concerns. To continue

our work, we use the ObfusGEM framework to empirically explore the consequences

of our derived trade-off on the effectiveness of obfuscation. To do so, we use the

tunability of SFLL-Fault [103, 75, 74] to lock processor ICs with locking that sweeps

over our derived parametric space. By evaluating the security of each locking

configuration, we explore the resulting design space. We find that the trade-off

between error severity and SAT resilience renders logic locking with a feasible design

overhead unable to thwart an untrusted foundry attacker.

To arrive at this assertion, we locked victim netlists with a variety of locking

configurations. To select victim netlists, we aggregated the benchmarks used by

several logic locking works and assessed commonality [103, 94, 92, 98]. In these

works, processor logic constituted 74% of evaluated netlists. Of the processor logic

tested, data and control path netlists were roughly equally represented. Therefore,

we evaluated both control and data path locking. Specifically, we locked the control

and data path of a RISC (MIPS) and CISC (80186) core to provide a cross-section

of processor logic.

50

Locking Location: Within the control path, we locked the instruction de-

coder because it was the largest control path module in both processors. Within

the data path, we locked the adder circuit. This was due to the prevalence of ALU

netlists evaluated by prior art (57% of data path benchmarks).

Locking Configuration: Each netlist was locked using SFLL-Fault [103, 75,

74]. Using the tunability of SFLL-Fault, we incorporated a series of constructions

within each benchmark that swept over the derived parametric space. Because this

same design space exists underlying all logic locking techniques, this experiment

allows us to characterize the design space of logic locking as a whole.

4.3.1 Logic Locking Attack Methodology

After locking each netlist, we evaluated their security with respect to both error

severity and attack resilience (specifically SAT resilience). To evaluate error severity,

we must quantify the usability of each IC in the case of a wrong key. To do so, we

used the ObfusGEM simulator [115] to simulate 9 benchmarks from the PARSEC

[7] benchmark suite on a cycle-accurate GEM5 [8] model of each locked netlist. We

outline our experimental setup in greater detail in Section 5.1.5.3. A high failure

rate for these benchmarks indicates that a locked IC is thoroughly unusable when

a wrong key is applied and therefore exhibits strong error severity guarantees. To

measure SAT resilience, we attacked each netlist using an open-source SAT attack

[88]. By measuring the iterations and execution time required to recover the secret

key, we quantify the SAT susceptibility of each locking configuration.

51

Control Path: We launched a SAT attack on the locked netlist with the

lowest achievable wrong key error rate SFLL-Fault configuration. The evaluated

MIPS controller had 16 primary inputs and the evaluated x86 controller had 15

primary inputs (after removing pass-through inputs). Therefore, the evaluated

SFLL-Fault constructions utilized a 16-bit and a 15-bit key that stripped a single

16-bit and 15-bit input minterm. This locking configuration corresponds to the

highest possible SAT attack resilience achievable by stripping a single minterm with

SFLL-Fault. Despite being the largest control circuit, the decoder is small, allowing

it to be unlocked via SAT attack.

SAT Runtime

Locked Circuit Control Path Data Path

MIPS (RISC) 108493 sec 893.2 sec

80186 (CISC) 95193.4 sec 993.4 sec

Table 4.1: SAT attack runtime for processor logic.

The runtime of each attack against the control path is in Table 4.1. Each

attack successfully located the key within 48 hours. We note that even a worst-case,

non-logic-locking-type approach, such as removing and replacing the netlist with a

LUT, could only require a maximum of 216 and 215 SAT attack iterations to unlock

the circuit based on Theorem 4.2. This corresponds to the case that each input must

be selected as a DI. While not ideal, it is entirely possible to brute-force this number

of SAT iterations given the small size of the controller logic. Therefore, because we

52

selected the largest control path circuitry for locking and incorporated the most

SAT resilient SFLL-Fault configuration of this form, it appears that SFLL-Fault is

unable to protect the control path against a SAT attack.

Data Path: The adder circuit’s input size enables extremely low error rate

SFLL-Fault configurations. Because SAT resilience is inversely related to wrong

key error rate, this implies that extremely strong SAT resilience can be achieved by

locking. However, the goal of locking is two-fold. Alongside SAT resilience, locking

must also achieve error severity. Because these 2 goals are in contention, we must

locate an SFLL-Fault configuration sufficient to achieve both.

To do so, we used our simulation framework to identify the minimum wrong

key error rate SFLL-Fault construction capable of achieving error severity. This

minimum error rate locking construction corresponds to the maximum achievable

SAT resilience for a locking configuration exhibiting error severity. Therefore, if this

construction can be unlocked using a SAT attack, a locking configuration capable

of simultaneously achieving SAT resilience and error severity does not exist.

We aggregated the results of these simulations for the locked 80186 netlist in

Figure 4.4. To visualize the parametric space between the failure rate of common

workloads (error severity) and SAT resilience, we have related the workload failure

rate of each SFLL-Fault construction to the average number of SAT queries required

to unlock it. This results in a map of the parametric space between error severity and

SAT resilience. For both netlists, a non-zero workload error rate occurs at a wrong

key error rate of 0.02%, corresponding to a 4096 (212) query SAT attack in Figure 4.4.

53

This indicates that a minimum error rate exceeding 0.02% is necessary to achieve

any error severity. To accomplish this, we designed an SFLL-Fault configuration to

strip a 13-bit input using a 13-bit key.

20 23 26 29 212 215 218 221 224 227 230 233

Average SAT Attack Queries to Unlock
(Higher Indicates More SAT Attack Resilience)

0

50

100
%

 B
en

ch
m

ar
k

Ru
ns

wi
th

 U
nr

ec
ov

. E
rro

r

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

Figure 4.4: Empirically derived relationship between error severity and SAT attack

resilience in locked 80186 processor data path.

We launched a SAT attack against each netlist configured with this minimal

error rate SFLL-Fault construction which still achieved error severity. The runtime

of each attack is in Table 4.1. Each attack found the secret key within 1 hour,

indicating that a logic locking configuration of this form that is capable of providing

both SAT resilience and error severity within the data path of either IC likely does

not exist. Note that security could be achieved by greatly increasing the number

of stripped inputs, however, doing so requires added restore logic for each stripped

input. This makes such an approach infeasible in terms of area, delay, and power

overhead. Prior work also notes the infeasibility of this approach [81]. Hence, our

results indicate that a logic locking configuration capable of both error severity and

SAT attack resilience with a feasible design overhead likely does not exist for this

core.

54

4.3.2 Limitations Imposed by the Parametric Space of Lock-

ing

Evaluated SFLL-Fault configurations could not achieve both error severity

and SAT resilience in either the control path or the data path. This was due

to the trade-off between these 2 objectives. While each netlist was only locked

with SFLL-Fault, we have proven that this trade-off between error severity and

SAT resilience exists underlying every conventional logic locking technique4 (Section

4.1). Additionally, we used the inherent tunability of SFLL-Fault to design locking

configurations which swept throughout the parametric space. Therefore, our result

is not a limited example in which cutting edge logic locking was insecure, but

a demonstration of the underlying limits imposed on logic locking by its rigid

parametric space. As a result, simply proposing novel logic locking constructions

(which remain bounded by this trade-off) will do little to overcome these limits.

Instead, we must explore ways to expand or bypass this parametric space, rather

than operate within it.

4Logic locking could achieve security by sufficiently scaling key length. For example, portions

of the circuit can be replaced with re-configurable logic (e.g. an FPGA), or SFLL-Fault can strip a

sizable portion of an IC’s inputs. These approaches are a theoretically viable way to achieve error

severity/SAT resilience. This can be confirmed by Theorem 4.2. However, this does not weaken

our assertion. These approaches are infeasible due to their tremendous design overhead. Prior

work, such as [81], arrives at a similar conclusion.

55

4.4 Exploring the Design Space of Processor Design Obfus-

cation

To expand on the findings of the previous section, we relax our requirement

for real hardware netlists and instead adopt software models to perform a more

generalized design space exploration of logic obfuscation. Relaxing the requirement

for real hardware allows us to use more modern testbed processors that lack publicly

available netlists. Software models also allow us to quickly lock target processors

in more diverse locations because we no longer must re-design the netlist to lock

each module. This allows us to evaluate a large number of locking configurations

and locations in more modern hardware. However, because we lack locked netlists

to launch attacks against, we are restricted to theoretical calculations of attack

susceptibility (which is inherently netlist dependent). To perform the more general

design space exploration presented in this section, we model SFLL-Fault [75, 74,

103], as it is the most prevalent locking technique which remains unbroken5. As later

discussed in Section 4.4.3, despite using SFLL-Fault for this exploration, our results

are applicable not just to SFLL-Fault, but general to any combinational approach

to logic obfuscation, regardless of construction. Therefore, this experiment serves

as an exploration of combinational logic locking as a whole.

5Several works have shown that structural traces unique to SFLL can be exploited to recover

the secret key [84, 96]. While these approaches have not successfully unlocked SFLL-Fault, they

have unlocked earlier SFLL-based techniques, such as SFLL-HD, indicating some limitations of

the SFLL family.

56

To launch this exploration, we incorporate a variety of locking configurations

which sweep over the error injection rate of locking and quantify the corresponding

effectiveness (error severity) of each locking construction. As noted in Section 2.1,

SAT attack resilience (attack resilience) is inversely related to the error injection

rate of locking. Therefore, we can calculate the corresponding SAT resilience of

each locking configuration based on error injection rate using results from Section

4.1. We note that this relationship between error injection rate and SAT attack

resilience exists underlying all combinational logic locking techniques, not just SFLL-

Fault. Therefore, this experiment aims to identify locking configurations capable of

inducing critical application failures (error severity) while maintaining SAT attack

resilience within our processor testbeds. In other words, this experiment identifies

secure locking constructions capable of securing each IC as a whole, not just at the

gate level.

4.4.1 Experimental Methodology

Testbed Processors: An x86 (out-of-order, embedded core) and an ARM

A53 processor were used. Note that due to the proprietary nature of both of these

cores, we were forced to use software, rather than hardware, models. These models

were functional representations developed within the GEM5 simulator. However, all

methods and data presented could be performed equivalently on a hardware model

of the core.

57

Locking Configuration: SFLL-Fault[75] based locking configurations sweep-

ing over error injection rate were applied to each processor. To do so, SFLL-Fault

was configured to lock a single, randomly selected input cube of varying length. By

scaling the length of the locked input cube, a varying number of minterms could

be corrupted, thereby scaling the error injection rate. Each of the 14 modules (see

Figure 4.5) were locked and evaluated independently (i.e. one at a time). Note that

the candidate locked modules were selected from 3 categories: 1) on-chip memory,

2) data path, and 3) control path. As we have noted before, on-chip memory

[114, 13] and data path locking [45, 46, 73, 58] have been the most commonly

suggested locking candidates in prior literature. Therefore, we focused our attention

on modules within the on-chip memory and data path.

Feasibility of Locking Configuration: We note that this locking config-

uration is consistent with state-of-the-art logic locking research. We make several

observations regarding this:

1. Recent work on architectural locking considers locking only a single module

which contains the critical IP to be protected [73, 103, 75, 76, 13]. This is

consistent with our decision to independently lock each module.

2. Cutting edge locking, such as [103, 13, 94, 92, 98, 73, 111, 76, 75], propose

constructions which distribute error throughout a locked module’s input space.

This is consistent with our random cube selection approach. By doing so,

we both maximize the SAT attack resilience of the locking construction and

58

prevent cryptographic information leakage in the case that an adversary has

knowledge of a module’s input space (e.g. knowledge of “protected input cubes”

for SFLL allows an adversary to recover the secret key in linear time [103]).

3. Cutting edge techniques, such as [103, 74, 73, 94, 92, 98], propose integrating

their low error locking constructions alongside a high error locking technique,

such as [102]. Taking this so-called “compound” approach allows a designer to

achieve both high error severity and SAT attack resilience simultaneously.

However, recent research has shown that high error locking techniques in

compound locking constructions can be easily removed, leaving only low error

locking within the module [77, 83, 81, 80]. This is consistent with our choice

not to pair SFLL-Fault with a high error locking technique, as it could be

easily removed.

2 18 2 16 2 14 2 12 2 10 2 8 2 6 2 4
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible Locking Configurations
(a) Mean Failure Rate of Locked x86 Core

2 18 2 16 2 14 2 12 2 10 2 8 2 6 2 4
0.00

0.20

0.40

0.60

0.80

1.00 SAT Susceptible Locking Configurations
(b) Mean Failure Rate of Locked ARM Core

2 18 2 16 2 14 2 12 2 10 2 8 2 6 2 4

104

106

108

1010

M
ea

n
Co

rr
ec

tl
y

Ex
ec

.
W

or
kl

oa
d

Cy
cl

es

SAT Susceptible Locking Configurations

(c) Mean Correctly Executed Cycles, Locked x86 Core

2 18 2 16 2 14 2 12 2 10 2 8 2 6 2 4
105

107

109

1011

SAT Susceptible Locking Configurations

(d) Mean Correctly Executed Cycles, Locked ARM Core
Error Injection Rate for Incorporated Locking Configuration

Locked Module:
Adder
Multiplier
Divider
FPU Adder
FPU
Multiplier
FPU
Divider
Decoder
Branch
Predictor
Branch
Target
Buffer
Return
Address
Stack
L2 Cache
Controller
L1 I-Cache
Controller
L1 D-Cache
Controller
DRAM
Controller

Figure 4.5: ObfusGEM results quantifying the application-level security of locking in an

x86 and ARM A53 core.

59

ObfusGEM Configuration: Using the ObfusGEM simulator, 120 Monte

Carlo simulations were performed for each locking configuration in each processor. A

locking configuration consists of a locking location and an associated error injection

rate (e.g. the x86 core adder locked by an SFLL-Fault configuration with an error

rate of 0.01%). For each Monte Carlo iteration, a wrong key was randomly selected

and 1 of 3 benchmarks from the PARSEC benchmark suite6 [7] were simulated

on the core. Because the error rate of SFLL-Fault is uniformly distributed across

all wrong keys (i.e. each wrong key has the same error rate), each random key

selection produces a locking configuration with an identical error rate and different

locking-corrupted minterms. Note that this is the weakest possible attacker. The

attacker randomly selects a key with no attempt to minimize the error injection rate

or intuit the correct key. In total, this makes 50,400 Monte Carlo trials7.

Monte Carlo Simulation Count: We selected the number of Monte Carlo

trials performed for each locking configuration empirically. To do so, we performed

1,500 Monte Carlo trials for 4 error rates (2−10, 2−9, 2−8, 2−7) applied to 4 locking

locations (FPU Adder, Multiplier, L1 D-Cache Controller, Decoder) respectively.

We considered the application failure rate after 1,500 iterations to be the true

application failure rate of each locking construction. Based on this, we located

6PARSEC benchmarks [7] are designed to be a cross-section of common processor workloads,

therefore, they serve as a good measurement of a locked processor’s ability to do useful work at

the application level.
750,400 total trials = 2 ICs * 14 locking locations * 15 SFLL-Fault error rates * 120 Monte

Carlo trials

60

the number of Monte Carlo trials in which each locking configuration converged to

an error rate within ±5% of the true application failure rate. This was 120 Monte

Carlo trials per configuration.

4.4.2 Quantifying SAT Attack Resilience

The work in Section 4.1 defines an inverse mathematical relationship between

the error injection rate of logic locking and the average number of SAT iterations

necessary to unlock it. For a successful attack on logic obfuscation, a SAT attack

must locate the correct key in a reasonable time. Because SAT attack runtime is

both netlist and attack formulation dependent, the expected number of SAT attack

iterations alone does not provide sufficient context to accurately characterize SAT

susceptibility. Fortunately, the results presented in the work on SFLL-Fault [103, 75]

provide a strong intuition for SAT runtime.

Yasin et al. provided an empirical analysis of SAT attack effectiveness against

varying error rate SFLL constructions in a series of benchmark circuits. For their

experiment, they incrementally lowered the error injection rate of SFLL and evalu-

ated the corresponding SAT attack runtime. The lowest error injection rate SFLL

configuration which could be successfully SAT attacked within 48 hours required 214

SAT iterations. Therefore, we define any locking configuration unlocked in ≤ 214

iterations as SAT susceptible.

61

4.4.3 Analysis of Design Space Exploration

We have aggregated the results of the experiment described in Section 4.4.1

in Figure 4.5. Within the figure, the region constituting SAT susceptible locking

configurations have been shaded in red for clarity. Fundamentally, the goal of our

design space exploration was to locate an architecturally secure locking configu-

ration, defined as a locking configuration which simultaneously 1) induces critical

application failures for any wrong key (error severity) and 2) maintains SAT attack

resilience. In the figure, the first goal of logic locking (error severity) is quantified

by the PARSEC benchmark failure rate. If a locking configuration with a given

error rate induces a high failure rate for PARSEC benchmarks, the configuration

has successfully derailed application functionality. The second goal of logic locking

(maintaining SAT resilience) is quantified by the red-shaded SAT susceptible region.

If a given error rate locking configuration resides outside of this region, it is deemed

SAT resilient. Therefore, based on our results, there does not exist an SFLL-Fault

configuration capable of simultaneously achieving both goals.

While each netlist was only locked with SFLL-Fault, this same trade-off be-

tween error severity and SAT resilience exists underlying every locking technique

[111, 107, 109, 45]. Therefore, because all logic locking techniques restrict unau-

thorized use with the same fundamental functionality, namely deterministically

corrupting the output corresponding to some portion of the input space, these

results can be generalized to logic locking as a whole. Any alternative logic locking

technique configured with a given, randomly distributed error injection rate can be

62

expected to achieve a similar error severity to that of SFLL-Fault. Additionally,

given the generalized nature of the results derived in [111, 107, 109, 45], this error

severity can be expected to correspond to a similar number of SAT attack iterations

necessary to unlock the locking construction, hence a similar SAT attack resilience.

Therefore, the results of this design space exploration are not a limited example in

which only SFLL-Fault was insecure when viewed beyond the application level, but

a demonstration of the underlying limitations of logic locking when viewed at the

application level.

This result is quite alarming. Fundamentally, it indicates that state-of-

the-art locking applied with only gate-level considerations (as proposed

by most cutting edge art [64, 102, 70, 94, 92, 98, 103, 75, 68, 66, 76, 33]) is

inadequate to thwart an untrusted foundry attacker, regardless of locking

location or configuration. To further exacerbate this result, we note that the

weakest possible attacker model was utilized. The untrusted foundry simply selected

a random wrong key with no attempt to attack it or to minimize error within the

locked IC. Even given this extremely weak attacker model, state-of-the-art logic

locking was unable to achieve application level security within either IC, constituting

a massive security risk.

63

4.5 Conclusions

Based on the results in this section, we argue that the trade-off between

error severity and SAT attack resistance is a real one. Additionally, in the specific

trade-space characterized by Figure 4.5, there does not exist a configuration which

guarantees the IC designer both SAT resistance and application-level security using

current state-of-the-art gate-level locking techniques. These results highlight that

we must explore methodologies beyond conventional gate-level logic obfuscation

techniques in order to achieve strong hardware-oriented security in practice.

64

Chapter 5: Obfuscation Techniques for

Security Beyond Gate-Level Boundaries

In the previous chapter, we demonstrated that logic obfuscation, as currently

defined, is limited in achieving both error severity and attack resilience simulta-

neously. This is due to the rigid parametric space between the average wrong

key error rate of a locking construction and the number of SAT attack iterations

necessary to unlock it. As a result, once a locking configuration’s error rate is

fixed, the corresponding SAT attack resilience can be directly quantified (and vice

versa). From our design space exploration in the previous chapter, we found that

in order to achieve gate-level error rates sufficient for the denial of application-level

functionality, one must design a locked circuit which is inherently SAT susceptible.

In this chapter, we propose 3 non-conventional approaches that tweak the standard

operation of logic obfuscation to favorably alter the defined trade-off. As a result, we

propose 3 novel obfuscation constructions capable of achieving both error severity

and attack resilience simultaneously in 3 distinct applications.

First, we propose Trace Logic Locking (TLL), a novel enhancement of gate-

level logic locking which enables existing art to secure arbitrary length sequences

of input minterms, referred to as traces. Doing so injects an additional degree of

freedom into the parametric space of locking, enabling locking techniques to over-

65

come the limitations of our derived trade-off. We both theoretically and empirically

prove this by using TLL to enhance cutting edge locking. In 10 large benchmarks,

we show that TLL-enhanced logic locking provides exponentially stronger attack

resilience than conventional locking with only modest additional overhead. Finally,

we demonstrate the efficacy of TLL in a processor IC using ObfusGEM simulations.

Despite prior art being unable to secure the evaluated processor ICs, we find that

TLL concurrently achieves strong error severity and attack resilience.

Second, we propose Memory Locking, an automated logic obfuscation tech-

nique capable of denying application-level functionality to the adversary while main-

taining SAT resistance. To do so, Memory Locking targets on-chip SRAM circuitry

due to the 50-90% of transistor count dominated by SRAM-related circuitry in

modern processors [59]. This creates significant flexibility in obfuscatable location

and functionality. Additionally, the analog effects governing SRAM make it re-

sistant to many proposed attack methodologies such as SAT-based attacks. We

then demonstrate the effectiveness of Memory Locking compared to prior art with

application-level simulations using ObufsGEM.

Third, we propose High Error Rate Keys (HERK) to thwart both StatSAT and

other prominent attacks on probabilistic circuits. HERKs leverage high error wires,

caused by probabilistic behavior, to hide the correct key under stochastic noise.

HERKs can be integrated into prior deterministic logic obfuscation schemes for

strong IP protection in probabilistic circuits. We demonstrate the efficacy of HERKs

in several benchmark circuits, empirically verifying their resilience to StatSAT and

other SAT-style attacks. As a result, using HERKs allows high-error obfuscation

66

to be used without sacrificing SAT attack resilience, thereby enabling obfuscation

configurations that are simultaneously high in error severity and attack resilience to

be configured. This allows strong security to be achieved beyond the gate-level in

probabilistic applications in particular.

5.1 Trace Logic Locking (TLL)

To counter the rigidity of logic locking’s parametric space, we developed Trace

Logic Locking (TLL), a novel logic locking enhancement which injects an additional

degree of freedom into the parametric space of locking. TLL achieves this by

locking a sequence, or trace, of inputs. This differs from conventional locking which

locks a set of inputs. Because both a set and a trace of inputs can be locked

simultaneously and independently, TLL can be integrated into any conventional

logic locking technique. As we show both theoretically and experimentally in Section

5.1.3.1/5.1.5, doing so causes the SAT attack resilience of a TLL-enhanced technique

to vary exponentially in locked trace length. This is a major contribution. The

derived parametric space of logic locking requires a reduction in the average wrong

key error rate for an improvement in SAT attack resilience. However, by utilizing

TLL, SAT attack resilience can be achieved by scaling locked trace length, thereby

disentangling the average wrong key error rate and attack resilience of a locking

configuration.

67

5.1.1 Foundations of TLL

Prior to detailing a construction of TLL, let us formalize its notation and

intended functionality. Let us assume that conventional locking (e.g. SFLL-Fault)

has been applied to some arbitrary combinational module in an IC which receives an

input (x ∈ X) on each clock cycle. Additionally, let us assume that some incorrect

key (ki) has been provided to the incorporated locking. In this case, logic locking

will corrupt the output of some subset of the input space, Xi ⊆ X, such that a fixed

incorrect output is produced whenever an input, x ∈ Xi, is applied. The inputs in

Xi depend only on ki.

In this work, we refer to a set of inputs occurring over l clock cycles as a

trace of length l. TLL is designed to modify a conventional locking construction

(e.g. SFLL-Fault) to lock a trace of length l. We refer to this as l-state TLL. To

do so, TLL-enhanced locking must corrupt the output of a different set of inputs,

Xi ⊆ X, on l different clock cycles. This is achieved by injecting the notion of state

into conventional locking. Hence, l-state TLL incorporates an l state finite state

machine (FSM) within the locking construction where each state corresponds to a

unique Xi. Therefore, the FSM’s state determines the currently locked inputs. We

refer to the set of inputs locked in FSM state m as Xm
i . Hence, when using TLL,

Xm
i depends on both ki and the FSM’s state.

68

5.1.1.1 TLL as a Logic Locking Enhancement

As noted, conventional locking secures a set of inputs (Xi) which are dependent

only on the value of ki. This functionality is combinational, entirely lacking a

sequential component. TLL, on the other hand, is entirely sequential in nature as it

secures input traces. Therefore, because conventional locking lacks a sequential com-

ponent, TLL can be integrated alongside any conventional locking technique. Doing

so introduces a sequential component to locking without altering the underlying

combinational functionality of the conventional locking technique. We refer to this

as enhancing a locking technique with TLL. By doing so, a locking construction

is created where Xm
i is dependent on both the value of ki, determined by the

conventional locking technique, and the current state of the locking construction

(m), determined by TLL.

Presenting TLL as a logic locking enhancement, rather than a unique locking

construction, is quite advantageous. It allows TLL to leverage the strongest existing

conventional techniques, while still expanding the parametric space of locking. In

fact, because TLL only adds a sequential component to a conventional locking

construction, it does not modify the underlying combinational functionality of con-

ventional locking at all. This means that TLL expands the parametric space of

locking, thereby exponentially improving SAT resilience, while maintaining any

other security guarantees (e.g. removal resistance) of the underlying locking tech-

69

nique. However, because TLL is a locking enhancement, its construction depends

on the technique it enhances. Moving forward, we utilize SFLL-Fault [103, 75, 74]

to formalize a construction of TLL.

SFLL-Fault was chosen as it is currently the most prevalent logic locking tech-

nique which remains unbroken. However, there are limitations to the SFLL family.

For example, structural traces unique to SFLL have been shown to be exploitable

to reconstruct the secret key [84, 96]. While these traces have not yet been used to

successfully unlock SFLL-Fault, they have been used to unlock SFLL-HD, indicating

some limitations. While other techniques, such as [114, 68, 66, 76, 33], have been

shown to be strong alternative locking constructions, they have not yet gained the

prevalence of SFLL. Therefore, we present a locking construction for TLL based on

SFLL-Fault. However, any alternative conventional locking technique could have

been utilized as an equally valid backbone for TLL.

5.1.1.2 Comparison of TLL and FSM-Based Locking

Despite TLL’s sequential nature, it differs substantially from FSM-based lock-

ing schemes, such as [15, 2, 21, 20, 26]. To distinguish TLL and sequential locking,

we note 2 key differences:

1. Target Circuitry: FSM-based locking obfuscates an IC by altering its control

FSM. To do so, a series of key authentication states are added to the control

FSM to validate the key. For a wrong key, the controller enters a permanent

obfuscation mode utilizing dummy states with incorrect functionality. For a

70

correct key, the controller enters the intended FSM region, enabling correct

functionality. Hence, FSM-based locking schemes obfuscate IC control flow.

Rather than modifying the control path, TLL instantiates a separate FSM

that directly modifies a combinational logic locking scheme. When the key is

incorrect, rather than inducing errant control flow, TLL induces combinational

errors in the logic locked module.

2. Intended Use: FSM-based locking achieves stand-alone security. While these

schemes can be paired with other locking art, they operate independently. TLL

must be closely integrated with a logic locking scheme because it cannot induce

error on its own. TLL relies on the underlying locking scheme for error, making

TLL an enhancement for logic locking, rather than a stand-alone scheme.

This leads to 2 key advantages over FSM-based schemes:

1. Exponential Improvement in SAT Resilience: While FSM-based locking

can be integrated alongside logic locking, it operates separately, allowing it to

be attacked separately. For example, automated reverse engineering attacks

[26] can isolate the control FSM to infer the key of FSM-based locking. Simi-

larly, a logic locked module can be isolated and SAT attacked separately from

the locked control FSM. TLL integrates tightly into logic locking. As derived

in Thm. 5.2, this requires both schemes be attacked together, exponentially

improving SAT resilience.

71

2. Reverse Engineering Attack Resilience: FSM-based locking is suscep-

tible to reverse engineering. In [26], the authors outline these attacks on

prominent FSM-based schemes [15, 2, 21, 20]. These attacks are potent due

to the ease of identifying and reverse engineering FSMs, enabling the authors

to infer errant control flow, thus the secret key. However, TLL 1) does not

target an IC’s control FSM and 2) does not rely on errant control flow for

security. So, unlike FSM-based locking, TLL’s FSM topology does not encode

the key, thus FSM reverse engineering is irrelevant.

Therefore, we consider TLL-enhanced and FSM-based locking to be funda-

mentally different hardware security schemes.

5.1.2 Enhancing SFLL-Fault With TLL

In this section, we formalize a construction of TLL to enhance SFLL-Fault

(TLLSFLL−Fault) [103, 75, 74]. For the remainder of this work, we rely on this

construction to evaluate TLL. We begin by introducing a limited example of 2-state

TLL which we later generalize to a fully tunable construction.

72

5.1.2.1 Enhancing SFLL-Fault With 2-State TLL

Assume an arbitrary combinational module receives input, i ∈ I, on each clock

cycle. We refer to a sequence of l inputs applied over l clock cycles as a trace of

length l. Therefore, 2-state TLL locks a trace of length 2. We emphasize that the

intended functionality of a TLL locked module must remain combinational despite

the sequential nature of TLL’s locking.

For the 2-state TLL construction which we introduce in this section, let us

assume that we intend to corrupt the output of a single cube within the locked

module for each of the 2 TLL states. To illustrate this, let us arbitrarily refer to

the locked trace inputs as i0 followed by i1. In this case, i0 or i1 produces incorrect

output in the locked module for a given clock cycle, never both. The currently

locked input switches between i0 and i1 whenever the input to the module matches

a portion of the secret key. This yields functionality such that the order of locked

inputs in the trace is critical, but the number of cycles between locked inputs is

irrelevant. Figure 5.1A shows a block diagram of 2-state TLL.

From the block diagram, notice that 2-state TLL consists of a stripped func-

tionality (SF) module, a restore unit, and an XOR gate. The functionality of these

components relies on a secret key, denoted as the concatenation of 2 independent

subkeys, k = (k1, k0). The correct secret key corresponds to the locked inputs of the

trace, k = (i1, i0). For the remainder of the section, we describe the functionality of

TLL in depth by considering each of its 3 components.

73

SF module: SF is defined as the re-design of a given set of inputs within a

combinational module to produce incorrect output. In 2-state TLL, the SF module

contains 2 SF inputs corresponding to the locked trace, namely the inputs i0 and

i1. However, we note that 2-state TLL only has 1 SF input enabled within the

design during each clock cycle. To achieve this, both SF inputs in the module are

mapped to a common intermediate value, X, rather than two separate and unrelated

incorrect outputs as is done by [103]. This intermediate value is then mapped to

the correct output for either i0 or i1. Finally, because both inputs are mapped to

the same intermediate, X, it is impossible for both inputs to have correct output

during a given clock cycle. To select between mapping X to the correct output for i0

or i1, additional logic called the “restore multiplexer” (RM) is added. Specifically,

the select line of the RM determines whether i0 or i1 is mapped to correct output.

This select line is controlled by the restore unit state.

Restore Unit: The restore unit is located below the SF module in Figure

5.1A and consists of a 2-state finite state machine (FSM). As noted, the current state

of this FSM controls the select line of the RM, hence, the restore unit determines

the current SF inputs within the locked module. State transitions occur within this

FSM when the current input to the locked module matches one of the two secret

subkeys (k0 or k1), with k0 used in state 0 and k1 used in state 1. Hence, the

state sequencing of this FSM is determined by the secret subkey corresponding to

TLL’s restore unit state. Building upon the foundation built by SFLL-Fault [75],

this secret subkey should be stored within a tamper-proof look-up table (TPLUT)

for protection. This TPLUT, as defined in [103], contains a secret subkey (k0 or k1),

74

Restore
Multiplexer

(RM)

SELECT

Stripped Functionality SelectionC

1100
R.U.

State 0

R.U.
State 1

1101

1111
1110

110x

111x

Initial
Compress Final Cubes

Stripped Functionality Circuit

0 1

K0

Current State

Restore
Unit Restore

Restore
Signal

4

Original NetlistB

TLL-Secured NetlistD

i0→X
i1→X

X→F(i1)

X→F(i0)

Restore
Mux
(RM)

TLL Block DiagramA

0 1Restore Unit

Stripped
Functionality

Circuit

TLL Restore
Paths

Current
State

Restore

Identical intermediate value (X = '11')
induced for stripped functionality.

o1

i1

i3

i2
i4

o2

0011 0011

0011
0011

i1
i2

i4
i3

1

2

2

2

TLL Restore Paths

Current State

o1
o2

K1

K2 Restore
SignalK3

in == K0 | R0

in == K1 | R1

in == '111' | 11
in=='0011' | 10

in == '110' | 11
in=='0011' | 10

TPLUT0

TPLUT1

110x
0011

111x
0011

Figure 5.1: 2-state TLL-secured module. A) Block diagram of 2-state TLL for input

sequence “i1, i0”. B) Original c17 netlist. C) Stripped functionality selection and

compression for TLL. D) C17 netlist secured with 2-state TLL.

acting as the index, and a restore signal, acting as the output. Additionally, when

a state transition occurs (i.e. when the currently active secret subkey matches the

input to the locked module), a restore signal (Rs) is applied to TLL’s XOR gate,

altering the module’s output.

When properly keyed, the TLL restore unit will correct output corruption

induced by SF inputs by applying the restore signal to the XOR gate located at the

output of the SF module. In the case of a wrong key, the restore unit will inject error

75

by applying a restore signal which corrupts otherwise correct outputs corresponding

to non-SF inputs. In this case, output corruption is present in the locked IC not

only for SF inputs, but also for these non-SF inputs.

XOR Gate: The final component of 2-state TLL is the XOR gate on the

output of the locked module. As noted previously, when a restore unit state

transition occurs, a restore signal is applied to this XOR gate which modifies module

output.

Note that a TLL-secured module remains combinational. Only the restore

unit is sequential. Additionally, only 1 input in the trace has SF on a given clock

cycle. The SF input switches when the currently enabled secret subkey matches

the input to the module, thus transitioning the restore unit FSM to the next state.

This allows 2 separate locked inputs to exist without any increase in the wrong

key error rate of the locked module for a given clock cycle. As we show in Section

5.1.3, by utilizing TLL to enhance SFLL-Fault, locking constructions can be created

which exhibit equivalent error rates and exponentially stronger SAT resilience than

SFLL-Fault alone. This allows TLL to expand the parametric space of SFLL-Fault.

We summarize our construction of TLL-enhanced SFLL-Fault below.

1. TLL protects a sequence of 2 inputs, i0 followed by i1

2. At any given time, only a single SF input is locked

3. The RM select line dictates which SF input is locked

4. The restore unit corrects SF errors when the secret subkey matches the current

SF input

76

5.1.2.2 Example TLLSFLL−Fault Implementation

To clarify TLL’s implementation, we have locked the c17 circuit from ISCAS’89

[10] in Figure 5.1B-D. The un-locked c17 circuit is shown in Figure 5.1B. To im-

plement 2-state TLL, the designer first selects candidate SF inputs for each TLL

restore unit state. In Figure 5.1C, we have selected 3 candidate SF minterms for

each state: (1100, 1101, 0011) and (1111, 1110, 0011) for restore unit state 0 and 1,

respectively. Notice that the same inputs can be selected as SF inputs in multiple

states (e.g. 0011). Now, we can optionally compress these minterms into smaller

cubes to reduce design overhead. In Figure 5.1C, the minterms (1100, 1101) and

(1111, 1110) are compressed into single cubes during this compression step.

Given our list of SF cubes, we can implement TLL in the c17 netlist with

the following process. First, each SF input must be mapped to some identical

intermediate value (‘X’). In this case, ‘X’ is ‘11’. With ‘X’ defined, we can perform

standard combinational optimization to synthesize the SF circuit. The resulting SF

circuit is labeled “Stripped Functionality Circuit” in Figure 5.1D. Now, 2 restore

paths, one for each restore unit state, must be added to the output of the SF circuit

to correct the SF inputs. Hence, in restore unit state 0, the intermediate value, ‘11’,

must be mapped to the intended output ‘01’ and in restore unit state 1, ‘11’ must

be mapped to ‘10’. These paths are denoted “TLL Restore Paths” in Figure 5.1D.

At their output, a 2-input multiplexer, called the “Restore Multiplexer”, connects

these 2 paths to an XOR gate added at the output of the module.

77

Finally, we add TLL’s restore unit. To do so, an FSM with a single state for

each trace index must be included (i.e. 2 states). In Figure 5.1D, we have labeled

TLL’s restore unit as “Restore Unit”. The state of the restore unit dictates the

currently active restore path by driving the select line of the RM. Notice that the

secret subkeys applied to the restore unit dictate its functionality. Whenever the

active subkey matches the primary input, the restore unit FSM changes its state and

applies a restore signal to the XOR gate at the module’s output. For a correct key,

this signal corrects errant outputs due to SF. For a wrong key, this signal corrupts

otherwise correct outputs.

5.1.2.3 Example 2-State TLL Functionality

Assume that the 2-state TLL configuration in Figure 5.1A is used to lock

a 2-bit input module. Therefore, the possible input space can be represented

by i3, i2, i1, i0. Within this module, the trace i0 followed by i1 is locked. This

configuration would yield correct functionality with the key k = i1, i0 and incorrect

functionality otherwise. An error map exhaustively describing this 2-state TLL-

secured circuit is in Table 5.1.

The top row of this table enumerates the possible TLL secret keys as a

combination of 2 subkeys. Below this row, each key combination is enumerated

in the form: {subkey for restore unit state 1, subkey for restore unit state 2}. On

the side of the table, each possible restore unit state and primary input combination

is enumerated. As an example, let us assume we want to know TLL’s output in the

78

following situation: the restore unit is in state 1, the applied key is i2, i0, and the

primary input is i2. To do so, we find the intersection of the row for the current

restore unit state/primary input value and the column corresponding to the current

secret key. This intersection is a green-shaded cell in Table 5.1. The ✗ in this cell

indicates that TLL would produce an errant output in this scenario. Alternatively,

if the primary input i3 were applied, instead of i2, the corresponding a ✓ symbol

indicates that TLL provides correct output for this scenario.

5.1.2.4 A Generalized Construction of TLLSFLL−Fault

We initially presented a simplified construction of TLL-enhanced SFLL-Fault

as a special case. A more generalized form offers the IC designer scalability in

both wrong key error rate and locked trace length. Expanding to the generalized

TLLSFLL−Fault construction relies on the same principles of functionality stripping

and a sequential restore unit. We discuss the modifications necessary to tune each of

these parameters separately, but present a unified TLLSFLL−Fault construction that

enables scaling in both trace length and error rate. A block diagram of SFLL-Fault

enhanced with TLL is in Figure 5.2.

Scaling TLLSFLL−Fault Error Rate

The IC designer can scale the error rate of this TLL construction by incor-

porating additional SF inputs within the locked module for a restore unit state.

The functionality stripping of additional inputs leads to a higher error rate which

79

R.U. key input k = k1,k0

State in i0, i0 i0, i1 i0, i2 i0, i3 i1, i0 i1, i1 i1, i2 i1, i3

0 i0 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

0 i1 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

0 i2 ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

0 i3 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

1 i0 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

1 i1 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

1 i2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 i3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R.U. key input k = k1,k0

State in i2, i0 i2, i1 i2, i2 i2, i3 i3, i0 i3, i1 i3, i2 i3, i3

0 i0 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

0 i1 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

0 i2 ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

0 i3 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

1 i0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 i1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

1 i2 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

1 i3 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Table 5.1: Error map for a module with a 2-bit primary input secured with 2-state TLL.

The locked trace is in = i1, i0. Correct key functionality is denoted with highlighted cells.

80

yields increased output corruption in an improperly keyed IC. To compensate for

the added SF inputs, the restore unit must be modified to locate and restore newly

locked inputs.

To modify the restore unit, we incorporate additional subkeys to match the

additional SF inputs. In the worst case, a new subkey must be included for each SF

input. However, combinational optimization techniques can be applied to combine

subkeys or reduce the number of bits and hence reduce hardware overhead. See

[47, 103, 74, 75] for proposed security aware synthesis algorithms which enable the

combinational optimization of TLL.

Error rate can also be scaled by decreasing the length of the subkey. A shorter

subkey matches fewer bits of the primary input thereby increasing the percentage

of locked inputs within the module. Because we now consider the possibility of a

subkey length (s) less than the length of the primary input (n), error rate becomes

slightly more complex. We define the number of subkeys currently being compared

to the primary input to be c throughout the remainder of this work. This means

the error rate of the locked module is c · 2n−s/2n.

The described modifications have been applied within Figure 5.2. Notice that

during any given restore unit state, 2 primary inputs are stripped within the locked

module. This modification provides double the error rate of 2-state TLL in case of

a wrong subkey for any state.

81

Scaling TLLSFLL−Fault Trace Length

The length of the trace secured by TLL can be expanded from the presented

2-state case as well. Note that by expanding the trace length, exponentially stronger

security guarantees against SAT-based attackers can be provided. See Section 5.1.3

for proof of this claim. In order to expand locked trace length, our construction

must include more restore unit states. The number of states and the length of

the restricted trace must be equal. ⌈log2(l)⌉ restore multiplexers (RM1 and RM2

in Figure 5.2) must be included in the design as well. These RMs determine the

currently exposed SF inputs in the module.

By combining these 2 modifications, we create a variable trace length TLL

construction. An example of a TLL construction for a locked trace of length 4 is

presented in Figure 5.2. Notice that the most significant bit (MSB) of the restore

unit’s state dictates which SF inputs are currently exposed in the module (i0, i1, i2, i3

with state 0/1, or i4, i5, i6, i7 with state 2/3). The least significant bit (LSB) of the

state controls RM2. Depending on the select line of RM2, half of the stripped

functionality created by RM1 is restored. Whenever any secret subkey matches the

current input to the module, a state transition occurs. This causes a restore signal to

be applied to the XOR gate which either corrects or corrupts the output depending

on whether the secret subkey is correct.

Generalized Tunable TLLSFLL−Fault Construction

A block diagram of a TLLSFLL−Fault construction scaled in both trace length

and error rate is contained in Figure 5.2. It differs from the 2-state case contained

in Figure 5.1 in 3 ways:

82

i4→X2,i5→X3
i6→X2,i7→X3

MUX

0 1
Current

State

Restore23

i0→X0,i1→X1
i2→X0,i3→X1

MUX

X0→F(i2),X1→F(i3)
X2→F(i6),X3→F(i7)

MSB

LSB

RM1 RM2

X0→F(i0),X1→F(i1)
X2→F(i4),X3→F(i5)

MUX

Stripped Functionality Circuit

Restore Unit

in==K4|R4
in==K5|R5

in==K0|R0
in==K1|R1

in==K2|R2
in==K3|R3

in==K6|R6
in==K7|R7

Figure 5.2: 4-state TLL configuration with 2 locked primary inputs per cycle. Secured

input sequence: i0 ∨ i1, i2 ∨ i3, i4 ∨ i5, i6 ∨ i7.

1. Increased states in restore unit (trace length scaling)

2. Additional restore multiplexer, RM1 (trace length scaling)

3. Additional SF inputs in locked module (error rate scaling)

By modifying these details, both the wrong key error rate and the locked trace

length of our TLL construction can be altered yielding tunable security guarantees.

5.1.3 Mathematical Foundations of TLLSFLL−Fault

The goal of TLL is to expand the parametric space of locking. As shown in

Section 4.1, this parametric space is created by the trade-off between wrong key

error rate (error severity) and SAT attack resilience. To this point, we have argued

TLL achieves this by injecting trace length into this trade-off, thereby disentangling

the direct relationship between error severity and SAT resilience. In this section, we

prove this claim for our presented TLL construction. Specifically, we show that the

83

SAT resilience of our presented construction varies in both wrong key error rate (as

is the case with all conventional locking) and trace length. Proving this assertion

means that wrong key error rate can be increased (improving error severity) without

degrading SAT resilience by increasing locked trace length. Hence, TLL injects trace

length into the parametric space of locking, thereby expanding it.

The secret key for our TLL construction, k = kl−1, kl−2, ..., k0, is a concatena-

tion of several independent keys corresponding to separately locked primary inputs

within the locked trace of length l. We will refer to each of these concatenated keys as

subkeys of length c·s bits, where c is the number of locked inputs for each position in

the trace and s is the length of each locked input. Each of these subkeys correspond

to a particular position within the locked trace. Additionally, each position in the

locked trace corresponds to a state within the TLL restore unit. Without loss of

generality, we will assume that k0 corresponds to restore unit state 0, k1 corresponds

to restore unit state 1, and so on. For brevity, each TLL construction is presented

as a triplet, TLL(s,l,c).

5.1.3.1 SAT Resilience of TLLSFLL−Fault

The SAT resilience of a logic locking technique is defined as the probability of

a SAT attack successfully recovering the secret key within q queries. To derive this,

we assume that the attacker uniformly samples the input space for DIs. Previous

research in logic locking has relied upon this assumption in attack resilience proofs

such as [103, 45, 99]. We experimentally verify our resulting derivations in Section

84

5.1.5 to ensure these assumptions are reasonable. Note that despite a focus on the

SAT attack presented in [88], our result holds against a series of other SAT-based

attackers such as [83, 77, 4, 108, 23].

The goal of a SAT-based attacker is to select all c SF inputs within the locked

module as DIs for each of the i = 1..l indices of the trace. By selecting each of

the c SF inputs for a given trace index, all possible wrong subkeys for that trace

index are eliminated from the keyspace. If the attacker does this for all l subkeys,

corresponding to the l trace indices (restore unit states), all wrong subkeys will

be eliminated. By concatenating the remaining subkeys, the adversary constructs

the correct secret key. We note this approach constitutes a so-called “unrolling”

attack where TLL’s state machine is unrolled into a series of combinational locking

configurations which are then solved by a SAT attack.

We begin characterizing SAT resilience with a derivation of the probability of

selecting all c SF inputs within q selections for a given trace index by uniformly

sampling the input space. This corresponds to the necessary SAT queries to locate

a secret subkey by the above methodology.

Lemma 5.1. The probability of selecting all c SF inputs from an input-space of

size 2s within q queries is P =
(
2s−c
q−c

)
/
(
2s

q

)
Proof. We have a budget of q queries. An input combination of length s constitutes

a query. Any input combination is sampled with equal probability. Therefore, there

are
(
2s

q

)
possible ways of doing this. A successful attack is the case in which all c SF

inputs are selected in these q queries. Regardless of which order these c inputs are

85

selected, c out of the q queries must be SF inputs. Hence, q − c must be from the

set of non-SF inputs. The number of possible non-SF inputs is 2s − c. The number

of ways in which q − c selections can be made from these 2s − c non-SF choices is(
2s−c
q−c

)
. Therefore, the probability of locating all c SF inputs within q queries is:

P =

(
2s − c

q − c

)/(
2s

q

)
, (q ≥ c) (5.1)

Using this result, we derive the SAT resilience of TLL(s,l,c).

Theorem 5.2 (SAT Resilience of TLL). The probability of an adversary unlocking

a TLL(s,l,c) locked module within q SAT queries per restore unit state is P =

(
(
2s−c
q−c

)
/
(
2s

q

)
)l.

Proof. As discussed, the goal of a SAT-based attacker is to select all c SF inputs as

DIs for each of the i = 1..l indices of the trace. This process recreates the entire

secret key. This is because selecting all c SF inputs for each trace index, i, as

a DI eliminates all possible wrong subkeys for all i. The remaining subkeys can

be concatenated to yield the correct secret key. To accomplish this, the attacker

proceeds as follows.

1. Within the locked module, initialize the restore unit state to 0. Note that the

restore unit state corresponds to a specific index of the trace. Additionally, all

the SF minterms, c, for each trace index, i, are independent. Hence, the SAT

attack for each index can occur independently of other indices.

86

2. The attacker applies a SAT attack against the module in restore unit state

0. On termination, the attack returns the secret subkey for restore unit state

0. The probability of finding the correct subkey in q0 SAT queries is given by

Lemma 5.1: P0 =
(
2s−c
q0−c

)/(
2s

q0

)
.

3. The remaining l−1 restore unit states must be attacked to find the remaining

l − 1 secret subkeys. This unlocks the circuit as a whole. For each remaining

restore unit state (i = 2 . . . l), the adversary will initialize the restore unit

to that state and repeat the attack. The probability of finding the correct

subkey in qi SAT queries for the i-th trace index is given by Lemma 5.1:

Pi =
(
2s−c
qi−c

)/(
2s

qi

)
.

This methodology reconstructs the secret key for a TLL locked module. There-

fore, the probability of reconstructing the secret key of a TLL(s,l,c) locked module

within q SAT queries per restore unit state is:

P =
∏l−1

i=0 Pi =
∏l−1

i=0

(
2s−c
qi−c

)
/
(
2s

qi

)
or, equivalently:

P =

((
2s−c
q−c

)(
2s

q

))l

, q = q0 = ... = ql−1 (5.2)

Theorem 5.3. The probability of an adversary unlocking a TLL(s,l,c) locked mod-

ule in q SAT queries per restore unit state exponentially decays in the length of the

trace, l.

87

Proof. From Theorem 5.2, the probability of unlocking TLL(s,l,c) within q queries

per restore unit state is:

P =

((
2s − c

q − c

)/(
2s

q

))l

(5.3)

We can expand this form:

=

(
(2s − c)!(2s − q)!q!

(q − c)!(2s − q)!(2s)!

)l

=
ql(q − 1)l...(q − c+ 1)l

(2s)l(2s − 1)l...(2s − c+ 1)l

For a successful SAT attack, c ≤ q ≤ 2s. Hence, q/2s ≤ 1, (q − 1)/(2s − 1) ≤

1,...,(q − c+ 1)/(2s − c+ 1) ≤ 1. Therefore,

q(q − 1)...(q − c+ 1)

(2s)(2s − 1)...(2s − c+ 1)
≤ 1 (5.4)

This means that Equation (5.3) exponentially decays in l.

Let us approximate Theorem 5.2 for clarity. To do so, assume that the number

of SF inputs (c) is small. Large numbers of SF inputs quickly yield infeasible design

overheads. This means q!/(q − c)! ≈ qc and (2s − c)!/2s! ≈ 2−c·s, yielding the form:

P ≈
(

q

2s

)c·l

(5.5)

With this result, we return to our motivation: the trade-off underlying logic

locking between error severity and SAT attack resilience requires locking configu-

rations capable of protecting ICs from an untrusted foundry attacker to have an

infeasible design overhead. This is because the SAT resilience of logic locking only

scales efficiently in wrong key error rate (Section 4.1). As shown by Theorem

4.2, this result applies to all logic locking. However, we designed TLL to inject

88

another parameter, trace length, into logic locking schemes that otherwise lack this

parameter. When we consider the impact of TLL’s trace length in Theorem 5.2,

we find that it yields a locking scheme where SAT resilience is dependent on both

wrong key error rate and trace length. Because the SAT susceptibility of TLL

exponentially decays in the length of the trace, it can be used to efficiently achieve

SAT attack resilience and error severity. This ensures that when an IC designer

fixes some wrong key error rate necessary for error severity, they can always choose

a value of l where SAT resilience is also guaranteed. This constitutes an expansion

of the parametric space of logic locking and is the primary contribution of TLL.

To conclude, we note that our derivations are specific to the TLLSFLL−Fault

construction. However, any conventional locking enhanced with TLL will exhibit the

same functionality. Namely, a locking construction whose currently locked inputs

depend on both the restore unit state and the applied wrong key. Because the

underlying functionality is identical, the ramifications of TLL will also be identical.

Hence, TLL will create the same increase in SAT attack resilience for any trace

length scaling, expanding the parametric space of locking.

89

5.1.3.2 Removal Resistance of TLLSFLL−Fault

There have been several proposed removal-type attacks against logic locking

techniques such as [47, 100]. When considering TLLSFLL−Fault, these attacks can

be split into 2 categories: SF removal and restore unit removal. In deriving the

resistance of TLL to each of these attacks, we assume the designer has incorporated

TLL into the locked module using a security aware synthesis algorithm, such as [47].

First, we consider a removal attack on the SF module. Because SF is added

to a module through re-design, it cannot be removed through logic removal. A

re-design attack is needed. We defer our analysis of this more complex attack to

Section 5.1.3.3. Next, we consider TLLSFLL−Fault(s,l,c)’s security against a restore

unit removal attack. In this attack, the attacker has located and removed TLL’s

restore unit.

Theorem 5.4 (Restore Unit Removal Attack Resistance of TLL). In the case of a

restore unit removal attack, c · 2n−s errors remain in a TLL(s,l,c) locked module.

Proof. Assume that an adversary has found and removed all restore unit logic within

a TLL-secured module. The remaining circuit contains any errors induced through

SF minterms. There exists l · c SF minterms in the locked module which induce

lc · 2n−s errors. (l − 1)c · 2n−s of these errors are corrected by the current RM

state yielding c · 2n−s errors present within the module after a restore unit removal

attack.

90

Finally, we consider the case in which TLLSFLL−Fault’s state is fixed (e.g. by

removing alternate states). We note that any active SF in the circuit can only

be corrected by a restore unit state transition. Hence, an attack which fixes TLL

into a single state is unable to restore any SF inputs in the circuit. This means

that Theorem 5.4 applies in this case as well and c · 2n−s errors are present in the

module. Additionally, because TLL cannot restore errors without changing states,

these errors cannot be recovered, regardless of the secret key applied.

5.1.3.3 Re-Design Resistance of TLLSFLL−Fault

Let us address a re-design attack on TLLSFLL−Fault, where the adversary alters

the logic of a locked gate-level netlist to unlock it. Note that this attack is outside

of the scope of a more traditional SAT-based attacker model, such as ours (or those

proposed in [94, 92, 76, 45, 98]), as it requires significant alteration of the IC’s

underlying logic. We discuss such an approach because it can be used to weaken

TLLSFLL−Fault, but it cannot fully unlock the circuit and is costly.

Let us consider an adversary who has located TLL’s FSM using the semi-

automated reverse-engineering techniques outlined in [26]. Removing this FSM

results in c · 2n−s unrecoverable errors (Theorem 5.4). To correct these errors,

the attacker can re-design the gate-level netlist to include additional restore logic.

Without loss of generality, let us assume a LUT is added with an entry for each of

the c SF inputs. This yields a topology consistent with SFLL-Fault [75]. Hence, if

91

the c SF inputs are located, they can be corrected through this added LUT. This

approach bypasses the sequential aspect of TLLSFLL−Fault, but there remains 3 key

limitations:

1. The circuit is not unlocked. c ·2n−s SF-induced errors remain. To correct these

errors, each SF input must be located and entered in the added LUT. A SAT

attack can locate these SF inputs, but its complexity scales exponentially.

2. This attack requires netlist modification. After removing TLL’s FSM, a LUT

must be added. Gate-level changes force the attacker to layout, close timing,

verify, etc. the IC. Performing a new tape-out is resource intensive.

3. A new mask must be created to overbuild/counterfeit the IC. This is costly.

If the modified mask is used to fabricate ICs for the design house, device

tampering is obvious both 1) functionally, through the presence of logically

irrelevant key-bits, and 2) visually (i.e. de-layering), through major changes

in key logic. This provides a watermark and allows the designer (or any future

IP user) to detect tampering.

Thus, the limited and costly nature of such an attack against TLLSFLL−Fault

makes its utility and profitability doubtful.

5.1.3.4 Structural Resilience of TLLSFLL−Fault

Now, we consider a structural attack against TLLSFLL−Fault launched as fol-

lows: 1) locate the restore multiplexer (RM), 2) replace it with a XOR gate to create

a miter, and 3) use a SAT tool to locate differences between restore paths. These

92

i0→X
i1→X

X→F(i1)

X→F(i0)

SF Circuit TLL Restore PathsA

B
i0→X
i1→X

Anti-SAT1

Anti-SAT2

Restore
Mux
(RM)

0 1Restore Unit

SF Circuit TLL Restore Paths

Current
State

Restore

TPLUT0: in == K0 | R0

TPLUT1: in == K1 | R1

Figure 5.3: A) Configuration of structural miter attack on TLLSFLL−Fault B) Miter-

attack-resistant TLLSFLL−Fault.

differences are SF inputs, which can be used to construct secret subkeys. Notice

that this attack exploits the fact that one can infer the key of SF-based locking

constructions through knowledge of SF inputs. Hence, such an attack is only valid

against TLL extensions of SFLL-style techniques. This attack is shown in Figure

5.3A.

In a base TLLSFLL−Fault locking configuration, such an attack is successful. To

ward against it, a designer can incorporate additional combinational locking within

each restore path. Let us consider replacing each restore path with a buffer locked

by an Anti-SAT block [94, 92], as shown in Figure 5.3B. In this case, the key applied

to each Anti-SAT block determines the functionality of each restore path. Hence,

the suggested miter attack now only identifies currently corrupted inputs for each

Anti-SAT block, rather than the SF inputs in the circuit. This modified design no

longer encodes SF inputs in restore paths, hence, no longer leaks the SF minterms.

93

To unlock this modified configuration, the adversary still must determine all SF

inputs. With this knowledge, they can 1) determine a correct key for each Anti-SAT

block, which restores the necessary SF inputs for each restore path and 2) set each

TLL subkey to restore the remaining SF cubes. Thus, the SAT resilience derived

in Thm. 5.2 holds and TLLSFLL−Fault maintains security against this miter-based

structural attack.

5.1.4 Enhancing Alternative Techniques With TLL

TLL is an enhancement of existing logic locking art. However, to this point, we

have only provided a single concrete TLL construction, TLLSFLL−Fault. Therefore,

to show how TLL can be used to achieve equivalent functionality in alternative

locking techniques, we present another example of TLL-enhanced logic locking,

TLLAnti−SAT . A block diagram of TLLAnti−SAT is included in Figure 5.4.

In the figure, 2 Anti-SAT blocks are incorporated within the circuit. These

blocks serve as the core element of Anti-SAT locking, injecting error within the

circuit for a specific, key-driven minterm [94, 92]. Note that each Anti-SAT block

has been provided an entirely independent subkey (K0, K1), which serves as the

secret key of TLLAnti−SAT . A restore multiplexer has been incorporated to select

the Anti-SAT block currently injecting error within the circuit. This multiplexer

is controlled by the current state of the TLL restore unit, which switches between

states on 2 arbitrary (e.g. randomly selected) input minterms (in0, in1).

94

0 1

TLL Restore Unit

Anti-SAT 1
(K0) Anti-SAT 2

(K1)

Restore
Mux
(RM)

in0
in1

Original Circuit

Anti-SAT Error
Injection Gate

...

Original Logic Gate

RU state cycles on
arbitrary inputs (in0, in1)

in out

Figure 5.4: 2-state TLL-enhanced Anti-SAT construction.

This construction uses 2 Anti-SAT blocks to lock a trace of length 2. Be-

cause each Anti-SAT block employs an independent key, each index in the trace

corresponds to a different secret subkey. By applying the approach in Theorem 5.2,

we can show that increases in trace length exponentially scale the SAT resilience

of Anti-SAT. At the core of each presented construction is the same underlying

principles and structures, which allow TLL to provably expand the parametric

space of the underlying locking scheme. To enhance an arbitrary locking scheme

the following criteria must be met:

1. l independent logic locking configurations with independent keys must be

integrated into a single module.

2. An FSM must be integrated into this same netlist, which enables only 1 of

the l independent locking configurations for each state. Each of the l locking

configurations must be enabled in at least one state.

Notice that the 2 presented TLL schemes meet these criteria:

95

• TLLSFLL−Fault: 1) l complete SFLL-Fault configurations are integrated. Each

of the l configurations use an independent subkey and separate SF inputs. 2)

Each TLL state enables a separate subkey and set of SF inputs.

• TLLAnti−SAT: 1) l Anti-SAT blocks are added to the circuit with independent

keys. 2) Each TLL state enables only one of the l Anti-SAT blocks present in

the design.

By the approach in Theorem 5.2, a logic locking scheme that meets these

criteria can be shown to exponentially increase SAT resilience as trace length is

scaled. Thus, a scheme that meets these criteria has been successfully enhanced by

TLL.

5.1.5 Experimental Analysis of TLLSFLL−Fault

We provide an experimental analysis of TLLSFLL−Fault. This analysis is broken

into 3 components. First, we demonstrate that TLL expands the parametric space of

logic locking by validating its theoretical SAT resilience in a series of benchmarks.

Our results show that the empirical SAT resilience of TLL-locked circuits closely

match the theory derived in Section 5.1.3. Second, we use the same benchmarks

to characterize TLL’s overhead and the effects of trace length scaling. Based on

our experiments, we found that TLL achieves exponentially stronger security than

a comparable SFLL-Fault configuration while only incurring an overhead of +3.8%,

-0.8%, and +3.5% for area, delay, and power. Finally, we provide an architectural

example of TLL by locking the 80186 processor netlist that was un-securable using

96

prior art. Using our locking methodology, we show that TLL can simultaneously

achieve both error severity and SAT resilience with detailed architecture-level simu-

lations of the locked IC. For these experiments, we used the 10 largest benchmarks

of ISCAS’89 [10] and ITC’99 [19] to evaluate TLL. These netlists are identical to

those used by SFLL [103] to enable a direct comparison.

5.1.5.1 Experiment 1: SAT Resilience of TLLSFLL−Fault

We characterized the SAT resilience of TLL within our 10 benchmark circuits

to experimentally verify the theory derived in Section 5.1.3.1. Specifically, we

aimed to evaluate whether the probabilistic derivation in Theorem 5.2 is indeed

practically valid, thereby empirically verifying TLL’s ability to expand the para-

metric space of locking. To this end, we experimented with 3 TLL instances,

TLL(s=11,l={1,2,3},c=1). For each TLL instance, we constructed 4 different lock-

ing configurations by randomly selecting alternative sets of minterms to lock. Hence,

for each trace length we had 40 (4 locking configurations * 10 benchmarks) unique

TLL netlists. We SAT attacked each netlist using the SAT attack from [88] and

recorded the number of SAT queries required to unlock each TLL instance. With this

data, we computed the probability of a SAT attack terminating within q SAT queries

per restore unit state. Figure 5.5 displays the observed SAT resilience alongside

the theoretical derivation from Theorem 5.2. The experimental/theoretical results

closely match, supporting our derived results. Notice as trace length is increased,

97

the experimental SAT susceptibility of TLL exponentially decays. This supports

Theorem 5.3 which proves that the SAT resilience of TLL exponentially improves

for a linear increase in trace length.

1 2 3
Trace Length (l)

10 2

10 1

100

P(
SA

T
Qu

er
ie

s <
 q

)

Theory q=2048
Observed q=2048

Theory q=1024
Observed q=1024

Theory q=512
Observed q=512

Figure 5.5: Comparison of the theoretical and experimental SAT resilience achieved with

TLL(s=11,l={1,2,3},c=1).

5.1.5.2 Experiment 2: ADP Overhead of TLLSFLL−Fault

We characterized the area, delay, and power (ADP) overhead of our presented

TLL construction. To do this, we incorporated TLL(s=128,l=2,c=2) within each

benchmark circuit. The corresponding post-mapping overhead was determined using

the Cadence Encounter RTL Compiler with the Synopsys 90nm SAED library.

Additionally, we evaluated an SFLL-Fault implementation with the same error

rate (s=128,c=2) for comparison. The ADP overhead for each benchmark is in

Figure 5.6. On average, we found the ADP overhead of TLL to be 9%, 1.1%, and

7.2%, respectively. When compared to an equivalent error rate implementation

of SFLL-Fault, TLL demonstrated a modification of +3.8%, -0.8%, and +3.5% in

ADP overhead. Therefore, when SFLL-Fault is enhanced with TLL, exponentially

stronger SAT resilience is achieved with only a small additional ADP overhead.

98

s35
93

2

s38
41

7

s38
58

4
b1

4
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
Avg

.
5
0
5

10
15
20
25

Lo
ck

in
g

Ov
er

he
ad

 (%
) Area/Delay/Power Overhead of SFLL-Flex Secured Module

s35
93

2

s38
41

7

s38
58

4
b1

4
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
Avg

.
SF

LL
Avg

.
5
0
5

10
15
20
25

Lo
ck

in
g

Ov
er

he
ad

(%
)

Area Overhead Delay Overhead Power Overhead

Figure 5.6: ADP overhead of TLL(s=128,l=2,c=2). The average ADP overhead of an

equal error rate SFLL(s=128,c=2) construction is shown for reference.

We have characterized the overhead associated with trace length scaling as

well. To do so, we calculated the design overhead of TLL(s=128,l={2,3,4},c=2)

within each of our 10 benchmark circuits. These results have been aggregated in

Figure 5.7. Notice that the average design overhead of TLL increased by +2%,

+0.8%, and a +1% for area, delay, and power as trace length was increased from l=2

to l=3. As we further increased trace length from l=3 to l=4, a slightly smaller ADP

overhead increase of +1.8%, +0.9, and +0.7% was observed. This small reduction in

added area and power overhead was due to the increased combinational optimization

made possible as more functionality was stripped from the circuit. This implies that

as trace length continues to scale, the overhead due to added TLL logic (i.e. LUT

entries and restore unit states) will be increasingly offset by additional combinational

optimization. To conclude, this experiment indicated that a linear increase in trace

length yields a slightly sub-linear increase in ADP overhead. However, for this

increase in overhead, TLL was shown to provide an exponential increase in SAT

resilience. Hence, TLL provides an efficient trade-off between ADP overhead and

security.

99

2 3 4
Trace Length (l)

0

5

10

15

Av
g.

 O
ve

rh
ea

d
(%

) Area Delay Power

Figure 5.7: Average area, delay, and power overhead of trace length scaling for

TLL(s=128,l={2,3,4},c=2).

5.1.5.3 Experiment 3: Security of TLL Beyond the Gate Level

We used TLL to lock the 80186 core found to be un-securable by logic locking

in Section 4.3. By evaluating TLL in this netlist, we explore its ability to secure

real-world ICs.

TLL Configuration:

We began by designing a TLL construction capable of achieving security within

the data path of our 80186 netlist. Note that conventional logic locking was unable

to achieve security in this netlist (Section 4.3). Using the design space exploration

in Figure 4.4, we were able to quantify the wrong key error rate necessary for

error severity. From the figure, this corresponds to the wrong key error rate of an

SFLL-Fault configuration requiring between 1024 and 4096 SAT queries to unlock

on average. According to Theorem 4.2, this corresponds to an error rate of 0.02%

and 0.08%, respectively.

We designed 2 TLL constructions, TLL(s=17,l=?,c=16) and TLL(s=17,l=?,c=64),

to exceed an error rate of 0.02% and 0.08%. Next, we selected a trace length which

allows TLL to achieve strong SAT resilience given each wrong key error rate. To

100

do so, we aggregated the SAT resilience of TLL for varying trace lengths in Figure

5.8. Given a trace length of 8, there exists a negligible probability (2−128 and 2−512

respectively) of a SAT attack locating a correct subkey in < 216 queries per restore

unit state. This constitutes extremely strong SAT resilience. Therefore, we used a

trace length of 8 for each construction. Finally, we randomly selected input minterms

for locking and incorporated TLL(s=17,l=8,c=16) and TLL(s=17,l=8,c=64) into

the data path of the 80186 netlist. To evaluate each IC, we the ObfusGEM simulator

[115].

Simulation Framework:

Using the ObfusGEM simulator, we performed cycle-accurate simulations of

locked ICs to quantify the rate with which a given locking construction induced

critical failures in IC workloads. This failure rate serves as a measurement of the

error severity of a given locking configuration. For these simulations, we chose 9

PARSEC benchmarks [7] to serve as a reasonable cross-section of common comput-

ing applications.

1 2 3 4 5 6 7 8 9 10
Trace Length (l)

2 512
2 384
2 256
2 128

20

P(
SA

T
Qu

er
ie

s <
 q

)

TLL(s = 17, l, c = 16) :
TLL(s = 17, l, c = 64) :

q=216

q=216
q=215

q=215
q=214

q=214

Figure 5.8: SAT attack resilience of a locked 80186 netlist with varying trace length TLL

constructions.

101

TLL
(s=17,l=8,c=16)

TLL
(s=17,l=8,c=64)

0.0

0.25

0.5

0.75

1.0

%
 B

en
ch

m
ar

k
Ru

ns
wi

th
 U

nr
ec

ov
. E

rro
r blackscholes

bodytrack
dedup
ferret
fluidanimate
freqmine
streamcluster
swaptions
x264
Average

Figure 5.9: Experimentally derived error severity for TLL-secured 80186 netlist running

PARSEC workloads.

Experimental Results:

We quantified the error severity of each TLL construction with our simulation

framework. Specifically, we performed 40 Monte Carlo simulations of each PARSEC

benchmark with a different, randomly-selected wrong key for each trial. Hence, each

Monte Carlo trial induced output corruption for a different set of input minterms

in the processor. The percent of PARSEC benchmark runs with unrecoverable

errors for each TLL configuration is in Figure 5.9 alongside the corresponding ADP

overhead in Table 5.2. Based on the simulation results, both TLL configurations

achieved error severity. The first configuration, TLL(s=17,l=8,c=16), achieved an

average benchmark failure rate of over 80%. This result implies that an untrusted

foundry pirating this locked IC would find 80% of workloads to fail. The second TLL

configuration, TLL(s=17,l=8,c=64), showed even stronger error severity, causing

97% of workloads to fail given a wrong key. We now turn our attention to SAT

resilience. In Figure 5.8, we have aggregated the SAT resilience achieved by each

TLL construction over varying trace lengths. Because the SAT resilience of TLL-

enhanced locking techniques grows exponentially in trace length, relatively short

102

trace lengths achieved extremely strong SAT resilience. Given our selected trace

length of 8, there exists a negligible probability (2−128 and 2−512 respectively) of a

SAT attack successfully locating a subkey in less than 216 SAT queries per restore

unit state. This indicates strong SAT resilience within each netlist.

TLL Construction Area Delay Power

TLL(s=17,l=8,c=16) 3.30% 0.00% 3.42%

TLL(s=17,l=8,c=64) 12.40% 6.43% 15.6%

Table 5.2: ADP overhead for TLL-secured 80186 core.

Finally, we note that the first TLL configuration, TLL(s=17,l=8,c=16), achieved

security with minimal design overhead, with only a ∼3% degradation in area/power

and no delay overhead. The second TLL configuration, TLL(s=17,l=8,c=64), ex-

hibited a higher overhead, however, provided much stronger security guarantees

to compensate for this additional overhead. Therefore, both TLL constructions

simultaneously achieved strong error severity and SAT resilience guarantees with

only modest design overhead degradation. The conclusions of this experiment can

be summarized as follows:

1. Due to the identified parametric space, logic locking techniques with a feasible

overhead were unable to achieve error severity and SAT resilience in this netlist

(Sec. 4.3).

103

2. By enhancing conventional locking with TLL, a locking configuration was de-

signed and empirically shown to achieve both error severity and SAT resilience.

Therefore, through trace length scaling, TLL expanded the parametric space

of locking, overcoming the limits of prior art.

5.1.6 Conclusion

We proposed Trace Logic Locking (TLL) to expand upon the trade-off between

error severity and attack resilience derived in Section 4.1. TLL is a provably secure

and scalable enhancement to existing logic locking techniques which locks a sequence

of primary inputs, known as a trace. By locking traces, TLL expands the parametric

space of logic locking. This allows an IC designer to achieve both error severity and

SAT resilience by varying trace length. We provided a theoretical and empirical

demonstration of this. The low overhead nature of TLL was verified as well in

10 benchmark circuits. Finally, TLL was used to secure a real-world 80186 core.

Through architectural simulations, we showed that TLL achieved both error severity

and SAT resilience simultaneously.

5.2 Memory Locking

We continue by proposing another logic obfuscation technique capable of com-

prehensive security guarantees despite the trade-off between error severity and attack

resilience. However, instead of injecting an additional degree of freedom into the

parametric space of locking, we instead take a different approach by targeting

104

non-combinational modules. We introduce an automated and attack-resistant ob-

fuscation technique, called Memory Locking, which targets on-chip SRAM. We

then demonstrate the application-level effectiveness of Memory Locking through

ObfusGEM simulations of obfuscated processors.

5.2.1 Memory Locking Construction and Implementation

To remedy the issues underlying combinational obfuscation presented in the

previous chapter, we propose Memory Locking, a logic obfuscation technique focused

on denying on-chip SRAM functionality to the adversary. The SRAM circuit is

targeted for 3 reasons. 1) SRAM circuitry dominates processor area and is involved

in most processor functionality. This provides flexibility in obfuscatable location

and functionality. 2) SRAM contains a delicate analog/timing balance. This leads

to discrete-domain attack resilience and easily induced errors. 3) SRAM arrays are

generated with design automation which can be leveraged to incorporate Memory

Locking.

Tunable Delay Buffer

Key0 Key0
T1 T2

T3

Key1 Key1

VDD

M6M5

M2 M4

M3M1

WL

BLBL

Q
Q

Figure 5.10: Memory-locked SRAM cell.

105

More specifically, Memory Locking is the insertion of tunable delay buffers

(TDB), contained in the box in Figure 5.10, within buffer step-up chains of the

bit-lines and word-lines of on-chip SRAM arrays. These TDBs enable the key-driven

modification of the parasitic capacitance on these lines thereby altering the analog

signature (drive strength, power leakage, timing, etc.) of any attached SRAM cells.

Throughout the remainder of this work, we will rely on an abstraction called

the ϕ value of an SRAM cell, which characterizes the current state of analog

parameters a cell is operating in. We use this because an SRAM cell is designed

for multiple interrelated parameters including relative word/bit-line timing, power

leakage, cell sizing, drive strength, and cycle timing. The raw values of each of

these variables are irrelevant as Memory Locking relies primarily on the divergence

of these variables from the values the SRAM cell was designed for. Fundamentally,

memory locks act to upset the SRAM cell state from the unique designed for state,

ϕcorrect, to an non-unique incorrect state, ϕincorrect, when improperly keyed.

5.2.1.1 Memory Locking Example

A basic example of a memory locked circuit is contained in Figure 5.10. First,

we focus on the functionality of the labeled TDB circuit, T1-T3, located on the bit-

line of Figure 5.10. When a ’1’ is applied as key0 to the pass transistors (T1 and T2),

a parasitic capacitance is created through the gate/source-drain of T3 and added to

the bit-line. Applying ’0’ as key0 would not connect the parasitic capacitance (T3)

to the circuit. At a fundamental level, by modifying the key, Memory Locking acts to

106

modify parasitics on the bit/word-line. This added parasitic alters the bit/word-line

drive-strength, leakage, timing, and other analog parameters. Utilizing this, when

a correct key is applied to the IC, the signal modifications created by memory locks

induce a designed for state. In an improperly keyed IC, an unintended parasitic

is introduced which upsets the analog equilibrium of the SRAM array and induces

errors.

Now, let us assume the memory locked SRAM circuit displayed in Figure 5.10

was designed to have a correct key value of ’10.’ If an untrusted foundry were to

fabricate this circuit and incorrectly apply the key ’11,’ both a write error and read

error state would be induced. In the case of a write, no value would be stored in

the SRAM cell because the pass transistor (M6) is no longer able to overpower the

value held in the SRAM cell inverter (M3 and M4) due to the increased bit-line

capacitance. Note that this error is due to the drive-strength of the bit-line rather

than bit-line timing. While relaxing timing might help to alleviate this error, a

sufficiently large TDB would restrict the bit-line charge from ever overpowering the

SRAM cell, inducing an error regardless of timing. In the case of a read, a read

error would occur as the SRAM cell would be unable to pull the bit-lines apart

rapidly enough to ensure accurate sense amplifier functionality, once again due to

the increased capacitance. Again, as is the case for a write, a sufficiently large TDB

would yield a bit-line too capacitive to be overpowered by the SRAM cell, inducing

an error regardless of timing. Each alternate wrong key results in similar analog

and timing issues within the locked cell.

107

5.2.2 Relationship to Prior Work

Notice that Memory Locking relies on similar structures to delay locking [93],

but utilizes them differently. TDBs are utilized in Memory Locking to modify the

analog signature of an SRAM array (i.e. power leakage, drive strength, etc.) rather

than to create timing violations within combinational paths as was the case in [93].

Memory Locking targets bit/word-lines because these lines must have sufficient drive

strength to deliver power to overwrite internal SRAM transistors on a write, but

also capable of being overpowered by these same transistors on a read for accurate

functionality. By modifying analog parameters with TDBs and SRAM ϕ values,

Memory Locking creates security through inducing a challenging analog design

problem with many interdependent variables rather than the combinational timing

focus of [93].

5.2.2.1 Locking Large Scale SRAM Arrays

As we scale Memory Locking, a security limitation presents itself. Assuming

the SRAM array was symmetric, the ϕ value for every cell is identical and therefore

each SRAM cell will have the same correct key. An adversary could reverse-engineer

the correct key for one cell and replicate this key for all other cells, unlocking the

whole SRAM array. This is due to lack of diversity in ϕ values. Because of this

simple intuition and the symmetry of SRAM arrays, Memory Locking as described

would be limited in key-space and security.

108

Key3

Key1

Key1

Key0

Key0

Key4

Key3

Key2

Key2

φ2φ1φ0

φ3 φ4 φ5

φ6 φ7 φ8

Key4

Figure 5.11: 100% unique ϕ value memory locked 3x3 SRAM.

We can create diversity through ensuring multiple unique ϕcorrect values through-

out the SRAM array. By placing non-keyed parasitics within SRAM cells through

small, but random deviations in cell parameters, the designer can create unique

ϕcorrect values for each cell (or set of cells). Each of these ϕcorrect values have a

unique correct key which should be at least 1 bit, but could be longer. As we linearly

increase the number of unique ϕcorrect values, the attacker will face an exponential

increase in the searchable key-space, therefore an exponential increase in the required

reverse engineering effort. Finding the correct key for a cell in isolation does not

guarantee a solution for cells with alternate ϕcorrect values.

By designing for multiple ϕcorrect values throughout the array, the adversary

is forced to redesign the SRAM array in its entirety in the process of solving for the

correct key. This is unrealistic given that 50-90% of the transistor count on modern

CPUs is devoted to SRAM circuitry [59]. In Figure 5.11 we show the topology of a

memory locked SRAM array containing a unique ϕcorrect value for each SRAM cell.

109

5.2.2.2 Memory Locking Implementation

Memory layout is generally performed with an SRAM compiler. These tools

strive to lessen the time required to layout the large area of SRAM cells that span

modern ICs. We propose a methodology for the design automation of a memory

locked SRAM array leveraging the feature set of openRAM [28], an open-source

SRAM compiler. Despite our focus on openRAM, nearly every modern SRAM

compiler shares the functionality necessary to implement this methodology.

To automate a memory locked layout, two additional custom blocks, a TDB

and a parasitic capacitance with parameterizable sizing, must be included in the

SRAM compiler. First, the IC designer would tile an array of SRAM cells for a

specific architectural block (i.e. register file). Depending on the level of security

desired, a certain set of unique ϕ values are chosen. These values are distributed

randomly across the SRAM cells. Based on the ϕ value, each cell is redesigned to

include a certain internal parasitic capacitance.

Following array layout, TDBs are added on bit/word-lines utilizing the com-

piler’s timing analysis tool to size these locks. Note that each unique ϕ value

corresponds to a unique Memory Locking formulation and requires at least 1 key bit.

The total number of key-bits corresponds to the total number of unique ϕ values

in the SRAM array. Following said modifications, the IC designer proceeds with

a standard design flow, adding peripheral circuitry as required. This automated

methodology yields a memory locked SRAM with a given key.

110

0 20 40 60 80 100
Percent of SRAM Cells with Unique Values

1.0

1.1

No
rm

. O
ve

rh
ea

d

1.013
1.03

1.0704
1.1156

1.141

Timing Overhead

Figure 5.12: Memory locking security/timing overhead trade-off.

Leveraging the proposed methodology, we designed a 6x6 SRAM array to

explore the effects of Memory Locking in a slightly larger circuit. This array was

designed using FreePDK15 [6], an open-source, 15nm, predictive-process library and

simulated using HSpice. With these tools, we were able to design a 15nm SRAM

cell, tile it into a memory locked 6x6 array, and add peripheral circuitry to the array.

By cycling the inputs to our decoder, we were able to simulate memory traffic with

accurate timing and control signals.

By sweeping over the percentage of unique ϕ values present in the array, we are

able to quantify the timing overhead of Memory Locking. Because SRAM cycle time

is dictated by the capacitance of the circuit, increases in unique ϕ values cause a

degradation of the minimum cycle time of the array. We quantified the relationship

between unique ϕ values and circuit timing degradation in Figure 5.12. Note that

a linear increase in the percent of unique ϕ values yields a linear increase in timing

overhead while exponentially increasing key-space.

111

5.2.3 Security Analysis of Memory Locking

5.2.3.1 Tool-Driven Approach

The automated nature of Memory Locking might drive concerns of an adver-

sary using similar tools to determine the correct key for a memory locked SRAM.

While the attacker has access to circuit details, they would need to perform detailed

row/column simulations for any SRAM cell with a unique ϕ value and a memory

lock on an associated bit/word-line. For each cell, the attacker must apply a key

to the array and then read/write both a ’1’ and a ’0’ at each locked cell to verify

it. To verify that a read stability error does not occur, the attacker must perform

two consecutive reads for each word-line while storing both a ’1’ and a ’0’. To

verify the write capability from any state, the adversary must write each cell from

’1’ to ’0’ and ’0’ to ’1’. This process would require 9 read/write operations and

hence 9 clock cycles in the best-case to achieve. This series of read/writes must

take place for each locked cell in the SRAM array for each key guess. This implies

that unlocking a register file, one of the smallest on-chip SRAM arrays, with a 64-bit

key, corresponding to 64 memory locks with unique ϕ values, and 64, 64-bit registers

would require over 6.8 ∗ 1023 cycles to unlock. This is unrealistic.

5.2.3.2 SAT Based Approach

SAT-based formulations, including those which target timing based locking,

such as TimingSAT [40, 12], do not apply to Memory Locking. This is due to the

feedback loop and internal state present in each SRAM cell. This feedback loop

112

leads to a recursive and thus unresolvable SAT formulation. We direct the reader

to Lemma 1 from [108] which states that if a feedback loop in a circuit is stateful,

SAT attack will enter an infinite loop. Given that memory is inherently stateful,

Memory Locking becomes SAT-unresolvable.

5.2.3.3 Removal Attack

In this case, we assume the adversary has removed all TDBs from SRAM

circuitry. This creates a non-functional circuit as the SRAM array was designed

to function given only the correct key configuration which includes added parasitic

capacitance from the memory locks.

5.2.3.4 Redesign Based Attacks

One can argue that locked, on-chip SRAM arrays could be selected from the

layout and replaced by an unlocked SRAM array of the same size. However, such

an attack is also unrealistic. The primary concern is that 50-90% of transistor

count within modern processors is involved in SRAM circuitry [59]. Even with the

help of SRAM automation tools, searching through, removing, and then redesigning

this portion of IC transistor count is a massive undertaking. On-chip memory is

distributed in several smaller modules such as pipeline registers, register files, branch

predictors, etc. A complete “find and replace” of all these locked modules with

unlocked modules while matching the timing, area, etc. characteristics is quite

a challenging endeavor. We also emphasize that conventional locking approaches

113

are subject to such ”find and replace” attacks as the functionality of targeted

combinational modules, such as an adder, multiplier, instruction decoder, etc., is

generally known.

5.2.4 Memory Locking Security Beyond the Gate Level

5.2.4.1 Simulator Overview

For this work, we leveraged ObfusGEM to close the loop between module-level

obfuscation and its application-level impact. To do so, we incorporated various

locking techniques within an 80186 processor netlist. A fault analysis of the netlist

was performed for a given key and the errant minterms remaining in the circuit were

incorporated into the GEM5 simulator model of the core. Workloads could then be

run on the GEM5 model of the locked netlist to evaluate the application-level impact

of module-level locking.

We configured our simulator to mimic a logically obfuscated 80186 core running

a Linux operating system. We performed our architectural benchmarking using

benchmarks from the PARSEC benchmark suite [7] and aggregated the results of

40 monte-carlo simulation runs of each benchmark and processor configuration to

quantify the impact logic obfuscation had on timing overhead, error rate, and error

severity. We define error severity as the number of operations successfully executed

until an unrecoverable error occurs in the processor, indicating the amount of work

114

completed before obfuscation related errors derail the core. We define error rate

as the percent of benchmark runs which do not complete successfully due to errors

injected from logic obfuscation.

5.2.4.2 Simulation Results

We have investigated the architectural impact of both state-of-the-art gate-

level locking and Memory Locking. In this section, we present the simulation

results derived using the methodology laid out in Section 5.2.4.1. For space, we only

include results for the optimal configuration of each technique in Figure 5.13. In our

consideration of Memory Locking, we target on-chip memory modules used for the

integer register file, floating point register file, data cache tag, and data cache data

field. We model Memory Locking using randomly selected keys of various lengths at

each of these locations. We initially consider Memory Locking in a single location.

Stand-Alone Memory Locking: Based on simulation results for each Memory

Locking location, locking the data cache tag performed optimally. As seen in

Figure 5.13, any key length greater than 32-bits yielded 100% application-level

error rates for each workload within the first 100 operations executed. This implies

that minimal useful work could be performed. Compare this to the performance of

conventional logic obfuscation in Figure 4.5 where 0% application-level error rates

were recorded for SAT-resilient obfuscation configurations.

115

Figure 5.13: Error rate and severity results for optimal Memory Locking configurations of

80186 core running PARSEC suite.

In addition to the application-level security of Memory Locking, the incurred

timing overhead was also much lower than the SFLL locked processor as shown in

Figure 5.14. For brevity, we have only shown results for 100% unique ϕ value

Memory Locking, the worst case timing overhead. These significantly reduced

overheads are due to the inclusion latency hiding techniques (i.e. out-of-order

processing, cache-banking, etc.) within the IC. These techniques, architected to hide

memory latency, were able to amortize the 14.1% latency overhead from Memory

Locking for all locations except integer register file locking. This is unsurprising as

the integer register file latency dictates the cycle time of this processor; therefore, no

116

1.00

1.05

1.10

1.15

No
rm

al
ize

d
Ti

m
in

g
Ov

er
he

ad

1.000
1.0281.030

1.010
1.0291.0321.038

1.141

1.054

No Lock
Cache Tag
Data Cache
Float RF
Float RF & Cache Tag
Float RF & Data Cache
Data Cache & Cache Tag
Integer RF & Any Pair
SFLL

Figure 5.14: Average obfuscation timing overhead on 80186 core running PARSEC.

overhead could be amortized. Data cache tag Memory Locking exhibited only a 2.8%

runtime overhead compared to the 5.4% overhead reported by SFLL, a significant

improvement.

Paired Location Memory Locking: We performed pairwise simulations of all

combinations of 2 Memory Locking locations with an equal key distribution to

investigate the effect of locking diversity on application-level security. We found

the optimal pairwise configuration to be cache tag and floating point register file

Memory Locking. Multiple locking locations as a whole appear to perform better

than their single location counterpart. This is likely due to the diversity in processor

functionality locked, thereby inducing more diversity in errors. When considering

the optimal stand alone and pairwise Memory Locking configuration, as shown in

Figure 5.13, the benefit of diversity seems reduced. Cache tag and floating point

register file locking with a 128-bit key caused 100% of workloads to encounter an

unrecoverable error within the first 100 operations. This performance is similar to

stand alone cache tag locking; however, notice that the pairwise application-level

error rate is higher regardless of key length. When considering the amortized

timing overhead in Figure 5.12, the optimal pairwise and stand alone Memory

Locking configurations perform similarly, with paired locking exhibiting a 2.9%

117

overhead compared to the 2.8% overhead of stand alone data cache tag locking.

As before, Memory Locking appears to significantly outperform SFLL regardless of

configuration.

Combinational Obfuscation: In Section 4.3, we used SFLL [103, 75, 74] and

Anti-SAT [94, 92] to lock 2 processor netlists using the methodologies proposed

by the authors. We demonstrated a successful attack methodology to unlock the

control path circuitry and an approximate attack to partially unlock the data path

circuitry. Even with gate-level error remaining in the data path circuitry, simulation

results demonstrated a 0% application-level error rate, as seen in Figure 4.4.

5.2.5 Conclusion

In this section, we proposed a logic obfuscation technique to obfuscate SRAM

circuitry, called Memory Locking, and a corresponding automated implementation

methodology. Using ObfusGEM, we evaluated Memory Locking and state-of-the-art

combinational logic obfuscation at the architecture-level. Based on our results for

the simulated architecture, we found 64-bit cache tag/64-bit floating point register

file combined Memory Locking, or 128-bit cache tag Memory Locking to perform

optimally. However, other architectures and techniques may result in different

optimal configurations.

118

5.3 High Error Rate Keys (HERK)

To continue, we propose a third logic obfuscation scheme aimed at securing

probabilistic circuits in particular. As noted in Section 3.6, prior work, such as

[51, 56, 113], has demonstrated that probabilistic IP is vulnerable to piracy and

reverse engineering via SAT-style attacks. As a result, a SAT-concerned designer

must utilize low-error logic obfuscation techniques to prevent SAT-style attacks (see

Section 4.1). Based on the simulation results presented in Section 4.4, this severely

limits the efficacy of obfuscation when considered beyond the gate level. In this

section, we introduce an obfuscation technique for probabilistic circuits, known as

High Error Rate Keys (HERK), which utilizes the inherent probabilistic/uncertain

behavior in a probabilistic circuit to hide the correct secret key under stochastic

noise. Such an approach enables high-error obfuscation schemes to resist SAT-style

attacks within probabilistic circuits. As a result, designers can configure obfuscation

within probabilistic circuits capable of simultaneously achieving both a high SAT

attack resilience and error severity. This allows strong comprehensive security to be

achieved, thereby protecting probabilistic IP from piracy and reverse engineering.

After introducing HERKs in this section, we empirically affirm their security guar-

antees against the StatSAT attack, a SAT attack proven to be capable of unlocking

probabilistic IP in [51, 113].

119

5.3.1 Overview of High Error Rate Keys (HERK)

We now introduce our novel logic locking scheme called High Error Rate Keys

(HERK) to counter the StatSAT attack. HERKs are key gates inserted on high

error rate wires in probabilistic circuits. Such an approach hides the correct key

value (i.e. correct HERK function) under high probabilistic noise present at the

insertion point. This makes it extremely hard for a SAT solver to infer the correct

key (i.e. correct function) of any logic locking influenced by HERK function. We

show that this leads to an exponential increase in StatSAT runtime for a linear

increase in the number of inserted HERKs. Our proposed approach distinguishes

itself from prior locking art by using naturally occurring high-error locations unique

to probabilistic circuits to achieve security. As we show, by combining HERKs with

deterministic locking, both SAT-style attacks and other prevalent attacks on locking

can be mitigated to protect previously vulnerable probabilistic design IP.

The proposed HERK structure is shown in Figure 5.15. To implement the

construction in this figure, a designer must first identify locations in the circuit

that exhibit a high error rate (i.e. wires where probabilistic behavior makes wrong

signal values likely). The error rate at each location in the circuit can be calculated

via Boolean Difference Calculus (see Sec. 3.5). However, the calculated error rate

on a wire is dependent on the considered input pattern. Ideally, HERKs will be

inserted at high error rate locations for a large set of input patterns. We propose

the following approach to find high error locations for HERK insertion.

120

First, some set of random inputs (or input probabilities) is selected. Next,

Boolean Difference Calculus is used to calculate the BER at each location in the

(correctly-keyed) circuit for each input. The BER calculation is then averaged over

all inputs for each location. The wires with the highest average BER likely exhibit

error for a sizable subset of the considered inputs, making them ideal locations for

HERK insertion. Finally, a XOR gate is inserted on the highest average BER wires,

driven by the identified wire and an added key input. A XOR gate is used due to

its minimal error masking properties compared to other gates (i.e. any single input

error necessarily results in an output error for a XOR gate). The added XOR gate

is known as a High Error Rate Key (HERK). We propose inserting many HERKs

into the circuit in this fashion to ensure security.

FANIN 2
PO

PI

Key0
HERK

FANIN 1

PI FANOUT 1
...

Figure 5.15: Sample HERK insertion into probabilistic circuit.

In probabilistic circuits, high error wires often exhibit error rates that exceed

50% for specific input patterns [50]. This can be observed in the initial work

proposing StatSAT as well, where the worst-case BER among only outputs (not

all wires) exceeds 50% in 20 of 23 examined circuits [51, 113]. HERKs inserted at

these locations exhibit extremely high error rates. This is by design as HERKs aim

to hide their key value under probabilistic noise on a high error rate wire. Thus, in

any oracle circuit, the actual functionality of the HERK is extremely hard to infer.

121

This obfuscates not only the key value (correct function) of the HERK gate, but also

the key value (correct function) for any locking structures that rely/influence HERK

functionality. This property of HERKs is shown to ensure StatSAT resilience.

5.3.2 Evaluation of High Error Rate Keys (HERK)

We now assess the security guarantees and design ramifications of HERKs.

Specifically, we consider 2 prevalent attack families against logic locking (StatSAT

and removal) alongside a discussion on design overhead and implementation. Our

goal is to show how HERKs can leverage high-error locations that naturally occur

in probabilistic circuits, the feature differentiating HERKs from prior art, to secure

probabilistic IP.

5.3.2.1 StatSAT Resilience

The StatSAT attack is a security threat for locking in probabilistic circuits

[51, 113]. An overview of the StatSAT attack is in Sec. 3.6. We propose HERKs

to counter this threat. To show this, remember that StatSAT assigns a “don’t-

care” state for any primary output (PO) whose BER exceeds a user-specified BER

threshold for a considered DI. This eliminates the possibility of using a wrong value

for the PO, which would exclude the correct key from consideration. However, an

unspecified PO also cannot be used to eliminate wrong keys either. HERKs exploit

this feature of StatSAT by inserting key gates at high error locations for a set of

inputs. Whenever any of these high error inputs are selected as a DI during the

122

StatSAT attack, the HERK gate has high output error. This error propagates to

one or more POs. Remember, the error rate of both HERKs and POs commonly

exceed 50% for these high error inputs [50]. Thus, these inputs likely result in the

BER threshold being exceeded and the PO being specified as “don’t-care”. StatSAT

handles this in 3 ways that each degrade attack performance.

1. StatSAT Forks: High error inputs to HERKs leads to unspecified POs. An

unspecified PO cannot be used to eliminate keys. Hence, StatSAT cannot

eliminate keys for the HERK (or any locking dependent on the HERK). If few

(or no) keys can be eliminated, the SAT solver will return the same DI for the

next iteration. This causes StatSAT to fork. Thus, an exponential number

of SAT instances in the number of POs affected by HERKs are required to

unlock the circuit. By inserting each HERK to affect at least 1 unique PO,

the SAT instance count will scale exponentially in the number of HERKs.

2. StatSAT Cannot Fork: If the StatSAT instance limit (Ninst) is reached,

further forking is prohibited. StatSAT force proceeds by guessing the most

likely PO value. If wrong, the correct key is eliminated from consideration.

3. Low Quality CNF Clauses: Defined POs can still be used to eliminate

wrong keys. However, because HERK-related POs are unspecified, the re-

sulting CNF cannot be used to infer the key value for the HERK (or any

HERK-influenced logic). This reduces the number of keys that can be elimi-

nated for a DI, requiring that more DIs be found (i.e. more SAT iterations)

to infer HERK-dependent keys and unlock the circuit.

123

Each possible way that StatSAT handles HERKs for high error inputs causes

performance degradation. In the worst case, the correct key is excluded from the

key space, or the number of SAT instances to unlock the circuit is exponential in

the number of HERKs. In the best case, many more SAT iterations are needed. As

a result, we experimentally show that StatSAT runtime scales exponentially in the

number of HERKs.

5.3.2.2 HERK Attack Resilience

We consider 4 ways that an attacker could attempt to tune StatSAT (or the

locked circuit) to mitigate HERKs. For each case, either 1) the IC designer can

make it impossible for such an attack to succeed, or 2) the attack is severely limited

in practicality.

1. Raise BER Threshold: The BER threshold can be increased such that the

BER at any PO will not exceed it. Thus, high error inputs do not produce an

unspecified PO. However, a high BER threshold risks incorrectly guessing a

PO’s value, excluding the correct key. This is why the PSAT attack [56] often

fails to find the correct key.

2. Ignore HERKs (i.e. Removal): One could assume because HERKs corre-

spond to high error (nearly arbitrary) points in the circuit that simply ignoring

them should not have much effect. However, error is input dependent [50].

Nodes may be high error for some inputs and critical for others. HERKs

124

greatly impact functionality for low-error input patterns, which are likely

critical, thus they cannot be removed. We consider removal in detail in Sec.

5.3.2.4.

3. Increase Allowable SAT Instances: To avoid excluding the correct key

due to SAT instance limits, one could greatly increase this limit. However,

the required number of SAT instances is exponential in the number of HERK

gates. Such an approach quickly becomes infeasible.

4. Reduce Allowable SAT Instances: To avoid an exponential number of

SAT instances, the instance limit could be kept low. However, once the limit

is reached, StatSAT “force proceeds” by guessing poorly defined PO values. If

a wrong value is assumed, the correct key is eliminated.

5.3.2.3 Experimental Analysis

Now, we experimentally evaluate the StatSAT resilience of HERKs. We imple-

mented HERKs alongside conventional locking (SFLL/SLL) in each of the bench-

marks used to evaluate StatSAT in [51]. The characteristics of each benchmark

circuit is summarized in Table 5.3. To implement HERKs within these StatSAT

evaluated benchmarks, we selected 1000 random input patterns and used Boolean

Difference Calculus [50] to estimate the error on each wire in the circuit. A HERK

(XOR gate) was then inserted, driven by the wire containing the highest average

error and an added key input. A separate set of 1000 inputs were used for each

HERK insertion and no 2 HERKs were inserted at the same location. Additionally,

125

we considered only the lowest gate error (ϵg) version of each circuit. This corresponds

to the lowest PO BER, hence, it is the hardest for HERKs to secure. HERK security

at a smaller gate error rate implies security for higher error rates in a given circuit.

Because we use Boolean Difference Calculus to estimate BERs, HERK insertion

can occur prior to introducing probabilistic behavior to the circuit. In fact, as long

as there is a fixed relationship between the error in each gate, the optimal HERK

insertion point at a lower gate error will always correspond to the optimal HERK

insertion point at a higher gate error rate. Thus, with a fixed gate error distribution

for all gates, HERK insertion can be done without knowledge of the exact gate error

rate in a design. We recommend such an approach to enable the designer to scale

probabilistic behavior such that HERKs do not impact design error specifications.

Circuit Obfuscation Key Tot. Locking Gate Error Comp-

Name Scheme PIs Inputs Gates Gates POs Rate (%) lexity

c3540 SFLL-HD [103] 50 16 2434 736 22 1.25 Low

c7552 SFLL-HD [103] 207 16 4826 1163 108 2.0 Med.

seq SFLL-HD [103] 41 16 5326 260 35 6.0 Med.

ex1010 SLL [64] 10 253 4231 732 10 0.4 Med.

b14 SFLL-HD [103] 277 16 11156 1307 299 0.5 High

b15 SFLL-HD [103] 485 16 15410 1312 519 0.2 High

Table 5.3: Locked benchmark circuit characteristics.

We launched the StatSAT attack against each benchmark containing 1 to 4

HERKs. The uncertainty and BER thresholds (Uλ and Eλ) for StatSAT was set to

the highest possible threshold capable of recovering the correct key for the baseline

126

0 1 2 3 4
Number of HERKs

25

28

211

214

T/O

St
at

SA
T

Ru
nt

im
e

(s
)

0 1 2 3 4
Number of HERKs

25

26

27

28

29

T/O

SA
T

Ite
ra

tio
ns

Benchmarks : b14 b15 c3540 c7552 ex1010 seq

0 1 2 3 4
Number of HERKs

21

23

25

Max
(26)

SA
T

In
st

an
ce

s

Figure 5.16: Runtime, SAT iterations, and SAT instances required by StatSAT to unlock

each HERK-secured benchmark circuit. An ‘x’ for any data point indicates that StatSAT

was not able to locate a functionally correct key.

(i.e. 0 HERK) circuit. This ensures that increasing the BER threshold cannot be

used to bypass HERK-based locking as the correct key would not be recovered.

For a given run, if StatSAT did not recover a correct key with its uncertainty and

BER threshold, we lowered each in 1% increments and relaunched the attack. This

continued until either a correct key was found, the SAT instance limit was reached,

or a 30 hour timeout was reached. The SAT instance limit (Ninst) was set to 128 to

avoid unbounded exponentiation.

The resulting StatSAT runtime, SAT iterations, and SAT instances required

to unlock each benchmark are in Fig. 5.16. An ‘x’ for any data point indicates that

StatSAT did not find a correct key. We make 3 observations from these results.

1. No correct key could be located in 30 hours when 4 HERKs were applied,

regardless of the considered benchmark circuit. This indicates that strong

StatSAT resilience can be achieved with only a few HERKs.

127

2. The 3 mechanisms by which StatSAT responds to a HERK-induced unspecified

PO can be readily observed for each benchmark. 1) The number of SAT

instances increases exponentially in the number of HERKs. 2) Once the SAT

instance limit is reached, StatSAT cannot locate the correct key (due to wrong

PO values being assumed for suppressed forks). 3) The SAT iterations needed

to locate the key increases with the number of HERKs.

3. StatSAT runtime increases exponentially in the number of HERKs. This is

the key takeaway. It indicates that even a small number of HERKs causes

an infeasible StatSAT runtime. Hence, our experimental results indicate that

HERKs provide strong StatSAT resilience.

5.3.2.4 Removal Resistance

A removal attack is a common structural attack where the adversary locates

and removes locking structures from a circuit to recover a functional chip [100, 95,

47]. HERKs resist such an attack. Consider an attacker who finds and removes

any inserted HERKs in a circuit. This attacker hopes to exploit the fact that

HERK insertion points have a high error rate for a set of inputs, thus their removal

minimally impacts functionality.

This assumption ignores the input-dependence of error rate. While HERK

insertion points do exhibit high error for some set of inputs, this does not extend to

all inputs. Consider an AND gate fed by independent, error-prone inputs with a 1%

error probability. In this case, the input ‘00’ requires 2 simultaneous input errors to

128

produce errant output, a probability of 0.01%. Conversely, input ‘11’ requires only

a single error on either input for errant output, nearly a 2% probability. Therefore,

while HERKs exhibit high error (or nearly arbitrary output) for certain inputs, their

error can be quite small for other input patterns that sensitize the circuit differently.

If a HERK is removed from the design, it has a small impact on function for

high error inputs, but a large impact on function for low error inputs. Probabilistic

circuits are designed to ensure that input patterns critical to IC performance exhibit

minimal error [49, 29, 1]. Thus, low-error inputs impacted by HERK removal

are likely function-critical, rendering the IC unusable. This thwarts removal-type

attacks against HERKs.

5.3.2.5 Overhead Analysis

HERK implementation requires that a single XOR gate be inserted per key

bit. Each key bit leads to an exponential increase in StatSAT runtime, hence, only

a few HERKs are needed to ensure strong security. Each considered benchmark had

1, 000-10, 000 gates. Thus, the area, delay, and power overhead caused by inserting

a small number of HERK gates is negligible because it is amortized into a much

larger benchmark circuit. Compare this to alternate locking schemes that use large

locking structures, such as “almost” one-to-one switch-boxes for Full-Lock/Interlock

[33, 34], block-ciphers for LoPher [71], or Hamming Distance units and tamper-proof

LUTs for SFLL-style schemes [103, 75, 74]. Because of these large added locking

129

structures, alternate schemes require overheads constituting sizable percentages of

the base circuit’s parameters. Thus, HERK overhead is negligible compared to prior

art, an important advantage of HERKs.

5.3.2.6 Implementing HERKs Alongside Prior Art

To evaluate HERKs, we considered them in tandem with other locking. This

was intentional. We do not propose HERKs as stand-alone locking, but rather as an

extension to traditional locking schemes aimed specifically at StatSAT protection

for probabilistic IP. As previously shown, probabilistic design IP faces a security

threat from StatSAT-style attacks. HERKs serve a vital purpose in thwarting these

attacks.

By using HERKs in a compound fashion, locked circuits exhibit the best secu-

rity guarantees of both approaches. Prior art, such as SFLL [103, 75, 74], Full-Lock

[33, 34], or others [111, 76], ensures tunable and provable security against a variety

of attacks, while HERKs uniquely apply the properties of probabilistic circuits

for StatSAT resilience. Because HERKs do not alter or interact with traditional

locking structures, the security guarantees of both techniques are maintained. For

this reason, we consider HERKs to be a logic locking extension for probabilistic

circuits, similar to trace logic locking [111] for deterministic circuits, rather than a

stand-alone scheme.

130

5.3.3 Conclusion

This section proposes High Error Rate Keys, a logic locking technique that can

be combined with traditional locking to resist both StatSAT and other prominent

attacks. HERKs leverage high error points in probabilistic circuits to hide the

correct key value (i.e. correct function) behind probabilistic noise. This causes

StatSAT runtime to scale exponentially in the number of HERKs. By adding a

sufficient number of HERKs to the circuit, the runtime of a SAT attack can be

sufficiently scaled to achieve security, despite the presence of obfuscation with a

high average wrong key error rate. Hence, by adding HERKs alongside high-error

locking, both error severity and SAT attack resilience can be simultaneously achieved

in probabilistic circuits despite the trade-off identified in Chapter 4.

131

Chapter 6: Design Methodologies for

Security Beyond Gate-Level Boundaries

As demonstrated in Chapter 4, conventional gate-level approaches to logic

obfuscation applied using gate-level criteria are unable to secure an IC when viewed

beyond these boundaries (i.e. at the architecture, application, or system level). This

is due to the inherent trade-off between the average error rate and the SAT attack

resilience of conventional obfuscation techniques. To address this, we presented 3

non-conventional obfuscation techniques in Chapter 5 that were capable of favor-

ably tweaking this trade-off to meet security goals beyond gate-level boundaries in

particular applications. In this chapter, we take an orthogonal approach. Rather

than modifying logic obfuscation techniques, we instead look to architectural design

modifications to achieve security goals with conventional, gate-level obfuscation

schemes. To do so, we first explore the impact of architectural design decisions

on hardware security. As a result of this exploration, we propose 2 security-aware

architecture design methodologies capable of designing ICs with strong error severity

and SAT attack resilience simultaneously.

For our first approach, we explore the possibility of security-aware architecture

modifications to enhance the hardware-oriented security of logic obfuscation. To this

end, we direct our attention to the most commonly proposed candidate modules for

132

logic obfuscation: 1) the on-chip memory, such as cache controllers [13] or SRAM

memory [114], and 2) the data path, such as ALUs [45, 46] or alternative compute

units [73, 58]. Within these candidate locations, we identify the factors limiting the

effectiveness of logic obfuscation. Based on these limiting factors, we identify design

decisions that can be made to amplify the hardware security of on-chip memory

and processor data path modules. Finally, we propose and evaluate a quantitative,

tool-driven design approach for both on-chip memory and data path architectures to

achieve strong security guarantees that transcend gate-level boundaries while using

prior logic locking schemes.

For our second approach, we target the resource binding phase of the high-

level synthesis (HLS) process to enable the design of obfuscated architectures with

strong hardware-oriented security guarantees. For this approach, we leverage the

architectural context available during resource binding to co-design architectures

and locking configurations with high corruption (error severity) and SAT resilience

simultaneously. To do so, we develop 2 security-focused binding/locking algorithms

and apply them to bind/lock 11 MediaBench benchmarks. The resulting circuits

showed a 26x and 99x increase in the application errors (error severity) of a fixed

locking configuration while maintaining SAT resilience and incurring minimal over-

head compared to other binding schemes. Each locking scheme applied post-binding

was unable to achieve a high application error rate (error severity) and SAT resilience

simultaneously.

133

6.1 Factors Limiting Security

To mitigate the identified security risks through security-aware architecture

design, we first must understand the underlying architecture and application level

factors limiting the effectiveness of locking from our design space exploration in

Section 4.4. Based on the experiments presented in Section 4.4, we identified 2

primary factors limiting the architectural effectiveness of locking, namely 1) module

input space non-uniformity and 2) processor error resilience. We discuss each in

turn.

6.1.1 Input Space Non-Uniformity

Within a processor, inputs to each module are generally heavily skewed to-

wards a small subset of the input-space. This is due to the tendency of processors to

repeatedly access the same set of data and resources, a heavily studied phenomenon

referred to as the principle of locality. Additionally, because data and resource

utilization is dictated by the application being run on a processor, the input-space

of each module is not only skewed, but also application-specific. This means that

locking applied independently of IC architecture/application (as is generally pro-

posed) cannot account for the architecture/application-dependent input space of a

module. Finally, as we have noted, the portion of the input space that is corrupted by

logic locking must be limited to ensure SAT resilience [111, 45, 107, 109]. Therefore,

it is unlikely that any of the tiny set of application-agnostic inputs corrupted by

logic locking will ever actually occur within the skewed, application-dependent set

134

of inputs applied to the locked module. This makes the likelihood of locking induced

errors negligible, greatly limiting the efficacy of locking configured independently of

IC architecture.

To empirically support the above claim, we have used ObfusGEM to character-

ize the input-space of an adder within our x86 core running 9 benchmarks from the

PARSEC benchmark suite. Several observations from this experiment are below.

1. Workloads used 10−34% to 10−31% of the input space.

2. A histogram of input utilization for the Blackscholes benchmark is in Figure

6.1. This input-space is skewed between ±4096, with > 95% of inputs in this

range.

3. Only ∼13,000 inputs are shared between each workload.

263 0 263

Input Value (Interpreted as 2's Complement)

10 7

10 5

10 3

10 1

In
pu

t L
ik

el
ih

oo
d

(%
)

Inputs Between
±4096

Figure 6.1: X86 core adder input utilization for Blackscholes.

These results support the claim that a small/skewed subset of a module’s input

space is used by the application. Additionally, the relatively small input overlap

between benchmarks indicates that a module’s input-space is quite application-

dependent as well. Finally, we reiterate that to achieve SAT resilience, the number

135

input minterms corrupted by locking must be severely limited. By combining these

results with the 10−34% to 10−31% input space utilization identified empirically, we

confirm that the probability of a corrupted minterm actually being applied to a

locked module is indeed nearly negligible. Therefore, effective locking must account

for both IC architecture and the applications being run on an IC to achieve the error

severity necessary for security.

6.1.2 Processor Error Resilience

Substantial computer architecture research has shown that many ICs, espe-

cially processors, mask an overwhelming majority of module level errors when viewed

architecturally [52, 72]. For example, the work in [72] showed that over 97% of

random, radiation-induced soft errors vanished within a tested IBM POWER6 core.

On top of the architectural error resilience of ICs, most common applications have

been shown to be error resilient as well [42, 25]. For example, common media and AI

benchmarks mask as much as 46% of module level errors injected when considering

application output [42]. This means that even when logic locking induced errors

occur, there still exists a sizable probability that this error will be simply masked

and rendered architecturally irrelevant. Therefore, in addition to ensuring module

level error is injected, effective locking must also ensure that injected error will derail

IC functionality.

136

6.2 Security-Aware Architecture Design

In this section, we look for ways to mitigate the factors limiting security iden-

tified in Section 6.1. Given that these identified factors exist outside of the locked

module itself, beyond gate-level boundaries, we look to an IC’s architecture to over-

come the identified limitations. We explore the possibility of so-called security-aware

architecture design to improve the security of logic obfuscation, regardless of tech-

nique. Fundamentally, we are suggesting that architecture design decisions should

consider not only traditional parameters (i.e. area, delay, power, performance, etc.),

but also hardware security. To this end, we propose and evaluate security-aware

architecture design, a tool-driven approach, based upon the ObfusGEM simulator, to

identify and evaluate minor architecture design modifications capable of improving

the impact of locking in the IC as a whole. In particular, we look to the most

effective locking candidates identified in Figure 4.5, namely the on-chip memory

and data path, to improve hardware security. For these components, we quantify

the goals of a design approach that favors hardware security in these components.

Then, we apply this design approach to redesign candidate locking locations in each

IC and evaluate the efficacy of the modified design using ObfusGEM.

6.2.1 Design Methodology

To both demonstrate and evaluate a security-aware architecture design ap-

proach, we implement it in our x86 and ARM A53 processor ICs. To this end, we

proceed as follows.

137

1. Identify Factors Limiting Logic Locking: Using the cycle-accurate, ar-

chitectural data provided by ObfusGEM, we identify the factors limiting ar-

chitectural security. This is highlighted in Section 6.1 for our tested ICs.

2. Identify Candidate Design Modifications: Minor architectural design

modifications for the on-chip memory and data path that are capable of

mitigating any limiting factors must be identified. We perform this in Section

6.2.1.1 for our x86 and ARM A53 core.

3. Implement and Evaluate Security-Aware Changes: Using the quantita-

tive, architectural lens provided by ObfusGEM, the efficacy of each identified

change must be quantified and tuned, ensuring that sufficient security guar-

antees are achieved beyond gate-level boundaries in the IC as a whole. We

perform this in Section 6.2.2 for our tested ICs.

Fundamentally, this approach relies on the quantitative lens provided by the

ObfusGEM simulator to both identify and apply these security-driven modifications.

Throughout the remainder of this work, we demonstrate how a security-focused ap-

proach to on-chip memory and data path design can exponentially improve security.

This enables our previously insecure ICs to achieve strong security guarantees that

transcend gate-level boundaries.

138

6.2.1.1 Identifying Candidate Design Modifications

As shown in Section 6.1, the limitations of locking can be partially attributed

to 1) input space non-uniformity and 2) processor error resilience. This means that

any design decision which 1) increases the number of uses of (i.e. utilization) or

unique input minterms applied to (i.e. diversity) a locked module or 2) amplifies

the impact of locking induced errors at the application level will enhance security.

We continue by identifying a series of architectural changes which achieve either of

these security-focused design goals.

6.2.1.2 Increasing Locked Module Input Utilization/Diversity:

When input utilization/diversity is increased, a larger percentage of a locked

module’s input space is used. Increased input space utilization increases the likeli-

hood that a locked minterm will be applied to the module, increasing the likelihood

of a locking induced fault injection. Many architectural decisions can achieve this:

• For cache controller locking, increasing cache associativity increases both the

length and diversity of cache tags (increases input diversity of locked module).

• For memory controller locking, utilizing a write through (rather than write

back) cache will increase write frequency, increasing memory controller use

(increase utilization). However, we note that this change has a large number

of side effects for an IC, likely making it unreasonable in practice.

139

• For functional unit (FU) locking, smart scheduler design can either favor locked

FUs or ensure that corrupted I/O pairs are likely to be scheduled to locked

FUs (increase utilization).

• The number of FUs (i.e. adder, FPU, etc.) can be increased and locked with

different locking configurations corrupting different inputs (increases diversity

of locked inputs).

6.2.1.3 Amplifying the Impact of Locking:

By amplifying the impact of locking induced errors, locking is more likely to

overcome architecture/application error resilience. Many design choices can achieve

this, for example:

• Locking to ensure that unrecoverable faults are induced for incorrect keys.

Examples include locking the FPU to throw a divide by 0 exception (fatal

error), or locking the branch predictor to force a branch to NULL (fatal

security exception). Therefore, when a wrong key is applied, any logic locking

induced fault injection will cause an error with a critical application impact.

• Locking to ensure fault propagation. For example, locking multiple cache

controllers so that locking induced errors in low level caches trigger block

write-back to high level caches/main memory. Increasing error propagation

throughout memory reduces the odds of error masking.

140

6.2.2 Evaluating Security-Aware Design

Now that we have identified a series of security-aware design modifications for

both on-chip memory and data path components, we continue by implementing and

evaluating these design decisions. To this end, we leveraged ObfusGEM to design

and evaluate security-aware modifications to our x86 and ARM A53 cores. As

shown in Section 4.4, cutting edge locking was unable to protect either architecture.

Therefore, for success, we must implement minor architectural design decisions

within the on-chip memory and data path that sufficiently improve the application

level security of incorporated logic locking art so that both error severity and attack

resilience can be achieved simultaneously. For this section, we targeted several

on-chip memory and data path modules and developed security-aware architectures

capable of amplifying hardware security for each. The evaluation of each proposed

design proceeded as follows.

1. The location under test was locked with configurations identical to those in

Section 4.4.1 (i.e. the same randomly selected input cube of varying length

was locked). Therefore, for this experiment, only the architecture of the IC

was modified compared to Section 4.4.1.

2. Security-aware architecture modifications were applied.

3. ObfusGEM compared the application level effects of locking within the modi-

fied and un-modified processor.

141

2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible Locking Configurations

Locking Error Injection Rate
Architectural Configuration:

x86 Orig. Arch.
x86 Mod. Arch

ARM Orig. Arch.
ARM Mod. Arch

Figure 6.2: The effect of on-chip memory hierarchy redesign on the security of L1 D-cache

controller locking.

6.2.2.1 Experiment 1: Security-Aware On-Chip Memory Design

To evaluate the effectiveness of a security-aware design approach for the on-

chip memory of a processor, we chose to redesign the L1 D-cache. To this end,

we selected the locking configuration implemented within the L1 cache controller

of each processor in Section 4.4 as our candidate locking configuration. We then

redesigned the L1 D-cache of the IC to amplify hardware security.

Specifically, we made 2 design decisions simultaneously. 1) The associativity

of the cache was increased. This increases the cache tag length and the number of

unique inputs applied to the cache controller’s tag logic (input diversity). 2) The

locking was designed to map locked minterms to fatal errors at the output of the

cache controller. Both the x86 and ARM core were initially designed with 2-way

set associative L1 D-caches. For this experiment, we increased the associativity

of this cache to 8-way set associative. Additionally, the locking configuration was

modified to produce an invalid tag whenever a locked input was applied to the

142

cache controller. Other than these changes, all other aspects of the on-chip memory

and locking configuration were fixed. ObfusGEM results for this experiment are in

Figure 6.2.

A similar approach can be taken to enhance locking within higher level caches

as well. To demonstrate this, we narrowed our focus to solely the ARM A53

processor testbed. The cache and DRAM control logic within this processor is more

complex than the selected x86 core, thereby allowing more design modifications

without significant redesign. For this experiment, we attempted to redesign the

on-chip memory hierarchy to amplify both L2 cache controller locking and DRAM

controller locking. To do so, we enabled hardware pre-fetching within both the L1

D-cache and L2 cache. By enabling pre-fetching, both the diversity and number

of minterms applied to both the cache controller and DRAM controller can be

increased. We also enabled speculative execution within the core, enabling the

processor to execute instructions based on conditional branch predictions. Once

again, this modification both increases the diversity and amount of traffic occurring

within the on-chip memory system. We have aggregated ObfusGEM simulation

results quantifying the hardware security achieved by locking both the L2 cache

controller and the DRAM controller in our ARM A53 core with both pre-fetching

and speculative execution enabled in Figure 6.3.

143

2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible Locking Configurations

Locking Error Injection Rate
Architectural Configuration:

ARM Orig. Arch. L2
ARM Mod. Arch L2

ARM Orig. Arch. Mem. Ctl.
ARM Mod. Arch Mem. Ctl.

Figure 6.3: The effect of on-chip memory hierarchy redesign on the hardware security of

L2 cache controller and DRAM controller logic locking.

6.2.2.2 Experiment 2: Security-Aware Data Path Design

To evaluate the effectiveness of a security-aware design approach for the data

path of a processor, we chose to redesign the floating point unit. To this end,

we selected the floating point adder locking configuration from Section 4.4 as our

candidate locking configuration. We then redesigned the floating point unit of the

IC to amplify the achievable hardware security.

To improve floating point adder locking, we explored 2 architectural approaches.

1) We increased the number of floating point adder functional units (FUs) within

the core. Each FU was then independently locked for a separate, randomly chosen

input cube. 2) We implemented a smart scheduler, a redesigned version of each

processor’s out-of-order scheduler which favors locked FUs (only if that FU was

available) for any operation on locked input minterms. For both the x86 and ARM

processor, only a single FPU adder was included within the design. Therefore, for

144

2 24 2 22 2 20 2 18 2 16 2 14 2 12 2 10
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible
Locking Configurations

(a) Mean Failure Rate of Locked x86 Core

2 24 2 22 2 20 2 18 2 16 2 14 2 12 2 10
0.00

0.20

0.40

0.60

0.80

1.00
SAT Susceptible

Locking Configurations

(b) Mean Failure Rate of Locked ARM Core

Error Injection Rate for Incorporated Locking Configuration
Architectural Configuration:

Baseline Config. 2 FU (Std. Sched.) 4 FU (Std. Sched.) 2 FU (Smart Sched.) 4 FU (Smart Sched.)

Figure 6.4: The effect of modified FU count and scheduler redesign on the application

level security of FPU adder locking.

our evaluation, we increased the number of floating point adders to both 2 and 4 for

both cores. ObfusGEM results for both designs (alongside the baseline from Section

4.4) are in Figure 6.4.

A similar approach can be applied to other data path modules as well. To

demonstrate this, we performed the same experiment on the second best data

path locking configuration, the integer adder. To amplify hardware security in this

module, we increased the number of integer adders in each core from 2 to 4. We

then locked each of these additional adder circuits independently for a randomly

chosen input cube. The ObfusGEM simulation results quantifying the impact of

this design change on the hardware security achieved by integer adder locking is

included in Figure 6.5.

6.2.2.3 Experimental Design Overhead

By their very nature, the architectural changes we have implemented will

impact the design parameters (i.e. area, delay, power, performance) of each device.

While this is not ideal, we note that strong hardware security guarantees are crucial

145

2 19 2 17 2 15 2 13 2 11
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible Locking Configurations

Locking Error Injection Rate
Architectural Configuration:

X86 Orig. Arch.
X86 4 Add FU

ARM Orig. Arch.
ARM 4 Add FU

Figure 6.5: The effect of modified FU count on the application level security of integer

adder locking.

to ensuring both the IP and integrity of a device. Therefore, we argue that strong

hardware security guarantees are a necessary component of IC design. We have

aggregated the design overhead of the proposed architectural design modifications

in Tables 6.1 and 6.2. Runtime was modeled with ObfusGEM through the runtime of

PARSEC benchmarks. Processor power and area were estimated based on GEM5

data using the McPAT modeling framework [41] with a 32nm technology library.

Note that the estimated overhead of logic locking each module with SFLL-Fault

is included within the design overhead as well. To do so, we added the average

area and power overhead of SFLL-Fault from [75] within the McPAT model of any

locked design component. For each experiment, we fixed the clock rate for each

architecture because scaling clock frequency would generally be considered a severe

design modification. For this reason, no degradation was seen in the clock rate of

any design.

146

X86 Core ARM Core

L1 L1 L2 DRAM

D-Cache D-Cache Cache Cont. Cont.

Area 9.1% 5.5% 4.1% 4.3%

Peak Power 2.2% 1.2% 3.3% 3.4%

Runtime -1.2% -0.1% 0.7% 0.7%

Clock Rate 0.0% 0.0% 0.0% 0.0%

Table 6.1: Design overhead for x86 and ARM core redesigned with a security-aware on-chip

memory architecture. Note that these numbers include locking overhead in addition to

the overhead of any architectural redesign.

6.2.2.4 Analysis of Security-Aware Designs

As seen in Figures 6.2-6.5, each proposed security-aware redesign yielded

locking configurations that reliably derailed processor functionality (achieved error

severity) with exponentially smaller error injection rates. The trade-off identified

in [103] proves that a linear decrease in error injection rate yields a linear increase

in the SAT attack resilience of SFLL-Fault. This means that locking can obtain

exponentially stronger SAT attack resilience while still maintaining equivalent error

severity in these modified architectures. Because a secure locking configuration must

achieve both error severity and attack resilience simultaneously, this constitutes

an exponential improvement in the security of logic locking. In fact, through the

security-aware design of both the on-chip memory and data path of the IC, logic

locking critically impacted PARSEC benchmarks (achieved error severity) with error

147

Security-Aware X86 Data Path Redesign Overhead

Int. Adder FPU Adder Locking

Locking No Smart Sched. Smart Sched.

4 FU 2 FU 4 FU 2 FU 4 FU

Area 11.7% 12.1% 24.8% 12.1% 24.8%

Peak Power 9.3% 10.3% 20.7% 10.3% 20.7%

Runtime -0.9% -8.7% -10.8% -8.7% -10.8%

Clock Rate 0.0% 0.0% 0.0% 0.0% 0.0%

Security-Aware ARM Data Path Redesign Overhead

Int. Adder FPU Adder Locking

Locking No Smart Sched. Smart Sched.

4 FU 2 FU 4 FU 2 FU 4 FU

Area 11.5% 12.3% 25.3% 12.3% 25.3%

Peak Power 9.2% 9.6% 20.2% 9.6% 20.2%

Runtime -0.7% -2.4% -2.5% -2.4% -2.5%

Clock Rate 0.0% 0.0% 0.0% 0.0% 0.0%

Table 6.2: Design overhead for x86 and ARM core redesigned with a security-aware data

path architecture. Note that these numbers include locking overhead in addition to the

overhead of any architectural redesign.

148

injection rates residing outside the red-shaded SAT susceptible region. Therefore,

our security-aware design modifications enabled locking to simultaneously achieve

both error severity and SAT attack resilience in both cores. In Section 4.4, the

same locking configurations were unable to achieve security in each un-modified

IC. Hence, each design approach was successful in allowing a designer to achieve

hardware security.

Despite this positive result in both cases, there are clear differences between

on-chip memory hierarchy and data path redesign for this purpose. First, we note

that the strongest hardware security was achieved through our redesign of the FPU

adder. In this case, non-zero application failure rates could be observed with error

injection rates of 2−20 in all cases. However, this increase required a significant

increase in the both the area and power consumption of the design, with over a 20%

increase in the worst case. While it is possible that some processor designs could

absorb this level of design overhead to achieve hardware security, this additional

overhead would likely be unfeasible in most cases. A similarly large overhead can be

seen in the integer adder redesign as well. Hence, both evaluated data path designs

induced substantial overhead.

Comparatively, the on-chip memory redesign yielded slightly smaller security

improvements, but with substantially less design overhead. For example, our L1

D-cache redesign allowed L1 cache controller locking to achieve error severity with

an error injection rate of 2−17. This error injection rate resides well outside of

149

the SAT susceptible region. However, this design required less than a 10% area

overhead in the worst case and only a 1-2% increase in peak power. This level of

design overhead is much more manageable.

We found that the design overhead of proposed on-chip memory modifications

was much lower than data path modifications due to the more subtle changes

available to the IC designer in memory hierarchy design. In our redesign of the

data path, we relied on simply increasing the number of functional units within

the device, an extremely coarse design modification. However, the on-chip memory

hierarchy had a wide array of candidate design modifications, such as associativity,

cache size, pre-fetching, or hierarchy organization. Each of these design modifi-

cations can be finely tuned to greatly impact the environment a cache or DRAM

controller operates in. This makes each of these design changes ideal for a hardware

security-aware design approach. For example, by enabling hardware pre-fetching

and speculative execution, 2 features already available within the hardware, we

were able to increase DRAM controller traffic by 17.1%. This increase in traffic

substantially increased the utilization and diversity of minterms applied to the

locked module, exponentially improving hardware security, while imposing minimal

area/power/performance overhead.

Therefore, it appears that the on-chip memory hierarchy serves as a more

viable candidate for logic locking. Unlike the data path, the complexity of the on-

chip memory system enabled a diverse array of modifications capable of substantially

150

enhancing hardware security. While we obviously did not explore every aspect of

locking within the on-chip memory hierarchy, our results demonstrate the promise

of a memory-focused logic locking approach.

6.2.2.5 Summary of Security-Aware Design

To conclude, our on-chip memory and data path redesign in the x86 and ARM

A53 core exponentially improved application level hardware security. While the

design overhead of the data path redesign approach was substantial in many cases,

the on-chip memory redesign exhibited a much more modest increase in design

overhead. The success of this approach supports the results of prior research noting

the on-chip memory hierarchy as an ideal locking candidate [13, 114]. However, we

note that achieving security in either of these components of an IC required some

architectural tuning in both testbed processors. This result not only demonstrates

the importance of IC architecture for hardware security with logic locking, but also

emphasizes the importance of a security-aware approach to architecture design.

Our security-aware approach was made possible by ObfusGEM, which both en-

abled us to identify the factors limiting logic locking and to design/evaluate changes

to mitigate these factors. Therefore, while we have shown that an ObfusGEM-

driven, security-aware design approach can achieve strong application level security

within custom ICs, we also note that the presented results are just a small slice

of the security-aware designs made possible by ObfusGEM. To this end, we have

released the ObfusGEM simulator alongside this work to enable others in the re-

151

search community to identify alternative security-aware design modifications and

implementation methodologies capable of achieving the application level security

currently missing from cutting edge logic locking approaches.

6.2.3 Conclusion

In Section 6.1, we identified input-space non-uniformity and error resilience

as 2 of the factors which limited locking in ICs. We then proposed security-aware

architecture design to overcome these limitations. Using ObfusGEM, we performed

security-aware architecture design to design the on-chip memory and data path of

2 processor testbeds that were insecure with prior art (Section 4.4). Our proposed

security-aware on-chip memory and data path designs were shown to exponentially

improve security. In the case of on-chip memory redesign, these exponential im-

provements incurred only a modest design overhead, serving as a viable approach to

allow locking to achieve strong security guarantees capable of transcending gate-level

boundaries in these previously insecure devices.

6.3 A Resource Binding Approach to Logic Obfuscation

Finally, we consider an alternate approach to produce obfuscated architectures

with hardware-oriented security guarantees [112]. Namely, we aim to use architec-

tural knowledge available during the resource binding phase of high-level synthesis

(HLS) to both design and lock an overall IC against an untrusted foundry. As

we show, by using security-aware resource binding algorithms, we can achieve both

152

objectives of high application corruption (error severity) and SAT resilience (attack

resilience) simultaneously. In this section, we develop these security-aware resource

binding algorithms and then demonstrate their efficacy in 11 Mediabench benchmark

circuits.

6.3.1 Motivational Example: Security-Aware Binding

Given the findings of prior research, outlined in Section 2.3, there is a strong

need to think beyond the module when obfuscating ICs. If we follow the conven-

tional wisdom of pursuing module-level locking after the gate-level configuration of

modules are fixed we get stuck in the dilemma of choosing high corruption versus

high SAT resilience. Achieving both objectives is critical. In this section, we show

that through “smart” obfuscation-aware resource binding decisions, we can indeed

satisfy both of these competing needs.

In the context of design obfuscation, binding impacts security by mapping

operations onto functional units (FU). This mapping determines the types of values

(input minterms) typically processed on each FU. Because locking corrupts output

for specific locked inputs, this greatly impacts the lock-ability of an IC. Let us

consider an example to show the utility of a security-aware binding approach.

153

6.3.1.1 Motivational Example: Overview

Consider the scheduled data flow graph (DFG) in Figure 6.6A. This DFG

represents some behavioral code segment where each node is an operation that must

be applied to the data and each edge shows the flow of data between operations.

The DFG in the figure requires 2 cycles to execute (clk 1 and 2). During the first

(second) cycle, 2 operations, OPA and OPB (OPC and OPD), must be completed.

Without the loss of generality, let us assume that each operation in the figure is an

add. To implement this DFG in hardware, 2 adder FUs are necessary to execute

the 2 concurrent add operations.

Resource binding specifies the mapping of the 4 add operations onto the 2

allocated adder FUs. In Figure 6.6B, we show the 2 possible bindings for the

scheduled DFG. For each binding, the green (red) circled operations are mapped

to FU 1 (FU 2). Let us assume that a security-oblivious binding algorithm has

selected binding 1 for the design. After binding, a designer has decided to lock

FU 1 to protect the design. In this case, the best solution would be to lock a large

majority of input minterms to ensure the highest corruption at the application level.

However, due to the SAT resilience constraint, let us assume we can only lock a single

input minterm, randomly selected to be x. If we are aware of the input distribution

for each operation, a common assumption for HLS [86, 16], we can determine the

expected number of occurrences of arbitrary input minterms for each operation in

154

the DFG during a typical workload. We have aggregated the expected number of

times input minterm x and y are applied to each operation during a typical workload

at the bottom of Figure 6.6A.

Because we know the expected occurrences of input x for each operation, we

can estimate the number of locked inputs applied to our locked adder (FU 1). This

is the number of application errors caused by the locking scheme. Notice that FU

1 in binding 1 executes OPA, which is expected to operate on input x 6 times,

and OPC , which is expected to operate on input x 0 times. This means that the

bound/locked circuit is expected to inject 6+ 0 = 6 errors. We have aggregated the

expected occurrences of minterm x and y for each FU-binding combination below

Figure 6.6B. Let us consider how security-aware binding could increase the number

of error injections.

OPA

OPC OPD

Clk 1 OPB

Clk 2

a b c d e f

Exp. Input Occurrences:
Minterm 'x': OPA=6, OPB=1,
 OPC=0, OPD=10
Minterm 'y': OPA=9, OPB=0,
 OPC=0, OPD=8

OPA

OPC OPD

Clk 1 OPB

Clk 2

a b c d e f
Binding 1

FU 2

Exp. Input Occurrences:
Minterm 'x': FU1: 6, FU2: 11
Minterm 'y': FU1: 9, FU2: 8

OPA

OPC OPD

Clk 1 OPB

Clk 2

a b c d e f

FU 1FU 2

Exp. Input Occurrences:
Minterm 'x': FU1: 16, FU2: 1
Minterm 'y': FU1: 17, FU2: 0

Binding 2

FU 1

A Scheduled Data
Flow Graph B Bound Data Flow Graph

Figure 6.6: Sample scheduled DFG and corresponding binding solutions.

155

6.3.1.2 Example 1: Obfuscation-Aware Binding

Consider the case where the logic locking configuration has been specified prior

to resource binding. Following our prior example, this means that FU 1 will lock the

input minterm x. However, instead of binding in a security-oblivious fashion, let us

instead bind the DFG in Figure 6.6A to maximize the number of times the locked

input (x) will be applied to the locked FU (FU 1). In this case, binding 2 would be

selected, resulting in 6+10 = 16 application errors over a typical workload. Such an

approach has 2 key advantages. 1) The number of errors injected by logic locking is

more than doubled (16 vs. 6) compared to our security-oblivious binding approach.

Because the number of locked inputs is static, this results in a substantial increase

in the corruption caused by logic locking without compromising SAT resilience. 2)

Errors are now injected during both clock cycles of the schedule (clk 1 and 2) instead

of only one (clk 1). This opportunity for consecutive error injections increases

the likelihood of critically impacting the application. By binding to maximize the

application errors, a locking configuration that simultaneously causes substantially

more and higher quality application errors is produced.

6.3.1.3 Example 2: Binding-Obfuscation Co-Design

In addition to selecting which operations are bound to each FU, let us also

decide which input minterms to lock. Previously, we assumed that only input x

could be locked. If we simultaneously consider the locked inputs and the binding in

order to maximize the number of application errors, we will lock input y in FU 1

156

for binding 2. Notice that input y does not have either the highest total number of

expected occurrences, or the most occurrences for a single operation. However, this

locking configuration causes 9+8 = 17 application errors during a typical workload.

Not only does this 1) increase the number of error injections by over 2x (17 vs. 6)

compared to our security-oblivious approach and 2) inject error during both cycles

of the schedule, but it also results in more errors than any configuration locking

input x could achieve. Thus, a co-design approach can further improve the number

and quality of application errors caused by locking.

6.3.1.4 Security-Aware Binding Problem Formulations

In both examples, the architectural context available during resource binding

enabled us to create locked circuits causing over 2x more application errors. This

allows a designer to decrease the number of locked inputs, while simultaneously

increasing the application errors caused by the locking construction. Essentially,

security-aware binding decisions enable us to achieve higher attack resilience and

higher corruption simultaneously. Based on each example, we specify a problem

formulation that is addressed in the remainder of the work.

1. Obfuscation-Aware Binding: For this problem, we assume that modules

have already been locked to secure a known set of error-causing locked inputs.

Based on this configuration, we map operations onto FUs (bind) to maximize

application errors.

157

2. Binding-Obfuscation Co-Design: For this problem, we simultaneously

select the binding and the locked input minterms to maximize the application

errors caused by locking. Once the binding and locked inputs are selected,

any critical minterm locking technique can be used to create the locking

construction.

6.3.2 Problem 1: Obfuscation-Aware Binding

The obfuscation-aware binding problem assumes that the allocation/scheduling

phases of HLS have occurred and a SAT-resilient locking configuration (i.e. one

that locks a sufficiently small number of inputs) has been specified for the allocated

FUs. The locking specification must include 1) the number of FUs locked, 2) the

locking scheme used, and 3) the locked inputs. We also assume that critical minterm

locking schemes, such as SFLL-rem [74], have been used so that locked inputs are

static between wrong keys. Now, given a list of FUs, a scheduled DFG, and locking

details, we must map each operation to an FU such that the application errors caused

by the locking construction are maximized. Doing so ensures that IC corruption is

maximized while maintaining SAT resilience (because the locking construction was

chosen to be SAT resilient a priori). To address this, we have developed an objective

cost function to quantify the application errors caused by locking for a fixed binding.

158

6.3.2.1 Obfuscation-Aware Objective Cost Function

Suppose that we have scheduled and bound a DFG onto FUs, some of which

have been locked using critical minterm locking. We aim to quantify the impact

of these locked FUs on the error of the DFG. We capture this error by counting

the number of times a locked input is evaluated by a locked FU during the DFG’s

execution. The objective is to maximize these error injecting events through appro-

priate binding decisions. Let us define matrix K to represent the occurrence of each

locked input for each operation. The number of times the locked input m is applied

for operation n is Km,n. One way to calculate K for a given DFG is to simulate

the execution of the DFG for “typical” input traces, or applications. These are

commonly assumed to be available during HLS [86, 16]. Given an input trace for

the DFG, we can perform time simulation to calculate the number of times a given

locked input is applied to each operation.

Based on K, we define an objective cost function to inform binding that

quantifies the expected number of application errors for a given locking configuration

in a bound DFG. To do so, assume that some set of L FUs have been locked. Each

locked FU, l ∈ L, locks a set of inputs Ml and binds a set of operations Nl. The

expected number of application errors caused by this locking configuration is:

E =
∑
l∈L

∑
m∈Ml

∑
n∈Nl

Km,n (6.1)

159

6.3.2.2 Obfuscation-Aware Binding Algorithm

Using the cost function in Eqn. 6.1, we develop a binding algorithm that

maps operations to FUs such that the number of application errors (i.e. when

locked inputs are applied to locked FUs) is maximized. Consider a scheduled DFG,

S, which spans s clock cycles. A set of resources, R, has been allocated to bind the

DFG. While we make no assumptions as to the type (e.g. adder, multiplier, etc.) of

the resources and operations, we do assume that they are all the same type. Thus,

any of the resources in R can execute any operation in the DFG. By handling each

operation/resource type separately, this assumption can be made without the loss

of generality. Of these R resources, a subset, L, has been locked (L ⊆ R). Each

l ∈ L locks a set of critical inputs Ml, which are pre-determined.

During each cycle t (t ≤ s), a set of concurrent operations Nt ∈ S are

scheduled. Binding requires us to map each operation in Nt to one of the allocated

FUs (i.e. |R| ≥ |Nt|). Consider the first cycle of the DFG, t = 1. To bind the

operations at t = 1 (N1), we build a weighted bipartite graph, B1 = (R ∪ N1, E1).

Each vertex ri ∈ R is an FU. Each vertex nj ∈ N1 is an operation. If ri can bind

nj (i.e. the FU ri is available and can run operation nj), an edge of weight wi,j is

added. This should be the case for all ri-nj pairs, so a complete bipartite graph is

produced. The weight, wi,j, is:

wi,j =
∑
m∈Mi

Km,j (6.2)

160

where Mi is the set of locked inputs for FU i and Km,j is the expected occurrences of

locked input m ∈ Mi for operation j. Therefore, wi,j is the number of times locked

inputs will be applied to resource i if operation j is bound to it. Note that the

edge weights connected to non-locked FUs will be 0. Now, we solve the max weight

bipartite matching problem for B1, which can be solved optimally in P-time. The

resulting matching maps (binds) each operation during clock t = 1 to an available

FU.

FU1

OPA

OPC OPD

Clk 1 OPB

Clk 2

a b c d e f
A Scheduled DFG

OPE

g
B Locking Config.

FU2

FU3

x y

FU1 FU2 FU3
x y

OPA OPB

6 9
0 4

3 0

Allocated FUs: 3
FU 1: Locked
Locked Input: 'x'
FU 2: Locked
Locked Input: 'y'
FU 3: Not Locked
Locked Input: None

C Bipartite Binding
(Clk 1, t=1)

Binding Solution for t=1:
OPA mapped to FU2
OPB mapped to FU1
Total Cost of Binding: 13

Exp. Input Occurrences:
Input 'x': OPA=6, OPB=4, OPC=3,
 OPD=0, OPE=10
Input 'y': OPA=9, OPB=3, OPC=7,
 OPD=0, OPE=8

Figure 6.7: Obfuscation-aware binding algorithm for clock 1 (t=1).

To demonstrate this algorithm, consider the DFG in Figure 6.7A, which spans

2 clocks. There are 3 FUs, R = {FU1, FU2, FU3}, allocated to bind this DFG,

shown in Figure 6.7B. Of these FUs, 2 are locked, L = {FU1, FU2}, with locked

inputs MFU1 = {x} and MFU2 = {y}. For this DFG’s typical input trace, the

number of times each locked input (x and y) was applied to each operation is below

Figure 6.7A. For t = 1, the proposed algorithm produces the bipartite graph in

Figure 6.7C. A max weight matching of this graph selects the red and green colored

edges, mapping OPA to FU2, with edge weight 9, and OPB to FU1, with edge

161

weight 4. FU3 is unused during this clock because only 2 operations are executed.

This produces a binding for clock 1 that injects 9 + 4 = 13 errors for the typical

input trace.

The described approach produces a binding for clock t = 1. This algorithm

must be repeated for the remaining s − 1 clocks to produce a complete binding

solution. Thus, we must generate and match a bipartite graph, Bt, for the remaining

t = 2..s clocks in the schedule. Notice that the considered operations change for

each cycle (t), but the FUs in R do not. Also, the bipartite graph for each cycle (Bt)

has no dependence on other cycles. Thus, binding decisions made in one cycle do

not conflict with another cycle, allowing each clock cycle to be bound independently

and in any order (separability).

By matching each set of concurrent operations to allocated resources, we bind

each operation to maximize the number of locked inputs applied to locked FUs

during the typical input trace/application. This maximizes the application errors

caused by the locking configuration for the characteristic workload, as proved in

Thm. 6.2.

6.3.2.3 Analysis of Obfuscation-Aware Binding Algorithm

To analyze the presented algorithm, we discuss 3 key properties.

1. Runtime Complexity: To bind an arbitrary scheduled DFG with s cycles, the

proposed algorithm must generate and match s complete weighted bipartite

graphs. Each graph has |Nt| operations (sources) that must be matched to

162

one of the |R| resources (destinations) with a maximum weight. A minimum

weighted full match of an m-source and n-destination bipartite graph can

be performed in O(mnlog(n)) [35]. By negating each edge weight (wi,j) and

assuming that |Nm| is the maximum number of concurrent operations in the

DFG, obfuscation-aware binding can be completed in O(s|Nm||R|log(|R|)).

Thus, the algorithm runs in P-time.

2. Validity and Completeness of Binding Solution:

Theorem 6.1. The proposed obfuscation-aware binding algorithm will always

result in a valid and complete binding solution, if it exists.

We omit a detailed proof of this claim for brevity. However, notice that

during each clock cycle, bipartite matching ensures a valid matching between

operations and FUs. By definition, this means that all operations in all clocks

end up being bound to only one FU, with no more than one operation in a

cycle being bound to a given FU. This ensures that the final solution is a valid

and complete binding.

3. Optimality of Binding Solution:

Theorem 6.2. The obfuscation-aware binding algorithm yields the maximum

expected application errors for a locking configuration.

Proof. To bind a DFG, a bipartite graph must be generated and fully matched

for each cycle in the schedule (t = 1..s). Each graph has a source node for

every operation n ∈ Nt and a destination node for each resource in R. Every

163

source-destination pair is connected by an edge of weight wi,j, which is equal

to the number of occurrences of each locked input for FU j during operation

i. A bipartite graph defined in this way for cycle t (1 ≤ t ≤ s) is necessarily

independent of the bipartite graph for all other cycles. This implies that the

full matching produced for each bipartite graph is independent. Therefore,

the binding for each cycle in the schedule is separable.

Now, consider that each edge weight in the bipartite graph is equal to the

number of occurrences of each locked input for FU j during operation i (i.e.

expected error injections). By definition, a maximum weight full matching

of this bipartite graph corresponds to the operation-FU mapping (binding)

that causes the most expected error injections. Hence, the full matching for

each bipartite graph is optimal for a given cycle in the DFG. Because each

bipartite matching produces the maximum error injections for that cycle and

the bipartite graph for each cycle is separable, the total binding solution yields

the maximum expected error injections for the locking scheme.

Thus, the algorithm results in a binding with the highest possible application

corruption. Remember that the locking scheme specified prior to binding ensured

SAT resilience by limiting locked inputs to be sufficiently small in number. There-

fore, our obfuscation-aware binding algorithm guarantees a locking scheme with the

highest application corruption, while ensuring that SAT resilience is maintained.

164

6.3.3 Problem 2: Binding-Obfuscation Co-Design

The binding-obfuscation co-design problem relaxes our assumption that the

identity of locked inputs are specified before binding. Instead, we assume only that

the number of locked inputs are specified to ensure a SAT resilient locking solution.

These locked inputs are to be chosen from some set of designer-specified candidate

locked inputs to optimize application error. To formalize this, we assume that

the allocation/scheduling phases of HLS have occurred and a SAT-resilient locking

configuration has been specified, including 1) the number of resources locked, 2)

the critical minterm locking scheme used, 3) the number of locked inputs, and 4) a

list of candidate locked inputs. However, which specific inputs are locked from the

candidate list is not known and needs to be chosen. We must map each operation to

an FU and select locked inputs such that the application errors caused by locking

are maximized via the cost function in Eqn. 6.1.

6.3.3.1 Binding-Informed Obfuscation Algorithm

Consider an arbitrary scheduled DFG, S, which spans s clock cycles. A set

of R resources have been allocated to bind S. Once again, we assume without the

loss of generality that all operations and resources are of the same type (e.g. add).

This can be done by handling each set of dissimilar operations separately. Of these

R resources, a subset (L) will be locked (L ⊆ R). Each l ∈ L locks a set of inputs,

Ml, which must be chosen from a list of candidates.

165

We assume that this list of candidate locked inputs, denoted C, is designer-

specified. This set can be chosen by a variety of methods (e.g. randomly, most

commonly occurring inputs in the DFG, etc.). We discuss strategies to choose C in

Section 6.3.3.2, however, we largely consider this to be beyond the scope of the work.

For each locked FU (l ∈ L), we must select the most commonly occurring candidate

locked inputs among the operations bound to it to be in Ml. In this way, when

we lock each input in Ml, we produce a locked FU with the maximum application

error. While the exact input distribution for each operation varies among workloads,

we have applied a “typical” input trace to our DFG to estimate the number of

occurrences of each input i for operation j, denoted Ki,j (Section 6.3.2.1).

Given a list of candidate locked inputs (C), we must find the binding/locked

input specification that produces the most expected application errors for the DFG.

Section 6.3.2.2 defines an obfuscation-aware binding algorithm that, given a specified

set of locked inputs (Ml), returns the binding with the most expected application

errors. If we enumerate all combinations of candidate locked inputs from C of

size |Ml| for each locked FU (l ∈ L) and apply this obfuscation-informed binding

algorithm to each combination, we generate the optimal binding for each enumerated

set of locked inputs. By comparing the total expected application errors for each

enumerated set (i.e. the total cost of each binding solution), we can determine the

optimal binding/locked input specification for the DFG.

This approach iterates over all locked input combinations, an exponential num-

ber. However, many of these combinations are unlikely to yield an optimal solution.

For example, consider a set of FUs locking a set of inputs that produce minimal

166

application error. It is unlikely that FUs locking these inputs can be combined into

a high error binding solution. However, this algorithm still evaluates them. A good

heuristic would focus on locked input combinations causing substantial error for

each FU, regardless of how other FUs are locked, to ensure that the total error is

very high. This can be achieved by evaluating each FU sequentially. If we assume

that the number of candidate locked inputs (C) is upper-bounded by a predefined

constant (x), we can define a P-time heuristic:

1. Choose a single FU, li ∈ L. Assume all other FUs are unlocked.

2. Enumerate all locked input combinations
(|C|
|Mli

|

)
for li.

3. Apply obfuscation-informed binding on each combination. Use the max cost

binding solution to fix the locked inputs for li, Mli .

4. Consider a new locked FU, li ∈ L for which Mli has not been fixed. With all

prior Ml fixed, repeat steps 2-3 to specify Mli .

5. Repeat step 4 until Ml is chosen for each l ∈ L. Run obfuscation-informed

binding once more for the final binding solution.

6.3.3.2 Analysis of Binding-Obfuscation Co-Design

To analyze the proposed algorithms, we discuss 4 key properties.

1. Candidate Locked Input Selection: We consider the nuances of candidate

locked input selection to be out of scope. However, we briefly note some

possible ways to choose the members of C for context. The most obvious

167

relies on the “typical” input trace to select the most common inputs in the

DFG (i.e. the top ‘x’ most common inputs). However, if the attacker has input

distribution knowledge, such an approach could leak candidate locked inputs,

making it disadvantageous. In this case, less common inputs, or even a random

set can be used. Regardless of the members of C, our approach still maximizes

locking-induced application errors. Thus, binding-locking co-design will still

increase application error over conventional locking approaches considering the

same locked inputs.

2. Runtime Complexity: The optimal algorithm iterates over all locked input

combinations for each locked FU. Given |L| locked FUs that secure at most

|M | inputs from a set of size |C|, there are
(|C|
|M |

)|L|
combinations. This results in

a non-polynomial runtime. However, consider the proposed heuristic, which

sequentially iterates over locked inputs combinations for one FU at a time.

Because |C| is upper-bounded by a predefined constant ‘x’ for this heuristic,

there are
(

x
|M |

)
combinations per FU. This is upper-bounded by xx/2. x is

a constant, so this upper bound is a constant, allowing it to be discarded

from the time complexity. If we use the P-time algorithm from Section 6.3.2.2

to evaluate each locked input combination for |L| FUs, our heuristic runs in

O(s|L||Nm||R|log(|R|)), a P-time solution.

3. Optimality of Binding Solution: The resulting binding/locking will yield the

maximum possible application errors, as quantified by the cost function in

Eqn. 6.1. To prove this, remember Thm. 6.2, which proves that our binding

168

algorithm maximizes errors when locked inputs are specified. Because we

iterate over all possible locked input combinations in C, the resulting solution

must cause the maximum application errors possible for the DFG given the

locking parameters. On the other hand, while our P-time heuristic will still

yield a locking solution with substantial error, it no longer operates on every

locked input combination, so it may not be highest possible error.

4. Impact on Security: Consider the impact of co-design on the application errors

and SAT resilience of locking. Both our optimal and heuristic algorithm config-

ure binding/locking to optimize locking-induced application errors for a fixed

number of locked inputs. Because the locked input count dictates the SAT

resilience of locking, our proposed approach produces a design that maximizes

corruption for an attacker without any compromise in SAT resilience.

SUIF
Compiler

C/C++ Function

Scheduler
Input
DFGs

Trace Driven
Simulator

Sched.
DFG

Input Trace

Exp. Input
Occurrence

Per Op.

Figure 6.8: Experimental flow to generate benchmarks.

6.3.3.3 Binding-Time Logic Locking Design Methodology

Consider a designer that has set a target application error rate and a minimum

SAT runtime permissible for a secure locking configuration in their custom IC. With

only minor modifications, the proposed binding-locking co-design approach can be

used to design a locking configuration meeting both goals. Essentially, by using our

169

co-design approach to incrementally tune the number of locked inputs in each FU, a

locking configuration can be designed that achieves a sufficient application error rate

with the minimum number of locked inputs, hence, the maximum SAT resilience.

If the SAT resilience of this locking configuration is insufficient, exponential SAT

iteration runtime locking schemes can be used alongside the binding-obfuscation

co-designed locking to increase SAT runtime to a sufficient level. Exponential

SAT iteration runtime schemes generally incur too much design overhead to be

used on their own. For example, a 384-bit Full-Lock [33] scheme implemented

in the b14 netlist of the ISCAS’85 suite incurred a 192% increase in power and

61% increase in area, while requiring < 10 minutes to unlock with a SAT attack.

This overhead is infeasible. However, our co-design approach uses critical minterm

locking, which incurs minimal overhead compared to these techniques. So, by using

low-overhead critical minterm locking to achieve as much SAT resilience as possible,

the design overhead concerns associated with exponential SAT runtime schemes can

be minimized, while still meeting design goals.

6.3.4 Experimental Evaluation of Proposed Algorithms

To evaluate each proposed algorithm, we applied them to bind the adders

and multipliers in 11 benchmarks. Each benchmark was made by isolating a C

function from 1 of 8 MediaBench benchmarks [38] and extracting the corresponding

DFG with SUIF. Each DFG was scheduled to be executed on up to 3 FUs using

a path-based scheduler [48]. The resulting DFGs contained an average of 18.6 add

170

and 10.6 multiply operations spanning 13.5 cycles. To serve as the “typical” input

trace/application for each benchmark, we used the MediaBench-provided sample

workloads. For this input trace, each DFG was simulated and expected occurrences

of input minterms for internal operations were computed. This information, along

with the scheduled DFG, was used as input for each proposed algorithm. An

overview of the process to generate each benchmark is in Figure 6.8.

To evaluate each algorithm we compared them to other common binding

algorithms with identical locking configurations. Specifically, we used an area-aware

approach [30], which minimizes register count, and a power-aware approach [16],

which minimizes switching frequency, for comparison. For each benchmark, we

enumerated all combinations of {1,2,3} locked FUs locking {1,2,3} inputs each. We

then aggregated a list of the 10 most common inputs for each DFG to serve as

the candidate locked inputs. For the 9 possible locking configurations (i.e. {1,2,3}

locked FUs locking {1,2,3} inputs), we created a bound/locked circuit securing each

combination of the 10 candidate inputs for each locked FU. We used 1) obfuscation-

aware, 2) binding-obfuscation co-design (optimal and P-time heuristic), 3) area-

aware, and 4) power-aware binding algorithms to generate each locked circuit. We

then calculated the ratio between the number of application errors caused by each

security-aware approach compared to each area/power-aware approach with the

same locking configuration. The results were averaged over every locked FU count,

locked input count, and locked input combination for Figure 6.9.

171

dct ecb_enc4 fft fir jctrans2 jdmerge1 jdmerge3 jdmerge4 motion2 motion3 noisest2 Avg.
100

101

102

In
cr

ea
se

 in
 A

pp
.

Er
ro

rs
 o

f L
oc

ki
ng Increase in Application Errors Caused by Locking for Obfuscation-Aware Binding Over Area/Power-Aware Binding

dct ecb_enc4 fft fir jctrans2 jdmerge1 jdmerge3 jdmerge4 motion2 motion3 noisest2 Avg.
100

101

102

In
cr

ea
se

 in
 A

pp
.

Er
ro

rs
 o

f L
oc

ki
ng Increase in Application Errors Caused by Locking for Binding-Obfuscation Co-Design Over Area/Power-Aware Binding

Adder, Area-Aware
Adder, Area-Aware (Heuristic)

Adder, Power-Aware
Adder, Power-Aware (Heuristic)

Mult., Area-Aware
Mult., Area-Aware (Heuristic)

Mult., Power-Aware
Mult., Power-Aware (Heuristic)

Figure 6.9: Impact of security-aware binding on the application errors caused by locking

during a typical workload compared to area-aware [30] and power-aware [16] binding.

Adder/multiplier binding were considered separately. No multipliers were present in the

ecb enc4 benchmark.

In this way, we compared each circuit created with a security-aware algo-

rithm for each enumerated locking/locked input configuration to the same circuit

incorporating an identical locking configuration created with an area/power-aware

algorithm. This directly quantifies any increase in application errors due to our

security-aware algorithms across a variety of circuits and locking configurations.

6.3.4.1 Experimental Analysis

As shown by Figure 6.9, obfuscation-aware binding increased the application

errors caused by the locking construction by 22x and 29x compared to area and

power aware binding, respectively. The optimal binding-obfuscation co-design al-

gorithm increased application errors by 82x and 115x. Our P-time heuristic for

this algorithm resulted less than a 0.5% solution degradation, again increasing

application errors by 82x and 115x. This confirms the efficacy of our heuristic. As

172

1 FU 2 FUs 3 FUs
1 Lock Inp.

2 Lock Inp.
3 Lock Inp. Avg.

100

101

102

In
cr

ea
se

 in
 A

pp
.

Er
ro

rs
 o

f L
oc

ki
ng

Obf.-Aware vs. Area-Aware
Obf.-Aware vs. Power-Aware

P-Time Bind-Obf. Co-Design vs. Area-Aware
P-Time Bind-Obf. Co-Design vs. Power-Aware

Figure 6.10: Impact of locking configuration on errors caused by security-aware binding.

All results are normalized to the errors caused by the same locking configuration applied

after area/power-aware binding.

a result, we rely on this P-time heuristic for the remainder of binding-obfuscation

co-design analysis. Each algorithm caused sizable increases in application errors,

without sacrificing SAT resilience.

We have aggregated the impact of locking configuration on the efficacy of

each proposed algorithm in Figure 6.10. To generate Figure 6.10, we fixed a single

locking parameter, listed on the x-axis, and averaged our results over all other locking

parameters (e.g. the “1 FU” bars average over locking with {1,2,3} locked inputs).

In this way, we isolated the impact of each locking parameter on the efficacy of

each security-aware algorithm. Based on Figure 6.10, increases in application error

remained consistently high in all cases. Remember, all increases were normalized

to the application errors caused by area/power-aware binding for the same locking

configuration (i.e. locked FU count, locked input count, and locked input identity).

Thus, Figure 6.10 suggests that security-aware binding will consistently produce a

10-150x increase in errors, no matter the underlying locking construction.

173

dct
ecb_enc4 fft fir

jctrans2
jdmerge1

jdmerge3
jdmerge4

motion2
motion3

noisest2 Avg.
0
2
4
6
8

10

In
cr

ea
se

 in
Re

gi
st

er
 C

ou
nt

Security-Aware vs. Area-Aware Binding
Obfuscation-Aware Binding P-Time Bind-Obf. Co-Design

dct
ecb_enc4 fft fir

jctrans2
jdmerge1

jdmerge3
jdmerge4

motion2
motion3

noisest2 Avg.
0.00
0.02
0.04
0.06
0.08

In
cr

ea
se

 in
Sw

itc
hi

ng
 F

re
q.

Security-Aware vs. Power-Aware Binding
Obfuscation-Aware Binding P-Time Bind-Obf. Co-Design

Figure 6.11: Design overhead of proposed security-aware binding algorithms compared to

area-aware and power-aware binding algorithms.

Finally, we compared the design overhead of each proposed algorithm to 1)

area-aware binding [30], which minimizes register count, and 2) power-aware binding

[16], which minimizes switching frequency. We show the corresponding increases

incurred by our security-aware algorithms on the register count and the switching

rate in Figure 6.11. On average, our proposed algorithms performed similarly,

requiring ~4.7 more register count than area-aware binding and incurring a 0.03

higher switching rate than power-aware binding. This confirms the low overhead

nature of each security-aware algorithm.

174

6.3.5 Conclusion

In this section, we explored security-aware binding for HLS with 2 problem for-

mulations, one where locked inputs were chosen prior to binding and one where the

binding algorithm could inform locked input selection. To solve them, we developed

an objective cost function that quantified the application errors injected by a locking

configuration for a fixed binding. We then proposed a security-aware algorithm for

both problems to maximize this cost function without degrading SAT resilience. To

evaluate each algorithm, we applied them to 11 MediaBench benchmarks and their

sample workloads. Our proposed obfuscation-aware binding (binding-obfuscation

co-design) algorithm caused a 26x (99x) increase in locking-induced application

errors over alternative binding schemes with no reduction in SAT resilience and

only minimal degradation in area/power overhead. Thus, each approach can ensure

that locking achieves the highest application corruption (error severity) without sac-

rificing SAT resilience. Doing so allows strong security guarantees to be achieved in

ICs that transcend gate-level boundaries using conventional obfuscation techniques.

175

Chapter 7: Conclusions and Future

Research Directions

In this dissertation, we explored the efficacy of logic obfuscation techniques

when obfuscated circuits are viewed as a small part of a much larger and more

complex IC. This forces us to consider hardware-oriented security beyond gate-

level boundaries. In Chapter 4, we derived a fundamental mathematical trade-

off between error severity and attack resilience, the 2 primary goals underlying

all logic obfuscation. We then designed and utilized the GEM5-based ObfusGEM

simulator to assess the ramifications of this trade-off on logic obfuscation through

an architectural lens. Our experiments identified severe limitations underlying logic

obfuscation techniques and implementation methodologies when considered beyond

traditional gate-level boundaries due to the error resilience and input space non-

uniformity of modern architectures and applications. In the remaining chapters, we

explored 2 possible methods to address these limitations.

In Chapter 5, we explored methodologies to address the limitations identified in

the previous chapter through the design of non-conventional obfuscation techniques.

First, we proposed Trace Logic Locking, a novel enhancement of module-level logic

obfuscation which enables existing art to secure arbitrary length sequences of input

minterms, referred to as traces. We then proved that this trace-based approach

176

to obfuscation injects an additional degree of freedom into the parametric space of

locking, enabling obfuscation techniques to overcome the limitations of our derived

trade-off. Second, we proposed Memory Locking, an automatable logic obfuscation

technique that obfuscates the delicate timing balance maintained by on-chip SRAM

circuitry. By obfuscating the analog effects governing SRAM timing, Memory

Locking is resistant to many proposed attack methodologies, such as SAT-based

attacks. This bypasses the trade-off between error severity and SAT resilience

that was shown to limit the efficacy of obfuscation when viewed in the context

of an IC as a whole in Chapter 4, allowing both to be achieved simultaneously.

Finally, we proposed High Error Rate Keys to secure probabilistic circuits from

SAT-style attacks. High Error Rate Keys concentrate obfuscation in high-error

regions of a probabilistic circuit, thereby forcing the runtime of SAT-style attacks

to scale exponentially in the number of key bits. Once again, HERKs serve as a

non-conventional approach capable of easing the trade-off between error severity

and SAT resilience, allowing security guarantees to be achieved in probabilistic

applications beyond gate-level boundaries.

In Chapter 6, we explored how architectural context can be used to enhance

the hardware-oriented security guarantees of existing obfuscation techniques. First,

we explored the notion of security-aware architectural design practices. To this end,

we proposed and evaluated a quantitative, tool-driven design approach for both

on-chip memory and data path architectures to enhance hardware security guaran-

tees through logic obfuscation. Second, we considered leveraging the architectural

context available during the resource binding phase of high-level synthesis (HLS)

177

to co-design architectures and locking configurations capable of high corruption

(error severity) and SAT resilience simultaneously. To do so, we developed 2

security-focused binding/locking algorithms, which were capable of achieving 26x

and 99x increase in the application errors of a fixed locking configuration while

maintaining SAT resilience and incurring minimal overhead compared to other

binding schemes.

7.1 Future Work

Hardware security is a rapidly expanding field of research. As such, there are

a wide array of new research directions that are direct extensions from the issues

studied in this dissertation. We outline several possible paths for future work in the

remainder of this chapter.

7.1.1 Security-Aware Logic Synthesis

Nearly every hardware system is developed in a high-level language, such

as Verilog, and converted into a gate-level netlist via a process known as logic

synthesis. This provides two benefits: 1) Designers can focus primarily on algorithm

development, automating many challenges caused by the scale of modern ICs. 2)

Synthesis tools automate a wide array of optimizations to trade off design goals

(power, area, timing, etc.) and ensure that all requirements are met. However,

most security research obfuscates the gate-level netlists produced following logic

synthesis, forgoing synthesis optimizations entirely. The work highlighted in this

178

thesis argues that obfuscation applied in this way is sub-optimal in both security

and traditional design goals. For example, Section 6.3 identified a link between

obfuscation effectiveness and the resource binding phase of high-level synthesis.

Through obfuscation-aware resource binding algorithms developed to target this

link, a 98.5x improvement in the effectiveness of obfuscation could be achieved. Such

a security-aware approach could be considered for general logic synthesis as well.

This offers the possibility of research developing security-aware synthesis algorithms

that use the design context and plasticity present during synthesis to optimize for

hardware security and ensure that security goals are met. In particular, I foresee

two key research thrusts. First, work investigating the impact of a design’s topology

and function on the hardware security achieved by logic obfuscation, including

quantifiable metrics to evaluate these security goals. Second, work developing

security-aware synthesis algorithms that optimize circuit topology to ensure that

any security metrics are met.

7.1.2 Hardware Security in the Physical Design Realm

Recent research has demonstrated that contactless probing, a common IC

test and evaluation technique, can be used to extract hardware secret keys from a

circuit even when tamper-proof memory elements are used [63, 62, 90]. This form

of physical attack represents a fundamental shift in the hardware security threat

model, which previously considered them to be largely out-of-scope. Now, any

keys stored in hardware can be compromised with sufficient reverse engineering.

179

Hence, any security scheme that uses on-chip keys, such as logic obfuscation, is

compromised. These physical attacks are unique because they exploit the previously

ignored physical design (i.e. layout, placement, routing, etc.) of a circuit to

compromise security. In order to protect our critical infrastructure and military

technology from these novel security threats, we must fundamentally shift our view

of hardware security to consider an IC’s physical design. This opens the door to a

new generation of research to rethink the nature of hardware security through the

lens of physical design. Possible future work in this area spans topics ranging from

developing mathematical models for a physical attacker, to exploring novel attack

strategies that exploit physical leakage, to developing security-aware physical design

automation algorithms.

7.1.3 Hardware Security and Artificial Intelligence

Artificial intelligence and machine learning have exploded in popularity, be-

coming indispensable in applications from medicine to autonomous vehicles. While

these technologies undoubtedly improve our daily lives, they also open the door to

an entirely new set of security concerns. These range from machine-learning-based

attacks on existing security schemes, to verifying the integrity of trained applica-

tions, to hardening the security of machine-learning-focused hardware (e.g. Google’s

Tensor Processing Unit). For each of these threat vectors, hardware security is a vital

component. Machine learning applications and hardware present unique security

challenges due to their limited mathematical verifiability [44] and error resilience

180

properties [115, 46]. These challenges present significant barriers to securing these

specialized hardware systems with existing technologies and security schemes. It is

vital that we develop methods to overcome these challenges to protect and secure

the wide range of critical infrastructure that is reliant on artificial intelligence and

machine learning.

181

Bibliography

[1] Bilge ES Akgul, Lakshmi N Chakrapani, Pinar Korkmaz, and Krishna V
Palem. Probabilistic cmos technology: A survey and future directions. In
International Conference on Very Large Scale Integration, pages 1–6. IEEE,
2006.

[2] Yousra Alkabani and Farinaz Koushanfar. Active hardware metering for
intellectual property protection and security. In USENIX security symposium,
2007.

[3] Alexandru Amaricai, Sergiu Nimara, Oana Boncalo, Jiaoyan Chen, and
Emanuel Popovici. Probabilistic gate level fault modeling for near and
sub-threshold cmos circuits. In 2014 17th Euromicro Conference on Digital
System Design, pages 473–479. IEEE, 2014.

[4] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta
Sasan. Smt attack: Next generation attack on obfuscated circuits with
capabilities and performance beyond the sat attacks. Transactions on
Cryptographic Hardware and Embedded Systems, 2019.

[5] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. Preventing ic piracy
using reconfigurable logic barriers. IEEE Design & Test of Computers, pages
66–75, 2010.

[6] Kirti Bhanushali and W Rhett Davis. Freepdk15: An open-source predictive
process design kit for 15nm finfet technology. In Proceedings of the 2015
Symposium on International Symposium on Physical Design, pages 165–170,
2015.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and
compilation techniques, 2008.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,
Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[9] Alberto Bosio and Giorgio Di Natale. Lifting: A flexible open-source fault
simulator. In 2008 17th Asian Test Symposium, pages 35–40. IEEE, 2008.

[10] Franc Brglez, David Bryan, and Krzysztof Kozminski. Combinational profiles
of sequential benchmark circuits. In IEEE international symposium on circuits
and systems, 1989.

182

[11] Abhishek Chakraborty, Nithyashankari Gummidipoondi Jayasankaran, Yun-
tao Liu, Jeyavijayan Rajendran, Ozgur Sinanoglu, Ankur Srivastava, Yang
Xie, Muhammad Yasin, and Michael Zuzak. Keynote: A disquisition on logic
locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2019.

[12] Abhishek Chakraborty, Yuntao Liu, and Ankur Srivastava. Timingsat: Timing
profile embedded sat attack. In Proceedings of the International Conference
on Computer-Aided Design, pages 1–6, 2018.

[13] Abhishek Chakraborty, Yang Xie, and Ankur Srivastava. Gpu obfuscation:
attack and defense strategies. In Design Automation Conference, 2018.

[14] Prabuddha Chakraborty, Jonathan Cruz, and Swarup Bhunia. Sail: Machine
learning guided structural analysis attack on hardware obfuscation. In 2018
Asian Hardware Oriented Security and Trust Symposium (AsianHOST), pages
56–61. IEEE, 2018.

[15] Rajat Subhra Chakraborty and Swarup Bhunia. Harpoon: an obfuscation-
based soc design methodology for hardware protection. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(10):1493–1502,
2009.

[16] Jui-Ming Chang and Massoud Pedram. Register allocation and binding for
low power. In ACM/IEEE Design Automation Conference (DAC), 1995.

[17] Jianqi Chen, Monir Zaman, Yiorgos Makris, RD Shawn Blanton, Subhasish
Mitra, and Benjamin Carrion Schafer. Decoy: Deflection-driven hls-based
computation partitioning for obfuscating intellectual property. In Design
Automation Conference (DAC). IEEE, 2020.

[18] Clayton M Christensen, Steven King, Matt Verlinden, and Woodward Yang.
The new economics of semiconductor manufacturing. iEEE SpEctrum,
45(5):24–29, 2008.

[19] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. Rt-level itc’99
benchmarks and first atpg results. IEEE Design & Test of computers,
17(3):44–53, 2000.

[20] Avinash R Desai, Michael S Hsiao, Chao Wang, Leyla Nazhandali, and Simin
Hall. Interlocking obfuscation for anti-tamper hardware. In Proceedings of the
eighth annual cyber security and information intelligence research workshop,
pages 1–4, 2013.

[21] Jaya Dofe and Qiaoyan Yu. Novel dynamic state-deflection method for gate-
level design obfuscation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(2):273–285, 2017.

183

[22] Sophie Dupuis, Papa-Sidi Ba, Giorgio Di Natale, Marie-Lise Flottes, and
Bruno Rouzeyre. A novel hardware logic encryption technique for thwarting
illegal overproduction and hardware trojans. In 2014 IEEE 20th International
On-Line Testing Symposium (IOLTS). IEEE, 2014.

[23] Mohamed El Massad, Siddharth Garg, and Mahesh Tripunitara. Reverse
engineering camouflaged sequential circuits without scan access. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 33–40. IEEE, 2017.

[24] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. Integrated
circuit (ic) decamouflaging: Reverse engineering camouflaged ics within
minutes. In NDSS, pages 1–14, 2015.

[25] Bo Fang, Karthik Pattabiraman, Matei Ripeanu, and Sudhanva Gurumurthi.
Gpu-qin: A methodology for evaluating the error resilience of gpgpu applica-
tions. In IEEE International Symposium on Performance Analysis of Systems
and Software. IEEE, 2014.

[26] Marc Fyrbiak, Sebastian Wallat, Jonathan Déchelotte, Nils Albartus, Sinan
Böcker, Russell Tessier, and Christof Paar. On the difficulty of fsm-based
hardware obfuscation. Transactions on Cryptographic Hardware and Embedded
Systems, 2018.

[27] Jason George, Bo Marr, Bilge ES Akgul, and Krishna V Palem. Probabilistic
arithmetic and energy efficient embedded signal processing. In Proceedings of
the 2006 international conference on Compilers, architecture and synthesis for
embedded systems, pages 158–168, 2006.

[28] Matthew R Guthaus, James E Stine, Samira Ataei, Brian Chen, Bin Wu,
and Mehedi Sarwar. Openram: An open-source memory compiler. In 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 1–6. IEEE, 2016.

[29] Ku He, Andreas Gerstlauer, and Michael Orshansky. Controlled timing-error
acceptance for low energy idct design. In Design, Automation & Test in
Europe, pages 1–6. IEEE, 2011.

[30] Chu-Yi Huang, Yen-Shen Chen, Youn-Long Lin, and Yu-Chin Hsu. Data
path allocation based on bipartite weighted matching. In Design Automation
Conference, 1991.

[31] Sheikh Ariful Islam, Love Kumar Sah, and Srinivas Katkoori. High-level
synthesis of key-obfuscated rtl ip with design lockout and camouflaging.
ACM Transactions on Design Automation of Electronic Systems (TODAES),
26(1):1–35, 2020.

184

[32] Nithyashankari Gummidipoondi Jayasankaran, Adriana Sanabria Borbon,
Edgar Sanchez-Sinencio, Jiang Hu, and Jeyavijayan Rajendran. Towards
provably-secure analog and mixed-signal locking against overproduction.
In Proceedings of the International Conference on Computer-Aided Design,
page 7, 2018.

[33] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta
Sasan. Full-lock: Hard distributions of sat instances for obfuscating circuits
using fully configurable logic and routing blocks. In Proceedings of the 56th
Annual Design Automation Conference, 2019.

[34] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta
Sasan. Interlock: An intercorrelated logic and routing locking. In 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD),
pages 1–9. IEEE, 2020.

[35] Richard M Karp. An algorithm to solve the m× n assignment problem in
expected time o (mn log n). Networks, 1980.

[36] Pinar Korkmaz, Bilge ES Akgul, and Krishna V Palem. Energy, performance,
and probability tradeoffs for energy-efficient probabilistic cmos circuits. IEEE
Transactions on Circuits and Systems I: Regular Papers, 55(8):2249–2262,
2008.

[37] Leonidas Lavdas, M Tanjidur Rahman, Mark Tehranipoor, and Navid
Asadizanjani. On optical attacks making logic obfuscation fragile. In 2020
IEEE International Test Conference in Asia (ITC-Asia), pages 71–76. IEEE,
2020.

[38] Chunho Lee, Miodrag Potkonjak, and William H Mangione-Smith. Media-
bench: A tool for evaluating and synthesizing multimedia and communications
systems. In International Symposium on Microarchitecture. IEEE, 1997.

[39] Julian Leonhard, Muhammad Yasin, Shadi Turk, Mohammed Thari Nabeel,
Marie-Minerve Louërat, Roselyne Chotin-Avot, Hassan Aboushady, Ozgur
Sinanoglu, and Haralampos-G Stratigopoulos. Mixlock: Securing mixed-signal
circuits via logic locking. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 84–89. IEEE, 2019.

[40] Meng Li, Kaveh Shamsi, Yier Jin, and David Z Pan. Timingsat: Decam-
ouflaging timing-based logic obfuscation. In 2018 IEEE International Test
Conference (ITC), pages 1–10. IEEE, 2018.

[41] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. Mcpat: An integrated power, area, and
timing modeling framework for multicore and manycore architectures. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 469–480, 2009.

185

[42] Xuanhua Li and Donald Yeung. Application-level correctness and its impact
on fault tolerance. In 2007 IEEE 13th International symposium on high
performance computer architecture, pages 181–192. IEEE, 2007.

[43] Jinghang Liang, Jie Han, and Fabrizio Lombardi. New metrics for the
reliability of approximate and probabilistic adders. IEEE Transactions on
computers, 62(9):1760–1771, 2012.

[44] Yuntao Liu, Ankit Mondal, Abhishek Chakraborty, Michael Zuzak, Nina
Jacobsen, Daniel Xing, and Ankur Srivastava. A survey on neural trojans. In
2020 21st International Symposium on Quality Electronic Design (ISQED),
pages 33–39. IEEE, 2020.

[45] Yuntao Liu, Michael Zuzak, Yang Xie, Abhishek Chakraborty, and Ankur
Srivastava. Strong anti-sat: Secure and effective logic locking. In International
Symposium on Quality Electronic Design (ISQED), 2020.

[46] Yuntao Liu, Michael Zuzak, Yang Xie, Abhishek Chakraborty, and Ankur
Srivastava. Robust and attack resilient logic locking with a high application-
level impact. ACM Journal on Emerging Technologies in Computing Systems,
2021.

[47] Mohamed El Massad, Jun Zhang, Siddharth Garg, and Mahesh V Tripunitara.
Logic locking for secure outsourced chip fabrication: A new attack and
provably secure defense mechanism. arXiv preprint arXiv:1703.10187, 2017.

[48] S Ogrenci Memik, Elaheh Bozorgzadeh, Ryan Kastner, and Majid Sar-
rafzadeh. A super-scheduler for embedded reconfigurable systems. In
International Conference on Computer Aided Design, 2001.

[49] Debabrata Mohapatra, Georgios Karakonstantis, and Kaushik Roy. Signifi-
cance driven computation: a voltage-scalable, variation-aware, quality-tuning
motion estimator. In ACM/IEEE international symposium on Low power
electronics and design, pages 195–200, 2009.

[50] Nasir Mohyuddin, Ehsan Pakbaznia, and Massoud Pedram. Probabilistic error
propagation in a logic circuit using the boolean difference calculus. In Advanced
Techniques in Logic Synthesis, Optimizations and Applications, pages 359–381.
Springer, 2011.

[51] Ankit Mondal, Michael Zuzak, and Ankur Srivastava. Statsat: A boolean
satisfiability based attack on logic-locked probabilistic circuits. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

[52] Shubhendu S Mukherjee, Joel Emer, and Steven K Reinhardt. The soft error
problem: An architectural perspective. In 11th International Symposium on
High-Performance Computer Architecture, pages 243–247. IEEE, 2005.

186

[53] Md Rafid Muttaki, Roshanak Mohammadivojdan, Mark Tehranipoor, and
Farimah Farahmandi. Hlock: Locking ips at the high-level language. In 2021
58th ACM/IEEE Design Automation Conference (DAC), pages 79–84. IEEE,
2021.

[54] Prashant J Nair, David A Roberts, and Moinuddin K Qureshi. Fault sim: A
fast, configurable memory-reliability simulator for conventional and 3d-stacked
systems. ACM Transactions on Architecture and Code Optimization (TACO),
2016.

[55] Satwik Patnaik, Nikhil Rangarajan, Johann Knechtel, Ozgur Sinanoglu,
and Shaloo Rakheja. Advancing hardware security using polymorphic and
stochastic spin-hall effect devices. In Design, Automation & Test in Europe
Conference & Exhibition, pages 97–102. IEEE, 2018.

[56] Satwik Patnaik, Nikhil Rangarajan, Johann Knechtel, Ozgur Sinanoglu, and
Shaloo Rakheja. Spin-orbit torque devices for hardware security: From
deterministic to probabilistic regime. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2019.

[57] Christian Pilato, Luca Collini, Luca Cassano, Donatella Sciuto, Siddharth
Garg, and Ramesh Karri. On the optimization of behavioral logic locking for
high-level synthesis. arXiv preprint arXiv:2105.09666, 2021.

[58] Christian Pilato, Francesco Regazzoni, Ramesh Karri, and Siddharth Garg.
Tao: techniques for algorithm-level obfuscation during high-level synthesis.
In Proceedings of the 55th Annual Design Automation Conference, page 155.
ACM, 2018.

[59] Jan Rabaey. Low power design essentials. Springer Science & Business Media,
2009.

[60] M Sazadur Rahman, Adib Nahiyan, Sarah Amir, Fahim Rahman, Farimah
Farahmandi, Domenic Forte, and Mark Tehranipoor. Dynamically obfuscated
scan chain to resist oracle-guided attacks on logic locked design. Cryptology
ePrint Archive, Report 2019/946, 2019. https://eprint.iacr.org/2019/

946.

[61] M Tanjidur Rahman, Nusrat Farzana Dipu, Dhwani Mehta, Shahin Tajik,
Mark Tehranipoor, and Navid Asadizanjani. Concealing-gate: Optical
contactless probing resilient design. ACM Journal on Emerging Technologies
in Computing Systems (JETC), 17(3):1–25, 2021.

[62] M Tanjidur Rahman, Qihang Shi, Shahin Tajik, Haoting Shen, Damon L
Woodard, Mark Tehranipoor, and Navid Asadizanjani. Physical inspection &
attacks: New frontier in hardware security. In 2018 IEEE 3rd International
Verification and Security Workshop (IVSW), pages 93–102. IEEE, 2018.

187

https://eprint.iacr.org/2019/946
https://eprint.iacr.org/2019/946

[63] M Tanjidur Rahman, Shahin Tajik, M Sazadur Rahman, Mark Tehranipoor,
and Navid Asadizanjani. The key is left under the mat: On the inappropriate
security assumption of logic locking schemes. In 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 262–272.
IEEE, 2020.

[64] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri.
Security analysis of logic obfuscation. In Proceedings of Design Automation
Conference, 2012.

[65] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youngok
Pino, Ozgur Sinanoglu, and Ramesh Karri. Fault analysis-based logic
encryption. IEEE Transactions on computers, 64(2):410–424, 2013.

[66] Amin Rezaei, You Li, Yuanqi Shen, Shuyu Kong, and Hai Zhou. Cycsat-
unresolvable cyclic logic encryption using unreachable states. In Proceedings
of the 24th Asia and South Pacific Design Automation Conference, pages 358–
363. ACM, 2019.

[67] R Robache, J-F Boland, Claude Thibeault, and Yvon Savaria. A methodology
for system-level fault injection based on gate-level faulty behavior. In 2013
IEEE 11th International New Circuits and Systems Conference (NEWCAS),
pages 1–4. IEEE, 2013.

[68] Shervin Roshanisefat, Hadi Mardani Kamali, and Avesta Sasan. Srclock:
Sat-resistant cyclic logic locking for protecting the hardware. In Great Lakes
Symposium on VLSI, 2018.

[69] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. A primer on
hardware security: Models, methods, and metrics. Proceedings of the IEEE,
2014.

[70] Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. Epic: Ending piracy of
integrated circuits. In Conference on Design, automation and test in Europe,
2008.

[71] Akashdeep Saha, Sayandeep Saha, Siddhartha Chowdhury, Debdeep
Mukhopadhyay, and Bhargab B Bhattacharya. Lopher: Sat-hardened logic
embedding on block ciphers. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020.

[72] Pia N Sanda, Jeffrey W Kellington, Prabhakar Kudva, Ronald Kalla, Ryan B
McBeth, Jerry Ackaret, Ryan Lockwood, John Schumann, and Christopher R
Jones. Soft-error resilience of the ibm power6 processor. IBM Journal of
Research and Development, 2008.

[73] Abhrajit Sengupta, Mohammed Ashraf, Mohammed Nabeel, and Ozgur
Sinanoglu. Customized locking of ip blocks on a multi-million-gate soc. In
International Conference on Computer-Aided Design, 2018.

188

[74] Abhrajit Sengupta, Mohammed Nabeel, Nimisha Limaye, Mohammed Ashraf,
and Ozgur Sinanoglu. Truly stripping functionality for logic locking: A
fault-based perspective. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

[75] Abhrajit Sengupta, Mohammed Nabeel, Muhammad Yasin, and Ozgur
Sinanoglu. Atpg-based cost-effective, secure logic locking. In IEEE 36th VLSI
Test Symposium (VTS). IEEE, 2018.

[76] Bicky Shakya, Xiaolin Xu, Mark Tehranipoor, and Domenic Forte. Cas-lock:
A security-corruptibility trade-off resilient logic locking scheme. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages 175–202,
2020.

[77] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier
Jin. Appsat: Approximately deobfuscating integrated circuits. In 2017 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST),
pages 95–100. IEEE, 2017.

[78] Kaveh Shamsi, Meng Li, David Z Pan, and Yier Jin. Cross-lock: Dense
layout-level interconnect locking using cross-bar architectures. In Great Lakes
Symp. on VLSI, 2018.

[79] Kaveh Shamsi, Meng Li, Kenneth Plaks, Saverio Fazzari, David Z Pan, and
Yier Jin. Ip protection and supply chain security through logic obfuscation: A
systematic overview. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 2019.

[80] Kaveh Shamsi, Travis Meade, Meng Li, David Z Pan, and Yier Jin. On the
approximation resiliency of logic locking and ic camouflaging schemes. Trans.
on Information Forensics and Security, 2018.

[81] Kaveh Shamsi, David Z Pan, and Yier Jin. On the impossibility of
approximation-resilient circuit locking. In 2019 IEEE International Sympo-
sium on Hardware Oriented Security and Trust (HOST), pages 161–170. IEEE,
2019.

[82] Haoting Shen, Navid Asadizanjani, Mark Tehranipoor, and Domenic Forte.
Nanopyramid: An optical scrambler against backside probing attacks. In
ISTFA 2018: Proceedings from the 44th International Symposium for Testing
and Failure Analysis, page 280. ASM International, 2018.

[83] Yuanqi Shen and Hai Zhou. Double dip: Re-evaluating security of logic
encryption algorithms. In Great Lakes Symposium on VLSI 2017, 2017.

[84] Deepak Sirone and Pramod Subramanyan. Functional analysis attacks on logic
locking. In Design, Automation & Test in Europe Conference & Exhibition,
2019.

189

[85] Deepak Sirone and Pramod Subramanyan. Functional analysis attacks on logic
locking. IEEE Transactions on Information Forensics and Security, 15:2514–
2527, 2020.

[86] Ansgar Stammermann, Domenik Helms, Milan Schulte, Arne Schulz, and
Wolfgang Nebel. Binding allocation and floorplanning in low power high-level
synthesis. In International Conference on Computer Aided Design. IEEE,
2003.

[87] Sanbao Su, Yi Wu, and Weikang Qian. Efficient batch statistical error
estimation for iterative multi-level approximate logic synthesis. In Proceedings
of the 55th Annual Design Automation Conference, page 54. ACM, 2018.

[88] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the security
of logic encryption algorithms. In 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 137–143. IEEE, 2015.

[89] S. S. Technology. Why node shrinks are no longer offsetting equipment costs.
2012.

[90] HuanyuWang, Domenic Forte, Mark M Tehranipoor, and Qihang Shi. Probing
attacks on integrated circuits: Challenges and research opportunities. IEEE
Design & Test, 34(5):63–71, 2017.

[91] I-Chyn Wey, You-Gang Chen, Chang-Hong Yu, An-Yeu Wu, and Jie Chen.
Design and implementation of cost-effective probabilistic-based noise-tolerant
vlsi circuits. IEEE Transactions on Circuits and Systems I: Regular Papers,
56(11):2411–2424, 2009.

[92] Yang Xie and Ankur Srivastava. Mitigating sat attack on logic locking. In
Conference on Cryptographic Hardware and Embedded Systems, 2016.

[93] Yang Xie and Ankur Srivastava. Delay locking: Security enhancement of logic
locking against ic counterfeiting and overproduction. In Proceedings of the
54th Annual Design Automation Conference 2017, page 9. ACM, 2017.

[94] Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic
locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 38(2):199–207, 2018.

[95] Xiaolin Xu, Bicky Shakya, Mark M Tehranipoor, and Domenic Forte. Novel
bypass attack and bdd-based tradeoff analysis against all known logic locking
attacks. In International conference on cryptographic hardware and embedded
systems, pages 189–210, 2017.

[96] Fangfei Yang, Ming Tang, and Ozgur Sinanoglu. Stripped functionality logic
locking with hamming distance based restore unit (sfll-hd)–unlocked. IEEE
Transactions on Information Forensics and Security, 2019.

190

[97] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis
Sylvester. A2: Analog malicious hardware. In 2016 IEEE symposium on
security and privacy (SP), pages 18–37. IEEE, 2016.

[98] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and
Ozgur Sinanoglu. Sarlock: Sat attack resistant logic locking. In Intl.
Symposium on Hardware Oriented Security and Trust, 2016.

[99] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and
Ozgur Sinanoglu. Ttlock: Tenacious and traceless logic locking. In Intl.
Symposium on Hardware Oriented Security and Trust, 2017.

[100] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Removal attacks on logic locking and camouflaging techniques.
Transactions on Emerging Topics in Computing, 2017.

[101] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Security analysis of anti-sat. In 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), 2017.

[102] Muhammad Yasin, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh
Karri. On improving the security of logic locking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2016.

[103] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed
Ashraf, Jeyavijayan JV Rajendran, and Ozgur Sinanoglu. Provably-secure
logic locking: From theory to practice. In Conference on Computer and
Communications Security, 2017.

[104] Muhammad Yasin, Chongzhi Zhao, and Jeyavijayan JV Rajendran. Sfll-hls:
Stripped-functionality logic locking meets high-level synthesis. In Intl. Conf.
on Computer-Aided Design, 2019.

[105] Monir Zaman, Abhrajit Sengupta, Danqing Liu, Ozgur Sinanoglu, Yiorgos
Makris, and Jeyavijayan JV Rajendran. Towards provably-secure performance
locking. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1592–1597, 2018.

[106] Dongrong Zhang, Miao He, Xiaoxiao Wang, and Mark Tehranipoor. Dynami-
cally obfuscated scan for protecting ips against scan-based attacks throughout
supply chain. In 2017 IEEE 35th VLSI Test Symposium (VTS), pages 1–6.
IEEE, 2017.

[107] Hai Zhou. A humble theory and application for logic encryption. IACR
Cryptology ePrint Archive, 2017:696, 2017.

[108] Hai Zhou, Ruifeng Jiang, and Shuyu Kong. Cycsat: Sat-based attack
on cyclic logic encryptions. In IEEE/ACM International Conference on
Computer-Aided Design, 2017.

191

[109] Hai Zhou, Amin Rezaei, and Yuanqi Shen. Resolving the trilemma in logic
encryption. In International Conference on Computer-Aided Design (ICCAD),
2019.

[110] Ning Zhu, Wang Ling Goh, and Kiat Seng Yeo. Ultra low-power high-speed
flexible probabilistic adder for error-tolerant applications. In 2011 Interna-
tional SoC Design Conference, pages 393–396. IEEE, 2011.

[111] Michael Zuzak, Yuntao Liu, and Ankur Srivastava. Trace logic locking:
Improving the parametric space of logic locking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2020.

[112] Michael Zuzak, Yuntao Liu, and Ankur Srivastava. A resource binding
approach to logic obfuscation. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), pages 235–240. IEEE, 2021.

[113] Michael Zuzak, Ankit Mondal, and Ankur Srivastava. Evaluating the security
of logic-locked probabilistic circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2021.

[114] Michael Zuzak and Ankur Srivastava. Memory locking: An automated
approach to processor design obfuscation. In 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 541–546, 2019.

[115] Michael Zuzak and Ankur Srivastava. Obfusgem: Enhancing processor design
obfuscation through security-aware on-chip memory and data path design. In
International Symposium on Memory Systems. ACM, 2020.

192

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	List of Publications
	Introduction
	Security Concerns During IC Fabrication
	Hardware-Oriented Security Through Obfuscation
	Contributions and Proposed Work
	Evaluating the Security of Obfuscated Circuits Beyond Gate-Level Boundaries
	Obfuscation Techniques for Security Beyond Gate-Level Boundaries
	Design Methodologies for Security Beyond Gate-Level Boundaries

	Organization of the Dissertation

	Related Work
	Logic Obfuscation Techniques
	Attacks on Logic Obfuscation
	Moving Beyond Gate-Level Security with Logic Obfuscation
	State-of-the-Art Logic Obfuscation Techniques
	Probabilistic Circuits and Obfuscation
	Boolean Satisfiability Attacks Against Probabilistic Circuits
	Logic Obfuscation During High-Level Synthesis

	Preliminaries
	Logic Obfuscation
	Attacker Model
	SAT-Based Attacks
	Stripped Functionality Logic Locking (SFLL)
	Estimating Bit Error Ratio (BER) in Probabilistic Circuits
	StatSAT Attack on Logic Obfuscation in Probabilistic Circuits
	High-Level Synthesis (HLS)

	Evaluating the Security of Obfuscated Circuits Beyond Gate-Level Boundaries
	Deriving the Parametric Space of Logic Locking
	Understanding the Derived Parametric Space
	Understanding SAT Attack Iteration Runtime

	ObfusGEM Simulation Framework
	ObfusGEM Supported Attacker Models
	Overview of the ObfusGEM Framework
	Simulator Overview
	Relationship to Prior Art

	Assessing Security in Processors Beyond the Gate Level
	Logic Locking Attack Methodology
	Limitations Imposed by the Parametric Space of Locking

	Exploring the Design Space of Processor Design Obfuscation
	Experimental Methodology
	Quantifying SAT Attack Resilience
	Analysis of Design Space Exploration

	Conclusions

	Obfuscation Techniques for Security Beyond Gate-Level Boundaries
	Trace Logic Locking (TLL)
	Foundations of TLL
	Enhancing SFLL-Fault With TLL
	Mathematical Foundations of TLLSFLL-Fault
	Enhancing Alternative Techniques With TLL
	Experimental Analysis of TLLSFLL-Fault
	Conclusion

	Memory Locking
	Memory Locking Construction and Implementation
	Relationship to Prior Work
	Security Analysis of Memory Locking
	Memory Locking Security Beyond the Gate Level
	Conclusion

	High Error Rate Keys (HERK)
	Overview of High Error Rate Keys (HERK)
	Evaluation of High Error Rate Keys (HERK)
	Conclusion

	Design Methodologies for Security Beyond Gate-Level Boundaries
	Factors Limiting Security
	Input Space Non-Uniformity
	Processor Error Resilience

	Security-Aware Architecture Design
	Design Methodology
	Evaluating Security-Aware Design
	Conclusion

	A Resource Binding Approach to Logic Obfuscation
	Motivational Example: Security-Aware Binding
	Problem 1: Obfuscation-Aware Binding
	Problem 2: Binding-Obfuscation Co-Design
	Experimental Evaluation of Proposed Algorithms
	Conclusion

	Conclusions and Future Research Directions
	Future Work
	Security-Aware Logic Synthesis
	Hardware Security in the Physical Design Realm
	Hardware Security and Artificial Intelligence

	Bibliography

