78 research outputs found

    Prostasomas: search of biomarkers for the early detection of prostate cancer

    Get PDF
    El cáncer de próstata es la segunda enfermedad más diagnosticada en hombres a nivel mundial, con una tasa de mortalidad creciente en los últimos años. Actualmente, se cuenta con dos pruebas de detección temprana: la medición de los niveles en sangre del antígeno prostático específico y el tacto rectal de la próstata. Sin embargo, estas pruebas no presentan óptima especificidad y sensibilidad para su detección. Aunque diferentes estudios han buscado nuevos biomarcadores mediante la implementación de tecnologías, como secuenciación de nueva generación, espectrometría de masas, entre otras, aún persisten las mismas desventajas, por lo que no les ha permitido a estos su uso en la práctica clínica; razón por la cual, el descubrimiento de nuevos biomarcadores para el diagnóstico de cáncer de próstata, constituye un desafío para la comunidad científica. Los prostasomas corresponden a vesículas extracelulares secretadas por el tejido prostático normal o tumoral que pueden ser detectadas en diferentes fluidos. Estructuralmente, los prostasomas difieren de otros exosomas, por su tamaño, composición de membrana y contenido específico de proteínas, lo que los convierten en una fuente potencial y novedosa de biomarcadores clínicos.  En este contexto, esta revisión presenta un panorama general de los biomarcadores proteicos, aislados desde prostasomas presentes en diferentes fluidos biológicos, para el posible diagnóstico de cáncer de próstata. Para ello se realizó una búsqueda sistemática en PubMed para estudios en proteómica para cáncer de próstata, con criterios como: vesículas extracelulares, exosomas y prostasomas, asimismo, sangre, orina, líquido seminal, entre otras muestras biológicas.Prostate cancer is the second most diagnosed disease in men worldwide, with an increasing mortality rate in recent years. Currently, there are two early detection tests, the measurement of blood levels of prostate-specific antigen and digital rectal examination of the prostate. However, these tests do not present optimal specificity and sensitivity for their detection. Although different studies have looked for new biomarkers by means of the implementation of technologies, such as new generation sequencing, mass spectrometry, among others, the same disadvantages persist, therefore, they have not allowed their use in clinical practice; The discovery of new biomarkers for the diagnosis of prostate cancer is a challenge for the scientific community. Prostasomes correspond to extracellular vesicles secreted by normal prostate or tumor tissue that can be detected in different fluids. Structurally, prostasomes differ from other exosomes, by their size, membrane composition and specific protein content, which makes them a potential and novel source of clinical biomarkers. In this context, this review presents an overview of protein biomarkers, isolated from prostasomes present in different biological fluids, for the possible diagnosis of prostate cancer. For this, a systematic PubMed search was carried out for studies in proteomics for prostate cancer, with criteria such as extracellular vesicles, exosomes and prostasomes, as well as blood, urine, seminal fluid, among other biological samples

    Mouse Organ-Specific Proteins and Functions

    Get PDF
    Organ-specific proteins (OSPs) possess great medical potential both in clinics and in biomedical research. Applications of them—such as alanine transaminase, aspartate transaminase, and troponins—in clinics have raised certain concerns of their organ specificity. The dynamics and diversity of protein expression in heterogeneous human populations are well known, yet their effects on OSPs are less addressed. Here, we used mice as a model and implemented a breadth study to examine the panorgan proteome for potential variations in organ specificity in different genetic backgrounds. Using reasonable resources, we generated panorgan proteomes of four in-bred mouse strains. The results revealed a large diversity that was more profound among OSPs than among proteomes overall. We defined a robustness score to quantify such variation and derived three sets of OSPs with different stringencies. In the meantime, we found that the enriched biological functions of OSPs are also organ-specific and are sensitive and useful to assess the quality of OSPs. We hope our breadth study can open doors to explore the molecular diversity and dynamics of organ specificity at the protein level.&nbsp

    Strategies for plasma proteomic profiling of cancers

    Full text link
    Despite a voluminous literature on potential protein biomarkers and a compelling need for diagnostic tests based on biomarkers to detect cancers at much earlier, more treatable stages, progress has been limited. New methods and new instruments for analysis of differences in gene expression, gene methylation, and proteomics are being employed to try to accelerate the discovery phase. Given the heterogeneity of tumor mechanisms and the limitations of analytical methods, it is likely that a variety of strategies will be needed and will be complementary. That is the basis of this review of proteomic approaches. This article adopts a systems biology view, starting with mRNA transcripts in tumors and cultured tumor cells to detect mRNA overexpression, some of which will be correlated with protein overexpression. Some of those proteins may be secreted or released into proximal biofluids and plasma. Detection of low-abundance tumor proteins in the complex and dynamic mixture that is plasma requires combinations of increasingly powerful technologies. The biological amplification of protein signals through the immune system offers autoantibodies as potential biomarkers. Higher abundance proteins, including acute-phase reactants, may have practical value, especially if the proteins are modified as part of the cancer processes. Low molecular weight proteins, fragments, and peptides may offer complementary biomarkers. Promising biomarker candidates must be confirmed in independent studies. Then they must be submitted to higher-throughput methods practical for large-scale validation studies and, hopefully, for clinical and epidemiological applications. Standardized operating procedures for specimen handling, design and use of various reference standards, care to avoid bias and confounding, and guidelines for reporting findings and contributing datasets should enhance the prospects for predictive proteomic profiling of people at risk for cancers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55851/1/5662_ftp.pd

    Text-derived concept profiles support assessment of DNA microarray data for acute myeloid leukemia and for androgen receptor stimulation

    Get PDF
    BACKGROUND: High-throughput experiments, such as with DNA microarrays, typically result in hundreds of genes potentially relevant to the process under study, rendering the interpretation of these experiments problematic. Here, we propose and evaluate an approach to find functional associations between large numbers of genes and other biomedical concepts from free-text literature. For each gene, a profile of related concepts is constructed that summarizes the context in which the gene is mentioned in literature. We assign a weight to each concept in the profile based on a likelihood ratio measure. Gene concept profiles can then be clustered to find related genes and other concepts. RESULTS: The experimental validation was done in two steps. We first applied our method on a controlled test set. After this proved to be successful the datasets from two DNA microarray experiments were analyzed in the same way and the results were evaluated by domain experts. The first dataset was a gene-expression profile that characterizes the cancer cells of a group of acute myeloid leukemia patients. For this group of patients the biological background of the cancer cells is largely unknown. Using our methodology we found an association of these cells to monocytes, which agreed with other experimental evidence. The second data set consisted of differentially expressed genes following androgen receptor stimulation in a prostate cancer cell line. Based on the analysis we put forward a hypothesis about the biological processes induced in these studied cells: secretory lysosomes are involved in the production of prostatic fluid and their development and/or secretion are androgen-regulated processes. CONCLUSION: Our method can be used to analyze DNA microarray datasets based on information explicitly and implicitly available in the literature. We provide a publicly available tool, dubbed Anni, for this purpose

    Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor

    Get PDF
    Background: The androgen receptor (AR) plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied. Methodology/Principal Findings: Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR) under different growth conditions (i.e. with or without androgens and at different concentration of androgens) and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff) even without the addition of androgens (i.e. in ethanol control), suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate) cut off of 0.05. About 22.4 % (638 o

    The N-Myc Down Regulated Gene1 (NDRG1) Is a Rab4a Effector Involved in Vesicular Recycling of E-Cadherin

    Get PDF
    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein

    An analysis of benign human prostrate offers insight into the mechanism of apocrine secretion and the origin of prostasomes

    Get PDF
    The structure and function of normal human prostate is still not fully understood. Herein, we concentrate on the different cell types present in normal prostate, describing some previously unreported types and provide evidence that prostasomes are primarily produced by apocrine secretion. Patients (n = 10) undergoing TURP were prospectively consented based on their having a low risk of harbouring CaP. Scanning electron microscopy and transmission electron microscopy was used to characterise cell types and modes of secretion. Zinc levels were determined using Inductively Coupled Plasma Mass Spectrometry. Although merocrine secretory cells were noted, the majority of secretory cells appear to be apocrine; for the first time, we clearly show high-resolution images of the stages of aposome secretion in human prostate. We also report a previously undescribed type of epithelial cell and the first ultrastructural image of wrapping cells in human prostate stroma. The zinc levels in the tissues examined were uniformly high and X-ray microanalysis detected zinc in merocrine cells but not in prostasomes. We conclude that a significant proportion of prostasomes, possibly the majority, are generated via apocrine secretion. This finding provides an explanation as to why so many large proteins, without a signal peptide sequence, are present in the prostatic fluid

    Mouse Organ-Specific Proteins and Functions

    No full text
    Organ-specific proteins (OSPs) possess great medical potential both in clinics and in biomedical research. Applications of them—such as alanine transaminase, aspartate transaminase, and troponins—in clinics have raised certain concerns of their organ specificity. The dynamics and diversity of protein expression in heterogeneous human populations are well known, yet their effects on OSPs are less addressed. Here, we used mice as a model and implemented a breadth study to examine the panorgan proteome for potential variations in organ specificity in different genetic backgrounds. Using reasonable resources, we generated panorgan proteomes of four in-bred mouse strains. The results revealed a large diversity that was more profound among OSPs than among proteomes overall. We defined a robustness score to quantify such variation and derived three sets of OSPs with different stringencies. In the meantime, we found that the enriched biological functions of OSPs are also organ-specific and are sensitive and useful to assess the quality of OSPs. We hope our breadth study can open doors to explore the molecular diversity and dynamics of organ specificity at the protein level
    corecore