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Introduction The ‘big bang’ singularity and the cos-
mological constant are well established features of clas-
sical cosmological models [1]. In the context of quan-
tum cosmology, the singularity is typically understood
as a pathology that can be expected to be ‘resolved’ by
Planck-scale effects. Most contemporary approaches to
resolving the singularity are based upon cosmic bounce
scenarios [2]. In contrast, the cosmological constant re-
ceives very much the same treatment in classical and
quantum cosmological models: it is a constant of na-
ture classically, and thus quantum solutions are supers-
selected to eigenstates labelled by its classical value. Cos-
mological time evolution is unlike either the singularity
or cosmological constant. Whereas, its classical treat-
ment is relatively unproblematic, quantum cosmologies
based upon the standard Dirac quantization techniques
are described by a ‘frozen formalism’ that lacks a fun-
damental evolution equation [3–5]. In this letter we use
a simple model to demonstrate that by treating the cos-
mological constant differently in quantum cosmological
models, there is a prospect to produce a bounce scenario
that simultaneously resolves the classical singularity and
restores fundamental quantum time evolution.

In the following sections we apply a novel quantiza-
tion scheme [6–8] to a class of isotropic and homogeneous
mini-superspace models. For these models our scheme is
demonstrated to allow for a superpositions of the cosmo-
logical constant in a manner connected to the unimodular
approach to gravity [9, 10]. Three particularly notewor-
thy features result directly from including solutions with
superposition of cosmological constant. First, our model
features an evolution equation for the entire quantum
state that is guaranteed to be unitary. This is in con-
trast to internal time approaches to representing evolu-
tion in quantum cosmology [11–18]. Second, the mecha-
nism for singularity avoidance obtained does not involve
the introduction of a Planck-scale cutoff [19]. Rather,
observable operators evolve unitarily and remain finite
because they are ‘protected’ by the uncertainty princi-

ple. Third, characteristic features of the cosmological
bounce persist into a ‘super-inflation’ regime that con-
tains universal phenomenology that can be rendered in-
sensitive to the underlying Planck-scale physics in very
nature way. In particular, the model displays a ‘cosmic
beat’ phenomenon and associated ‘bouncing envelope’.
The cosmic beats can be identified with Planck-scale ef-
fects and, under certain parameter constraints, are negli-
gible compared with the effective envelope physics. Un-
der these same constraints, the bouncing envelope per-
sists into the super-inflation regime where it is insensitive
to the beat effects in a manner that is closely analogous
to Rayleigh scattering. Significantly, this ‘Rayleigh’ limit
is only available when superpositions of the cosmologi-
cal constant are allowed. This behaviour constitutes a
remarkable unique feature of the bouncing unitary cos-
mologies identified. Two companion papers provide fur-
ther, more detailed, interpretation and analysis of both
general and particular cosmological solutions. [20, 21]

Model and Observables Consider an homogeneous
and isotropic FLRW universe with zero spatial curvature
(k = 0); scale factor, a; massless free scalar field, φ; and
cosmological constant, Λ. The field redefinitions

v =

√
2

3
a3 ϕ =

√
3κ

2
φ , (1)

where κ = 8πG, give a convenient parameterization of
the configuration space, C(v, ϕ), in terms of relative spa-
tial volumes, v, and the dimensionless scalar field, ϕ. The
time evolution of the system is given in terms of coordi-
nate time, t, related to the proper time, τ , via the lapse
function dτ = Ndt. The dimensionless lapse, Ñ , and
cosmological constant, Λ̃, can be defined as

Ñ =

√
3

2

κ~2vN

V0
Λ̃ =

V 2
0

κ2~2
Λ , (2)

using the reference volume V0 of some fiducial cell and
the (at this point) arbitrary angular momentum scale ~.
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In terms of these variables, the mini-superspace Hamil-
tonian is

H = Ñ

[
1

2~2

(
−π2

v +
1

v2
π2
ϕ

)
+ Λ̃

]
, (3)

where πv and πϕ are the momenta conjugate to v and
ϕ respectively. The utility of these variables is re-
vealed by their suggestion of a coordinate-independent
formulation of H in terms of the Rindler metric ηAB =
~2diag(−1, v2), where A,B = 1, 2. Using generalized co-
ordinates, qA, and momenta, pA, the Hamiltonian can be
expressed as

H = Ñ

[
1

2
ηABpApB + Λ̃

]
. (4)

The configuration space, C, is Rindler space defined as
the set of points contained in (and including) the forward
light-cone of Minkowski space centred on the origin.

Rindler space is geodesically incomplete because
geodesics cannot be extended past its boundary, ∂C, the
Rindler horizon at v = 0. This boundary leads to the
most physically important properties, both classical and
quantum, of this cosmological model.

It is important to distinguish between the geodesic
incompleteness of the configuration space and that of
the space-time metric, which are logically distinct. In
this model, ∂C corresponds to the region in configura-
tion where we it was shown in [20] that: i) the expan-
sion parameter of some congruence of geodesics in space-
time becomes negative and unbounded, implying that the
space-time geodesics terminate in finite proper time; and
ii) there is a curvature pathology in space-time signaled
by a divergence in all Kretschmann invariants. This im-
plies a classical singularity in both relevant senses of the
Penrose–Hawking singularity theorems.

The importance of the boundary in the quantum the-
ory relates to the existence of self-adjoint representations
of the operator algebra. Consider the Hilbert space,
H = L2(C,dθ) of square integrable functions on C under
the Borel measure dθ = d2q

√
−η, where η = det ηAB .

This space is spanned by all functions (Φ,Ψ) ∈ C satis-
fying

〈Φ,Ψ〉 ≡
∫
C

d2q
√
−ηΦ†Ψ <∞. (5)

We can build an infinite family of generalized configura-
tion representations of symmetric operators acting on H
in terms of the operators

q̂AΨ = qAΨ p̂AΨ = −i~(−η)−1/4 ∂

∂qA

[
(−η)1/4Ψ

]
.

(6)

Given a global coordinate chart on C, arbitrary diffeo-
morphisms on C bijectively induce symplectomorphisms

on the classical phase space via the Legendre transform.
One might, therefore, expect that these changes of chart
should bijectively induce changes of basis in the represen-
tations (6) of H. However, while the square integrability
condition, (5), that defines H transforms like a scalar
on C, the condition for self-adjointness of the symmetric
momentum operators, p̂A, is (see [20])∮

C
d`A
√
ηΦ†Ψ = 0 , (7)

and transforms like a co-vector on C. This condition can
be obtained from the definition of the self-adjointness of
p̂A after an application of integration by parts, and ul-
timately results from the fact that the p̂A are co-vectors
on C. The mismatch between the transformation prop-
erties of the square integrability condition and the self-
adjointness condition for p̂A implies that, when ∂C 6= 0,
not all phase space charts have corresponding self-adjoint
representations in H.

This signals a potential breakdown of the correspon-
dence principle for quantum mechanics. Fortunately, in
the model considered here, this breakdown occurs pre-
cisely for the classically conserved quantities that are
responsible for the classically singular behaviour. This
avoids the potential for quantum singular behaviour re-
sulting from a direct application of the Ehrenfest theorem
(once a self-adjoint Hamiltonian is provided). Whether
a breakdown of the correspondence principle due to this
mechanism can be understood more generally as a way
to avoid a classical pathology is an interesting question
for further investigations.

To construct representations of a self-adjoint operator
algebra and Hilbert space, it will be necessary to restrict
to a specific coordinate chart. To motivate our choice,
we consider the conformal completion (C0, η0) of Rindler
space, where, in the (v, ϕ) chart,

η0
AB =

1

v2
ηAB (8)

and C0 is the full Minkowski plane. The tortoise coordi-
nate,

µ = log v , (9)

then puts η0
AB = diag(−1, 1) into Minkowskian form.

Because the square integrability condition (5) for H
is conformally invariant, square integrable functions on
(C0, η0) are also square integrable on (C, η). We can,
therefore, define representations of H using the stan-
dard eigenstates of µ̂ ≡ µ and its momentum opera-
tor π̂µ ≡ −i~(−η0)−1/4 ∂

∂µ

[
(−η0)1/4 , which is manifestly

self-adjoint in the (µ, ϕ) chart where η0 = 1. Similarly,
ϕ̂ and π̂ϕ are manifestly self-adjoint, and their eigen-
states complete the basis for H. Undoing the conformal
transformation (and suitably transforming Hilbert space
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states), we obtain the self-adjoint operators

µ̂Ψ = µΨ π̂µ = −i~e−µ ∂

∂µ
(eµΨ) (10)

ϕ̂Ψ = µΨ π̂ϕ = −i~∂Ψ

∂ϕ
. (11)

whose eigenstates

ψπµ =
1√
2π~

e−
i
~µπµ−µ ψk =

1√
2π~

e−
i
~ϕk (12)

are orthonormal under the measure dθ = dϕdµe2µ and
span H. It is straightforward to verify that the operators
above satisfy the self-adjointness condition (7) while the
momentum operator π̂v in the vϕ-chart defined by (6)
does not. This recovers the well-known result, studied
in detail by Isham [22], that the momentum operator
is not well-defined on R+. We believe these geometric
methods provide deeper insight into this problem and
its conventional solution.

Unitary Quantum Cosmology Application of rela-
tional quantization [6–8] leads to a Schrödinger-type evo-
lution equation for the system of the form

ĤΨ = i~∂tΨ , (13)

where the eigenvalues of Ĥ are to be identified with the
(dimensionless) cosmological constant Λ̃. The classical
Hamiltonian (4) suggests the real and symmetric chart-
independent Hamiltonian operator

Ĥ ≡ 1

2
� , (14)

where � is the d’Alambertian operator on Rindler space.
Unlike p̂A, Ĥ is a scalar on C. Diffeomorphisms on
C therefore bijectively induce changes of basis of self-
adjoint representations of Ĥ. Integration by parts can
be used to show that Ĥ is equal to its dual provided∮

∂C
dl(A
√
χηAB

(
Φ†∂B)Ψ−Ψ∂B)Φ

†) = 0 (15)

for all states in (Φ,Ψ) ∈ H.
A theorem by Von-Neumann (see [23] theorem X.3)

guarantees that self-adjoint extensions of the real, sym-
metric operator Ĥ exist. Given an explicit self-adjoint
representation of Ĥ, the time evolution is guaranteed to
be unitary by Stone’s theorem [24, p.264]. The deficiency
subspaces of Ĥ can be calculated from the square integral
solutions to (18) when Λ̃→ ±i. These are easily seen to
be one dimensional. We, therefore, expect a U(1) family
of self-adjoint extensions, which we parametrize by the
log-periodic, positive reference scale Λref. The coordinate
invariance of Ĥ implies that it is sufficient to construct
representations in a particular basis. To find these exten-
sions explicitly and to construct the general solution to

(13), we compute the eigenstates of Ĥ (with eigenvalues
Λ̃) in the vϕ-chart. Using the separation Ansatz

Ψ±Λ (v, ϕ) = ψΛ,k(v)ν±k (k) , (16)

we find

ν±k (ϕ) =
1√
2π~

e±
i
~kϕ , (17)

and

v
d

dv

(
v

d

dv
ψΛ,k

)
+

(
2Λ̃v2 +

k2

~2

)
ψΛ,k = 0 . (18)

The latter equation is Bessel’s differential equation for
purely imaginary orders, ik/~.

The solutions of Bessel’s equation are qualitatively dif-
ferent depending on the sign of Λ. For Λ < 0, solu-
tions are modified Bessel functions of the first (expon-
tially growing) and second kind (exponentially decaying)
kind. The self-adjointness condition, (15), leads us to
reject the growing solutions, leaving only the decaying
‘bound’ modes, Kik. The asymptotic expansion of the
Bessel functions about v = 0 further implies (see [20])
that only discrete values of Λ̃ are allowed. These follow
the geometric series

Λ̃n = Λ̃ref e
2nπ~/k (∀n ∈ N) , (19)

which is seeded by the self-adjoint extension parame-
ter Λ̃ref. The general normalized ‘bound’ eigenstates are
then

ψbound
Λ,k =

√
4~|Λ̃| sinh (πk/~)

πk
Kik/~(

√
2Λ̃v) . (20)

For Λ > 0, solutions are the oscillating Bessel functions
of the first, Jik/~, and second kind, Yik/~. The condition
(15) can be satisfied by analyzing the behaviour of the
Bessel functions near v = 0 from the perspective of the
conformal completion, (C0, η0). There, the Bessel func-
tions behave as ordinary sines and cosines whose phase

difference, θ = k
2~ log

(
Λ̃

Λ̃ref(k)

)
, parametrizes the U(1)

space of self-adjoint extensions (see [20]).1 The general
normalized solutions are continuous in Λ̃ and are explic-
itly given by

ψundound
Λ,k =

Re
[
e−iθJik/~(

√
2Λ̃v)

]
∣∣cosh

(
πk
2~ + iθ

)∣∣ . (21)

The 2π periodicity in θ implies a πk/~ log-periodicity
in Λref that is consistent with the bound spectrum (19).

1 Note that, in general, different choices of θ can be made for
different values of k.
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The general solution to (13) is then,

Ψ(v, ϕ, t) =
1√
2

∑
±

∫ ∞
−∞

dk

[ ∞∑
n=−∞

eiΛ̃nt/~A±n (k)Ψ±,bound
−Λn,k

+

∫ ∞
0

dΛ e−iΛ̃t/~B±(Λ̃, k)Ψ±,unbound
Λ,k

]
, (22)

for the suitably normalized coefficients A±n and B±(Λ̃).

Singularity Resolution In our view, the basic condi-
tion for non-singular behaviour in a quantum theory is
that the expectation value of all observable operators, as
evaluated on all possible states in Hilbert space, remains
finite. Given a classical theory in which some classical
observable is pathological, it is a necessary and sufficient
condition for singularity resolution, in our sense, that the
expectation value of all elements of the quantum observ-
able algebra be always finite. This definition is equiva-
lent to the requirement, in the sense of [25, 26], that the
evolution on the quantum phase space be everywhere fi-
nite. Thus, in requiring finiteness of expectation values,
we are not implicitly relying upon extending the corre-
spondence principle into the quantum bounce regime, but
rather simply insisting that a physically reasonable quan-
tum theory can be defined at all times.

It is straightforward to demonstrate that our model
satisfies the finite-expectation-value condition for singu-
larity avoidance. Given the self-adjointness of Ĥ, the
unitary evolution equation (13) implies the generalised
Ehrenfest theorem:

∂

∂t

〈
Ô(t)

〉
=

1

i~

〈
[Ô(t), Ĥ]

〉
+
〈∂Ô(t)

∂t

〉
. (23)

Provided that Ô is a bounded member of a well-defined
quantum observable algebra, the commutator on the
RHS is bounded and the evolution of the expectation
value of all Ô will be well-behaved. Thus, for quantum
cosmology with a unitary evolution equation, the condi-
tion for singularity avoidance ultimately amounts to the
usual requirement for a well-defined quantum theory.

Modeling Constraints The choice of physically rele-
vant particular solutions is under-constrained by obser-
vational data. Here we assume that constraints placed
upon the model that are not based upon observational
data should be minimally specific in the precise sense de-
fined in [21]. Below, we will use this as a guiding principle
to briefly justify the choices made for the free-parameters
of the model. For much greater detail on the justification
for these choices, see [21].

Observational data imply that the current universe is
well-approximated by a semi-classical state with a def-
inite positive Λ. If the bound negative Λ states had
significant support at large v, then linearity would im-
ply that these bound states would be currently observ-
able. Since they are not, this restricts the bound part of

the wavefunction to be confined to a region of configura-
tion space where v is much smaller than it is currently.
Since we wish to be minimally specific with regard non-
observational constrains, we set the bound part of the
wavefunction to vanish by setting A±n (k) = 0.

We can characterise the semi-classical regime in a min-
imally specific way by the vanishing of higher order gen-
eralized moments of the wavefunction [26]. This is equiv-
alent to requiring that the non-Gaussianties of the wave-
function are very small in a particular basis. The min-
imally specific choice of basis is that which is maxi-
mally stable.2 This is provided by considering the large-v
asymptotic Killing vectors of the classical configuration
space, which allow us to select a preferred basis given
in terms of the eigenstates of π̂ϕ and π̂v. Because, in
this asymptotic limit, H = 1

2~2π
2
v , we take the semi-

classical state to be expressed in terms of Gaussians of k

(the eigenvalues of π̂ϕ) and ω =
√

2Λ̃~ (the approximate
eigenvalues of π̂v in the large-v limit).

Requiring Λ and πϕ to be well-resolved implies that
the absolute value of the means of the scalar densi-
ties B±(k, Λ̃) = ω

~B
±(k, ω) must be much larger than

the variances, otherwise the quantum mechanical uncer-
tainty, given by σω and σk respectively, would make them
indistinguishable from zero. This leads to:

ω

~
B±(k, ω) =

(
~2

2πσωσk

)1/2

exp

{
− (ω − ω0)2

4σ2
ω

− i
~

(ω − ω0)v0 −
(k − k±0 )2

4(σ±k )2
− i

~ (k − k±0 )ϕ±∞

}
, (24)

where ω0 � σω > 0 and |k±0 | � σ±k > 0.
Two further minimally specific choices consistent with

observation are: i) to select t = 0 as the time of mini-
mal dispersion by appeal to time-translational invariance;
and ii) to assume a semi-classical regime for t → ±∞.
Given current observational constraints, the quantum
bounce wipes out the vast majority of the information
about pre-bounce physics. The minimally specific as-
sumption is, therefore, to impose the maximum amount
of time-reflection symmetry around the bounce. This is
achieved by: i) setting the phase shift between in- and
out-going π̂ϕ-eigenstates to zero by setting B+ = B− us-
ing a single mean, k0, and variance; σk, and offset, ϕ∞;
ii) requiring the bounce time to occur at t = 0 by set-
ting v0 = 0; and iii) fixing the self-adjoint extensions to
minimize the phase-shift between in- and out-going Ĥ-
eigenstates (the specific choice that accomplishes this is
specified below).

2 In fact, what is ultimately needed is a super-selection principle
for such a basis, which would require a way to model an ‘environ-
ment’ for this system. Lacking this, we note that our stability
criterion is at least consitent with definitions of environmentally
induced super-selection arizing from decoherence.
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We can use the global ‘boost’ isometry of C to restrict
to ϕ∞ = 0 without loss of generality. The parameter
pairs (k0, σk) and (ω0, σω) can only be independently de-
fined via reference to an external scale. We can avoid
having to specify such a scale by noticing that the Gaus-
sians of (24) depend only on the ratios k0/σk and ω0/σω,
which are well defined parameters of the model, when
v0 = ϕ∞ = 0.

Fixing the self-adjoint extensions by specifying θ does
require introduction of an external reference scale how-
ever. Inspection of (21) reveals a dependence on k/~,
which suggests k0/~ as the third parameter of the model.
We will discuss the physical interpretation of this scale
in relation to Planck-scale effects in the final section. For
our present purpose, it suffices to note that the choice:

Λref =
V 2

0

κ2~2

ω2
0

2~2
, (25)

is minimally specific since it does not involve introducing
any new parameters. It is also the choice that allows θ to
be as close to zero as possible and, therefore, maximizes
time-reflection symmetry.

de Sitter and Rayleigh limits Let us designate the

limit in which ω0/σω
|k0|σk � 1 as the de Sitter limit and the

limit in which ω0/σω � 1 as the Rayleigh limit. In the
Rayleigh limit, Planck-scale effects will be found to be
negligible in a manner analogous to the negligibility of
molecular effects in Rayleigh scattering. In the de Sit-
ter limit, the energy of the cosmological constant domi-
nates over that of the scalar field when quantum effects
due to Rayleigh scattering take over. The effective dy-
namics is, therefore, dominated by the quantization of
a de Sitter geometry.3 This can be modelled by taking
C(k) = δ(k/~). However, care must be taken because
Im {J0} = 0, so it can no longer be taken as a linearly
independent solution. Fortunately, Y0 is integrable and
provides an adequate second solutions. The self-adjoint
extensions are arbitrary phases, α, between these, and
the general wavefunction is

Ψ(v, t) =

∫ ∞
0

dωω

~2
eiω

2t/~3

E(ω/~)
(
cos α2J0

(
ωv
~
)

− sin α
2Y0

(
ωv
~
))
. (26)

In the combined Rayleigh and de Sitter limits, v and ω
are approximately canonically conjugate. At the bounce
when 〈v〉 is at a minimum, the wavefunction (26) will
have most of its support in the region v ∼ σv ∼ ~/σω.4

3 Because we have imposed spatial curvature equal to zero, the
relevant geometry is the de Sitter half-plane, which has an initial
singularity.

4 The last approximation holds because, as we will see, the wave-
function remains reasonably close to Gaussian during the bounce
in this limit.

Thus,

vω ∼ ω0

σω
� 1 . (27)

In this limit, the Bessel functions can be expanded to
give

cos α2J0 (ωv) + sin α
2Y0 (ωv) ≈

√
2

πωv
cos (ωv −∆/2) ,

(28)
where ∆ = π

2 −α. Inserting a Gaussian function for E(ω)
leads to

Ψ(v, t) = N
∑
±
A±eiS

±
, (29)

where N =
(

2
π

)1/4√ σω
1+2iσ2

ωt
.

A± = exp

{
−σ

2
ω (v ∓ ω0t)

2

1 + 4σ4
ωt

2

}

S± =
±ω0v − ω2

0t
2 + 2σ2

ωv
2t

1 + 4σ4
ωt

2
∓∆/2 . (30)

The amplitudes A± and phases S± are those of free in-
and out-going Gaussian wavepackets phase shifted by ∆.

The total Born amplitude in the vϕ-basis is the sum of
the Born amplitudes of both in-, (A+)2, and out-, (A−)2,
going envelopes plus an interference term of the form:

2A+A− cos

(
2ω0v −∆

1 + 4σ4
ωt

2

)
. (31)

The interference indicates that the beat frequency is pro-
portional to ω0 in v-space when A+ and A− overlap. This
beat frequency implies that there are many beats in a
single envelope of size ∼ σv, and confirms that the beat
effects should be attributed to the micro- (i.e., Planck-
scale) physics of the system. It also follows that the in-
terference term can be approximately ignored when com-
puting expectation values, which are integrals over v. We
can, therefore, use a variety of analytic techniques to
compute the mean

〈v̂〉 ≈
√

2

π
e−ω

2
0t

2/2σ2
vσv + ω0t erf

(
ω0t√
2σv

)
, (32)

and variance

Var(v̂)2 = σ2
v + ω2

0t
2 − 〈v̂〉2 , (33)

of v̂, where σv(t) ≡
√

1+4σ4
ωt

2

2σω
. This behaviour can be

checked against numerically computed expectation val-
ues (see [20]), and shows excellent agreement. FIG. 1
illustrates the general behaviour.
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FIG. 1: 〈v̂〉 (t) for ω0/σω = 5 with confidence interval
computed from Var(v̂). The expectation value (solid),
〈v̂〉, follows the classical curve (dashed) until v ∼ ~/σω,
when quantum effects due to Rayleigh scattering take
over. The minimum, vmin = 1√

2πσω
of 〈v̂〉 is reached at

the bounce time, t = 0. (Note: tenv ≡ 1/2σωω0.)

Bouncing Cosmology Given the log-periodicity of
Λref, the limit

e|k0|/~ � eω0/σω (34)

implies that for any choice of Λref, there is an equivalent
one imperceptibly close to Λ0. The limit (34), therefore,
implies that the self-adjoint extension behaviour becomes
universal. Combined with the Rayleigh limit, (34) is such
that the scalar field momentum is sufficiently large in
units of ~ and is reasonably dominant, at early times,
over the effects of the cosmological constant.

In this limit, the normalization of the unbound
eigenstates, (21), simplifies to sech

(
πk
2~
)
, which is ω-

independent. If we regularize the Gaussian of E(ω) in
terms of the function

E(ω) ≈
(

~2

√
2πσωω

)1/2(
ω

ω0

)ω2
0/4σ

2
ω

× exp

{
−2ω2

0

σ2
ω

[(
ω

ω0

)2

− 1

]}
, (35)

which is a good approximation to a Gaussian in the
Rayleigh limit, the ω0-space integrals can be evaluated
analytically in terms of confluent hypergeometric func-
tions F1 1 . The explicit form of the result of this integra-
tion is unilluminating and can be found explicitly in [21].
The remaining integral reduces to a Fourier transform in
k. The Fourier transform can be evaluated using the Fast
Fourier Transform (FFT) algorithm after cutting off the
k-integral at ±6σk from k0 and sampling at the Nyquist
frequency, fs. Modest oversampling (i.e., 2fs) allows for
standard spline interpolations of the Fourier transformed
function. Plotting and numerical integrations of various
functions of Ψ can be performed using these interpola-
tions in reasonable computation times.

To analyze the resulting solutions, we consider the ef-
fect of the three independent parameters k0/~, ω0/σk,
and k0/σk separately. The choice of self-adjoint extension
(25) minimizes the phase difference between in- and out-
going modes due to non-zero k0/~. We, therefore, expect
this choice to lead to a negligible correction to the beat
frequency as predicted by the interference term, (31), of
the de Sitter model. Explicit comparison of the Born
amplitudes of the wavefunction in the vϕ-basis for mod-
est parameter values5 confirms this expectation. This
provides numerical evidence that the Rayleigh limit, un-
derstood analytically in the de Sitter solution, persists
when k0

~ 6= 0.
The parameter ω0/σω should be expected to control

the beat frequency according to (31), given that the over-
lap between in- and out-going envelopes occurs in the re-
gion v ∼ ~/σω. To verify this, we can plot (see FIG 2)
the Born amplitude of the wavefunction in the vϕ-basis
at t = 0, where the overlap is maximum. Comparison
of the beat frequency for different values of ω0/σω is in
excellent agreement with the de Sitter results.

The parameter k0/σk controls how tightly the individ-
ual envelopes stay peaked on the classical solutions. This
can be studied by varying the parameter s = k0/ω0 for
fixed ω0/σω and k0/~ and parametrically plotting 〈v̂〉 /s
and 〈ϕ̂〉. The advantage of this choice of parameteriza-
tion of the quantum solutions in terms of s is that the
classical equations of motion can be written parametri-
cally as

v

s
= |cosech (ϕ− ϕ∞)| . (36)

Thus, the quantum curve for different choices of s can be
compared with the same universal classical curve. FIG 3
illustrates the relevant features. The expectation val-
ues begin to diverge from their classical values in the
region v ∼ 1/σω as expected. The expectation value of ϕ̂
reaches a maximum value, which increases as s increases.
The expectation value of v̂ reaches a minimum at t = 0
as expected.

Prospectus Following [27, 28], we can connect the
physics of our model to inflationary cosmology by consid-
ering an effective Hubble parameter, He, given by a func-
tion of the expectation value of φ̂. Because the Hubble
parameter, as a phase space function, is proportional to
πv, this translates into computing the expectation value
of π̂v as a function of the expectation value of ϕ̂. Effective
slow-roll parameters, εHe and ηHe

εHe(φ) =
m2

Pl

4π

(
H ′e(φ)

He(φ)

)2

ηHe(φ) =
m2

Pl

4π

H ′′e (φ)

He(φ)
, (37)

can then be conveniently expressed in terms of the ex-
pectation values computed in our model.

5 E.g., ω0/σω = 10, k0/σk = 10, ~ = 1, 2
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(a) v|Ψ|2 for ω0/σω = 10, s = 1

(b) v|Ψ|2 for ω0/σω = 15, s = 1

FIG. 2: Comparison of Born amplitude at bounce time
for different choices of ω0 and s (for σω = σk = ~ = 1).

The beat physics is affected in the same way by ω0 as it
was in the de Sitter limit.

The curve of FIG. 3 shows a reasonably flat region
near the maximum of 〈ϕ̂〉 indicating a modestly stable
de Sitter-like epoch of super-inflation. The existence
of the Rayleigh limit suggests that this super-inflation
epoch could be found to take place far below the Planck
energy. This leaves open the possibility that the super-
inflation of our model could be connected to power-
spectrum data of the CMB. Because analytic methods
break down in precisely the super-inflation regime, nu-
merical techniques are required for such an identifica-
tion. It is hoped that the existence of the Rayleigh limit,
which is an exclusive feature of our model, may avoid in-
stabilities and other issues found in existing models with
super-inflation. These computations will be the subject
of future investigations.

The general features of our quantization can be ap-
plied to the unitary quantization of anisotropic Bianchi
models [29]. While the extension to Bianchi I is almost
trivial, Bianchi IX models will lead to modified Bessel
equations. However, the asymptotic behaviour of the

0.0 0.2 0.4 0.6 0.8 1.0 1.2
<ϕ>0.0

0.5

1.0

1.5

2.0

<v>

FIG. 3: Plot of 〈v̂〉 /s versus 〈ϕ̂〉 for different values of
s. The top blue line represents s = 1, the bottom blue

line s = 2, and the yellow line is the classical curve with
ω0 = 10. Increasing s can be seen to decrease vmin and
increase ϕmax. Changing ω0 has negligible effect. The
figure is symmetric upon the reflection ϕ→ −ϕ, which

represents t→ −t.

wavefunction near the singularity and near the late-time
attractors (i.e., the large v limit) will be identical to
the model treated here. Since the construction of the
self-adjoint extensions depends on the behaviour of the
wavefunction near v = 0 and since the existence of the
semi-classical approximation depends on the Gaussian-
ity of the wavefunction near the late-time attractors, one
may expect that many of the qualitative features of the
present model will carry forward to unitary solutions of
the Bianchi IX model that persist semi-classically to the
late-time attractors. The Bianchi IX model may be par-
ticularly valuable for studying general singularity resolu-
tion in quantized GR in light of the BKL conjecture [30].
Such a framework may be useful for studying singular-
ity resolution of time-like singularities via, for example,
black-to-white hole transitions.

Inclusion of a non-trivial potential for φ will have a
similar effect on the Bessel equation as the Bianchi IX
model, and can be handled similarly.
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