151 research outputs found

    Monotheism the Zoroastrian Way

    Get PDF
    This article examines seemingly monotheistic, polytheistic and dualistic features of Zoroastrianism from the point of view of the Zoroastrian creation myth. Exploring the personality of the principal deity, Ahura Mazdā, the origin of the spiritual and material worlds and the worship of the Yazatas, it is argued that Zoroastrianism has its own particular form of monotheism

    Unconventional order-disorder phase transition in improper ferroelectric hexagonal manganites

    Full text link
    The improper ferroelectricity in YMnO3_3 and other related multiferroic hexagonal manganites are known to cause topologically protected ferroelectric domains that give rise to rich and diverse physical phenomena. The local structure and structural coherence across the ferroelectric transition, however, were previously not well understood. Here we reveal the evolution of the local structure with temperature in YMnO3_3 using neutron total scattering techniques, and interpret them with the help of first-principles calculations. The results show that, at room temperature, the local and average structures are consistent with the established ferroelectric P63cmP6_3cm symmetry. On heating, both local and average structural analyses show striking anomalies from 800\sim 800 K up to the Curie temperature consistent with increasing fluctuations of the order parameter angle. These fluctuations result in an unusual local symmetry lowering into a \textit{continuum of structures} on heating. This local symmetry breaking persists into the high-symmetry non-polar phase, constituting an unconventional type of order-disorder transition.Comment: 10 pages, 5 figure

    Charged domain walls in improper ferroelectric hexagonal manganites and gallates

    Get PDF
    Ferroelectric domain walls are attracting broad attention as atomic-scale switches, diodes and mobile wires for next-generation nanoelectronics. Charged domain walls in improper ferroelectrics are particularly interesting as they offer multifunctional properties and an inherent stability not found in proper ferroelectrics. Here we study the energetics and structure of charged walls in improper ferroelectric YMnO3_3, InMnO3_3 and YGaO3_3 by first principles calculations and phenomenological modeling. Positively and negatively charged walls are asymmetric in terms of local structure and width, reflecting that polarization is not the driving force for domain formation. The wall width scales with the amplitude of the primary structural order parameter and the coupling strength to the polarization. We introduce general rules for how to engineer nn- and pp-type domain wall conductivity based on the domain size, polarization and electronic band gap. This opens the possibility of fine-tuning the local transport properties and design pp-nn-junctions for domain wall-based nano-circuitry.Comment: 10 pages, 6 figures, Supp. Info. available on reques

    Intrinsic and extrinsic conduction contributions at nominally neutral domain walls in hexagonal manganites

    Full text link
    Conductive and electrostatic atomic force microscopy (cAFM and EFM) are used to investigate the electric conduction at nominally neutral domain walls in hexagonal manganites. The EFM measurements reveal a propensity of mobile charge carriers to accumulate at the nominally neutral domain walls in ErMnO3, which is corroborated by cAFM scans showing locally enhanced d.c. conductance. Our findings are explained based on established segregation enthalpy profiles for oxygen vacancies and interstitials, providing a microscopic model for previous, seemingly disconnected observations ranging from insulating to conducting domain wall behavior. In addition, we observe variations in conductance between different nominally neutral walls that we attribute to deviations from the ideal charge-neutral structure within the bulk, leading to a superposition of extrinsic and intrinsic contributions. Our study clarifies the complex transport properties at nominally neutral domain walls in hexagonal manganites and establishes new possibilities for tuning their electronic response based on oxidation conditions, opening the door for domain-wall based sensor technology.Comment: 5 pages, 3 figure

    Resident bird species track inter-annual variation in spring phenology better than long-distance migrants in a subalpine habitat

    Get PDF
    The ability to track variation in climate is important for species to persist in a given environment. Lack of responses to both long-term changes and inter-annual variation in climate parameters can result in reduced fitness and population decline. Furthermore, migration strategy can influence the ability to track climatic variation due to the potential to use reliable environmental cues. Here, we studied the temporal relationship between birch leafing and onset of breeding for three bird species with contrasting migration strategies over a 20-year period in a subalpine habitat in Central Norway. We found no temporal change in birch leafing date or breeding onset for the three bird species over the study period. However, we found a statistically significant difference in the ability to track inter-annual variation in birch leafing date between the resident and two long-distance migratory species. The resident great tit Parus major was more capable of initiating egg laying in closer association to variation in birch leafing in early springs, than the long-distance migratory European pied flycatcher Ficedula hypoleuca and common redstart Phoenicurus phoenicurus. Long-distance migrants seem to have been constrained by arrival date or time from arrival to entering the breeding areas, in contrast to resident birds, which might be better able track early initiation of spring in breeding areas by adjusting egg laying date. Our findings highlight the importance of not solely studying directional long-term climatic change, but also pay attention to inter-annual variation
    corecore