451 research outputs found

    La meg være, jeg vil lære. Introvertes opplevelse av læringssituasjoner

    Get PDF
    Master i samfunnsvitenskap med fordypning i HR

    Mammographic features and risk of breast cancer death among women with invasive screen-detected cancer in BreastScreen Norway 1996–2020

    Get PDF
    Objectives We explored associations between mammographic features and risk of breast cancer death among women with small ( Methods We included data from 17,614 women diagnosed with invasive breast cancer as a result of participation in BreastScreen Norway, 1996–2020. Data on mammographic features (mass, spiculated mass, architectural distortion, asymmetric density, density with calcification and calcification alone), tumour diameter and cause of death was obtained from the Cancer Registry of Norway. Cox regression was used to estimate hazard ratios (HR) with 95% confidence intervals (CI) for breast cancer death by mammographic features using spiculated mass as reference, adjusting for age, tumour diameter and lymph node status. All analyses were dichotomised by tumour diameter (small versus large). Results Mean age at diagnosis was 60.8 (standard deviation, SD=5.8) for 10,160 women with small tumours and 60.0 (SD=5.8) years for 7454 women with large tumours. The number of breast cancer deaths was 299 and 634, respectively. Mean time from diagnosis to death was 8.7 (SD=5.0) years for women with small tumours and 7.2 (4.6) years for women with large tumours. Using spiculated mass as reference, adjusted HR for breast cancer death among women with small tumours was 2.48 (95% CI 1.67–3.68) for calcification alone, while HR for women with large tumours was 1.30 (95% CI 1.02–1.66) for density with calcifcation. Conclusions Small screen-detected invasive cancers presenting as calcification and large screen-detected cancers presenting as density with calcifcation were associated with the highest risk of breast cancer death. Clinical relevance statement Small tumours (<15 mm) presented as calcification alone and large tumours (≥ 15 mm) presented as density with calcification were associated with the highest risk of breast cancer death among women with screen-detected invasive breast cancer diagnosed 1996–2020

    Systematic review of 3D mammography for breast cancer screening.

    Get PDF
    AbstractThis review investigated the relative performance of digital breast tomosynthesis (DBT) (alone or with full field digital mammography (FFDM) or synthetic digital mammography) compared with FFDM alone for detecting breast cancer lesions in asymptomatic women. A systematic review was carried out according to systematic reviewing principles provided in the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. A protocol was developed a priori. The review was registered with PROSPERO (number CRD42014013949). Searches were undertaken in October 2014. Following selection, five studies were eligible. Higher cancer detection rates were observed when comparing DBT + FFDM with FFDM in two European studies: the summary difference per 1000 screens was 2.43 (95% CI: 1.8 to 3.1). Both European studies found lower false positive rates for individual readers. One found a lower recall rate based on conditional recall. The second study was not designed to compare post-arbitration recall rates between FFDM and DBT + FFDM. One European study presented data on interval cancer rates; sensitivity and specificity for DBT + FFDM were both higher compared to FFDM. One large multicentre US study showed a higher cancer detection rate for DBT + FFDM, while two smaller US studies did not find statistically significant differences. Reductions in recall and false positive rates were observed in the US studies in favour of DBT + FFDM. In comparison to FFDM, DBT, as an adjunct to FFDM, has a higher cancer detection rate, increasing the effectiveness of breast cancer screening. Additional benefits of DBT may also include reduced recalls and, consequently, reduced costs and distress caused to women who would have been recalled

    Mucocele of the appendix – a diagnostic dilemma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Mucocele of the appendix secondary to mucinous cystadenoma is a rare clinical finding. Clinical presentation is varied with more than half being asymptomatic.</p> <p>Case presentation</p> <p>We report such a case presenting to the surgeons where initial clinical findings and investigations suggested an ovarian cyst. The patient was subsequently referred to the Gynaecologists for further management. In spite of extensive preoperative investigations, the diagnosis was only made at the time of surgery.</p> <p>Conclusion</p> <p>In women presenting with a right iliac fossa mass and clinical features not indicative of gynaecological pathology, an appendiceal origin should be considered in the differential diagnosis.</p

    Computer-aided detection system for clustered microcalcifications: comparison of performance on full-field digital mammograms and digitized screen-film mammograms

    Full text link
    We have developed a computer-aided detection (CAD) system to detect clustered microcalcifications automatically on full-field digital mammograms (FFDMs) and a CAD system for screen-film mammograms (SFMs). The two systems used the same computer vision algorithms but their false positive (FP) classifiers were trained separately with sample images of each modality. In this study, we compared the performance of the CAD systems for detection of clustered microcalcifications on pairs of FFDM and SFM obtained from the same patient. For case-based performance evaluation, the FFDM CAD system achieved detection sensitivities of 70%, 80% and 90% at an average FP cluster rate of 0.07, 0.16 and 0.63 per image, compared with an average FP cluster rate of 0.15, 0.38 and 2.02 per image for the SFM CAD system. The difference was statistically significant with the alternative free-response receiver operating characteristic (AFROC) analysis. When evaluated on data sets negative for microcalcification clusters, the average FP cluster rates of the FFDM CAD system were 0.04, 0.11 and 0.33 per image at detection sensitivity level of 70%, 80% and 90% compared with an average FP cluster rate of 0.08, 0.14 and 0.50 per image for the SFM CAD system. When evaluated for malignant cases only, the difference of the performance of the two CAD systems was not statistically significant with AFROC analysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58099/2/pmb7_4_008.pd
    corecore