86 research outputs found

    Cell-Length-Dependent Microtubule Accumulation during Polarization

    Get PDF
    SummaryBackgroundBreaking cell symmetry, known as polarization, requires dynamic reorganization of microtubules (MTs) and is essential to many cellular processes, including axon formation in neurons. A critical step in polarization is believed to be the “selective stabilization” of MTs, which hypothesizes a spatial and/or temporal shift toward net MT assembly in a preferred direction of growth.ResultsWe now find that a simpler “length-dependent” model, in which MT assembly parameters are spatially and temporally constant, predicts MT accumulation in the direction of growth because of longer mean first passage times in the longer direction. We experimentally tested both models by tracking MT assembly dynamics in polarizing embryonic chick forebrain neurons, and we confirmed that assembly is spatially and temporally constant during axon formation.ConclusionCell polarization occurs most simply through cell-length-dependent accumulation of MTs without MT stabilization or capture. In this way, F-actin-mediated cell shape and size changes can be read out by dynamic MTs undergoing simple dynamic instability to ultimately break cell symmetry

    On the logical strengths of partial solutions to mathematical problems

    Get PDF
    We use the framework of reverse mathematics to address the question of, given a mathematical problem, whether or not it is easier to find an infinite partial solution than it is to find a complete solution. Following Flood [‘Reverse mathematics and a Ramsey-type König's lemma’, J. Symb. Log. 77 (2012) 1272–1280], we say that a Ramsey-type variant of a problem is the problem with the same instances but whose solutions are the infinite partial solutions to the original problem. We study Ramsey-type variants of problems related to König's lemma, such as restrictions of König's lemma, Boolean satisfiability problems and graph coloring problems. We find that sometimes the Ramsey-type variant of a problem is strictly easier than the original problem (as Flood showed with weak König's lemma) and that sometimes the Ramsey-type variant of a problem is equivalent to the original problem. We show that the Ramsey-type variant of weak König's lemma is robust in the sense of Montalbán [‘Open questions in reverse mathematics’, Bull. Symb. Log. 17 (2011) 431–454]: it is equivalent to several perturbations. We also clarify the relationship between Ramsey-type weak König's lemma and algorithmic randomness by showing that Ramsey-type weak weak König's lemma is equivalent to the problem of finding diagonally non-recursive functions and that these problems are strictly easier than Ramsey-type weak König's lemma. This answers a question of Flood

    How Morphological Constraints Affect Axonal Polarity in Mouse Neurons

    Get PDF
    Neuronal differentiation is under the tight control of both biochemical and physical information arising from neighboring cells and micro-environment. Here we wished to assay how external geometrical constraints applied to the cell body and/or the neurites of hippocampal neurons may modulate axonal polarization in vitro. Through the use of a panel of non-specific poly-L-lysine micropatterns, we manipulated the neuronal shape. By applying geometrical constraints on the cell body we provided evidence that centrosome location was not predictive of axonal polarization but rather follows axonal fate. When the geometrical constraints were applied to the neurites trajectories we demonstrated that axonal specification was inhibited by curved lines. Altogether these results indicated that intrinsic mechanical tensions occur during neuritic growth and that maximal tension was developed by the axon and expressed on straight trajectories. The strong inhibitory effect of curved lines on axon specification was further demonstrated by their ability to prevent formation of multiple axons normally induced by cytochalasin or taxol treatments. Finally we provided evidence that microtubules were involved in the tension-mediated axonal polarization, acting as curvature sensors during neuronal differentiation. Thus, biomechanics coupled to physical constraints might be the first level of regulation during neuronal development, primary to biochemical and guidance regulations

    Human Ischaemic Cascade Studies Using SH-SY5Y Cells: a Systematic Review and Meta-Analysis

    Get PDF
    Low translational yield for stroke may reflect the focus of discovery science on rodents rather than humans. Just how little is known about human neuronal ischaemic responses is confirmed by systematic review and meta-analysis revealing that data for the most commonly used SH-SY5Y human cells comprises only 84 papers. Oxygen-glucose deprivation, H2O2, hypoxia, glucose-deprivation and glutamate excitotoxicity yielded − 58, − 61, − 29, − 45 and − 49% injury, respectively, with a dose-response relationship found only for H2O2 injury (R2 = 29.29%, p I2 = 99.36%, df = 132, p R2 = 44.77%, p R2 = 28.64%, p R2 = 4.13%, p p 2O2 injury reported only improvement. In studies using glucose deprivation, intervention generally worsened outcome. There was insufficient data to rank individual interventions, but of the studies reporting greatest improvement (> 90% effect size), 7/13 were of herbal medicine constituents (24.85% of the intervention dataset). We conclude that surprisingly little is known of the human neuronal response to ischaemic injury, and that the large impact of methodology on outcome indicates that further model validation is required. Lack of evidence for randomisation, blinding or power analysis suggests that the intervention data is at substantial risk of bias
    corecore