159 research outputs found

    Shaping Coherent X-rays with Binary Optics

    Get PDF
    Diffractive lenses fabricated by lithographic methods are one of the most popular image forming optics in the x-ray regime. Most commonly, binary diffractive optics, such as Fresnel zone plates are used due to their ability to focus at high resolution and to manipulate the x-ray wavefront. We report here a binary zone plate design strategy to form arbitrary illuminations for coherent multiplexing, structured illumination, and wavefront shaping experiments. Given a desired illumination, we adjust the duty cycle, harmonic order, and zone placement to vary both the amplitude and phase of the wavefront at the lens. This enables the binary lithographic pattern to generate arbitrary structured illumination optimized for a variety of applications such as holography, interferometry, ptychography, imaging, and others.Comment: 9 pages, 4 figure

    Fractal Generalized Zone Plates

    Get PDF
    The construction of fractal generalized zone plates (FraGZPs) from a set of periodic diffractive optical elements with circular symmetry is proposed. This allows us to increase the number of foci of a conventional fractal zone plate (FraZP), keeping the self-similarity property within the axial irradiance. The focusing properties of these fractal diffractive optical elements for points not only along but also in the close vicinity of the optical axis are investigated. In both cases analytical expressions for the irradiance are derived. Numerical simulations of the energetic efficiency of FraGZPs under plane wave illumination are carried out. In addition, some effects on the axial irradiance caused by the variation in area of their transparent rings are shown.Comment: Submitted to Optics Express, 200

    Characterization of Spatial Coherence of Synchrotron Radiation with Non-Redundant Arrays of Apertures

    Full text link
    We present a method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern. The technique is based on scattering from non-redundant arrays (NRA) of slits and records the degree of spatial coherence at several relative separations from one to 15 microns, simultaneously. Using NRAs we measured the transverse coherence of the X-ray beam at the XUV X-ray beamline P04 of the PETRA III synchrotron storage ring as a function of different beam parameters. To verify the results obtained with the NRAs additional Young's double pinhole experiments were conducted and show good agreement.Comment: 15 pages, 6 figures, 2 tables, 42 reference

    Ion beam lithography for Fresnel zone plates in X-ray microscopy

    Full text link
    Fresnel Zone Plates (FZP) are to date very successful focusing optics for X-rays. Established methods of fabrication are rather complex and based on electron beam lithography (EBL). Here, we show that ion beam lithography (IBL) may advantageously simplify their preparation. A FZP operable from the extreme UV to the limit of the hard X-ray was prepared and tested from 450 eV to 1500 eV. The trapezoidal profile of the FZP favorably activates its 2nd order focus. The FZP with an outermost zone width of 100 nm allows the visualization of features down to 61, 31 and 21 nm in the 1st, 2nd and 3rd order focus respectively. Measured efficiencies in the 1st and 2nd order of diffraction reach the theoretical predictions

    Combining scanning probe microscopy and x-ray spectroscopy

    Get PDF
    A new versatile tool, combining Shear Force Microscopy and X-Ray Spectroscopy was designed and constructed to obtain simultaneously surface topography and chemical mapping. Using a sharp optical fiber as microscope probe, it is possible to collect locally the visible luminescence of the sample. Results of tests on ZnO and on ZnWO4 thin layers are in perfect agreement with that obtained with other conventional techniques. Twin images obtained by simultaneous acquisition in near field of surface topography and of local visible light emitted by the sample under X-Ray irradiation in synchrotron environment are shown. Replacing the optical fibre by an X-ray capillary, it is possible to collect local X-ray fluorescence of the sample. Preliminary results on Co-Ti sample analysis are presented
    corecore