404 research outputs found

    Hardware Implementation of the GPS authentication

    Get PDF
    In this paper, we explore new area/throughput trade- offs for the Girault, Poupard and Stern authentication protocol (GPS). This authentication protocol was selected in the NESSIE competition and is even part of the standard ISO/IEC 9798. The originality of our work comes from the fact that we exploit a fixed key to increase the throughput. It leads us to implement GPS using the Chapman constant multiplier. This parallel implementation is 40 times faster but 10 times bigger than the reference serial one. We propose to serialize this multiplier to reduce its area at the cost of lower throughput. Our hybrid Chapman's multiplier is 8 times faster but only twice bigger than the reference. Results presented here allow designers to adapt the performance of GPS authentication to their hardware resources. The complete GPS prover side is also integrated in the network stack of the PowWow sensor which contains an Actel IGLOO AGL250 FPGA as a proof of concept.Comment: ReConFig - International Conference on ReConFigurable Computing and FPGAs (2012

    Fifty Years of Digital Sound for Music

    Get PDF
    (Abstract to follow

    Efficient on-chip communications for data-flow IPs

    Get PDF
    International audienceWe explain a systematic way of interfacing data-flow hardware accelerators (IP) for their integration in a system on chip. We abstract the communication behaviour of the data flow IP so as to provide basis for an interface generator. We also explain which parameter this interface generator has to take into account. We validate our interface mechanism by a cycle accurate bit accurate simulation of a SoC integrating a data-flow ip

    Master Interface for On-Chip Hardware Accelerator Burst Communications

    Get PDF
    International audienceWe explain a systematic way of interfacing data-flow hardware accelerators (IP) for their integration in a system on chip. We abstract the communication behaviour of the data flow IP so as to provide basis for an interface generator. Then we measure the throughput obtained for different architectures of the interface mechanism by a cycle accurate bit accurate simulation of a SoC integrating a data-flow IP. We show in which configuration the optimal communication scheme can be reached

    Cycle Accurate Simulation Model Generation for SoC Prototyping

    Get PDF
    RR 2004-18, ENS-Lyon, 24 pagesWe present new results concerning the integration of high level designed ips into a complete System on Chip. We first introduce a new compu- tation model that can be used for cycle accurate simulation of register transfer level synthesized hardware. Then we provide simulation of a SoC integrating a data-flow ip synthesized with MMAlpha and the So- cLib cycle accurate simulation environment. This integration also vali- dates an efficient generic interface mechanism for data-flow ips

    Non c’è mai l’ultima parola a proposito di Proust

    Get PDF
    [Abstract non disponibile

    Compilation for heterogeneous SoCs : bridging the gap between software and target-specific mechanisms

    Get PDF
    International audienceCurrent applications constraints are pushing for higher computation power while reducing energy consumption, driving the development of increasingly specialized socs. In the mean time, these socs are still programmed in assembly language to make use of their specific hardware mechanisms. The constraints on hardware development bringing specialization, hence heterogeneity, it is essential to support these new mechanisms using high-level programming. In this work, we use a parametric data flow formalism to abstract the application from any hardware platform. From this premise, we propose to contribute to the compilation of target independent programs on heterogeneous platforms. These developments are threefold, with 1) the support of hardware accelerators for computation using actor fusion, 2) the automatic generation of communications on complex memory layouts and 3) the synchronization of distributed cores using hardware mechanisms for scheduling. The code generation is illustrated on a telecommunication dedicated heterogeneous soc

    Contrôle d'application flot de données pour les systèmes sur puces : étude de cas sur la plateforme Magali

    Get PDF
    International audienceLes applications embarquées demandent toujours plus de puissance de calcul pour moins de consommation, avec comme conséquence l'apparition de systèmes sur puces dédiés. Dans le domaine du traitement du signal, le modèle de calcul flot de données est couramment utilisé pour la programmation de ces systèmes sur puce. Il est donc nécessaire d'avoir un modèle d'exécution adapté à ces architectures et répondant aux contraintes applicatives. Dans ce tra- vail, nous proposons un nouveau modèle d'exécution pour le contrôle d'applications flot de données. Notre approche s'appuie sur les liens entre les caractéristiques des applications et les performances selon le modèle d'exécution associé. Ce travail est illustré avec une étude de cas sur la plateforme Magali

    Cognitive Radio Programming: Existing Solutions and Open Issues

    Get PDF
    Software defined radio (sdr) technology has evolved rapidly and is now reaching market maturity, providing solutions for cognitive radio applications. Still, a lot of issues have yet to be studied. In this paper, we highlight the constraints imposed by recent radio protocols and we present current architectures and solutions for programming sdr. We also list the challenges to overcome in order to reach mastery of future cognitive radios systems.La radio logicielle a évolué rapidement pour atteindre la maturité nécessaire pour être mise sur le marché, offrant de nouvelles solutions pour les applications de radio cognitive. Cependant, beaucoup de problèmes restent à étudier. Dans ce papier, nous présentons les contraintes imposées par les nouveaux protocoles radios, les architectures matérielles existantes ainsi que les solutions pour les programmer. De plus, nous listons les difficultés à surmonter pour maitriser les futurs systèmes de radio cognitive

    Nonparametric estimation of the dynamic range of music signals

    Full text link
    The dynamic range is an important parameter which measures the spread of sound power, and for music signals it is a measure of recording quality. There are various descriptive measures of sound power, none of which has strong statistical foundations. We start from a nonparametric model for sound waves where an additive stochastic term has the role to catch transient energy. This component is recovered by a simple rate-optimal kernel estimator that requires a single data-driven tuning. The distribution of its variance is approximated by a consistent random subsampling method that is able to cope with the massive size of the typical dataset. Based on the latter, we propose a statistic, and an estimation method that is able to represent the dynamic range concept consistently. The behavior of the statistic is assessed based on a large numerical experiment where we simulate dynamic compression on a selection of real music signals. Application of the method to real data also shows how the proposed method can predict subjective experts' opinions about the hifi quality of a recording
    corecore