research

Hardware Implementation of the GPS authentication

Abstract

In this paper, we explore new area/throughput trade- offs for the Girault, Poupard and Stern authentication protocol (GPS). This authentication protocol was selected in the NESSIE competition and is even part of the standard ISO/IEC 9798. The originality of our work comes from the fact that we exploit a fixed key to increase the throughput. It leads us to implement GPS using the Chapman constant multiplier. This parallel implementation is 40 times faster but 10 times bigger than the reference serial one. We propose to serialize this multiplier to reduce its area at the cost of lower throughput. Our hybrid Chapman's multiplier is 8 times faster but only twice bigger than the reference. Results presented here allow designers to adapt the performance of GPS authentication to their hardware resources. The complete GPS prover side is also integrated in the network stack of the PowWow sensor which contains an Actel IGLOO AGL250 FPGA as a proof of concept.Comment: ReConFig - International Conference on ReConFigurable Computing and FPGAs (2012

    Similar works