22 research outputs found

    From laggard to leader: explaining offshore wind developments in the UK

    Get PDF
    Offshore wind technology has recently undergone rapid deployment in the UK. And yet, up until recently, the UK was considered a laggard in terms of deploying renewable energy. How can this burst of offshore wind activity be explained? An economic analysis would seek signs for newfound competitiveness for offshore wind in energy markets. A policy analysis would highlight renewable energy policy developments and assess their contribution to economic prospects of offshore wind. However, neither perspective sheds sufficient light on the advocacy of the actors involved in the development and deployment of the technology. Without an account of technology politics it is hard to explain continuing policy support despite rising costs. By analysing the actor networks and narratives underpinning policy support for offshore wind, we explain how a fairly effective protective space was constructed through the enroling of key political and economic interests

    Strategic risk management for tidal current and wave power projects

    Get PDF
    Tidal current and wave power, as emerging forms of renewable generation, represent innovations that are confronted by significant technological and financial challenges. Currently, the marine energy sector finds itself in a decisive transition phase having developed full-scale technology demonstrators but still lacking proof of the concept in a commercial project environment. After the decades-long development process with larger than expected setbacks and delays, investors are discouraged because of high capital requirements and the uncertainty of future revenues. Although ideas for improving the investment climate can be found, there is a lack of well-founded arguments and coordinated strategies to work towards a breakthrough in the marine energy market. The objective of this research is to provide stakeholder-specific prioritised strategy options for de-risking the commercialisation of tidal current and wave power technologies. A key principle applied is to integrate a wide knowledge spectrum comprising the technology, policy and financing sectors and to compile the information in a holistic and transparent manner. To gain a broad understanding of the characteristics of presently ongoing marine energy activities and the correlated strategic planning, a comprehensive survey was conducted. Based on this multidisciplinary attempt, an all-encompassing appraisal was possible by avoiding over-concentration on stakeholder-specific views or interests. System dynamics modelling was employed to develop a series of cause-effect relationship diagrams of the key interactions and correlations in the field. It was revealed that the circular relationship between two major risks for array-scale projects – reliability and funding – requires coordinated action to overcome. As funding is necessary for improving system reliability (and vice-versa), showcasing “array-scale success” was identified as the game-changing milestone towards commercial generation. Furthermore, it was found that a number of comparably competent manufacturing firms is required to implement major marine energy projects. This would result from fostering a multi-company market breakthrough concept, based on intensified knowledge sharing and trustful collaborative interaction between competitors. Additionally, effective separation of complexity into “detail” and “dynamically complex” constituents was found to be fundamental for identifying long-term, effective solutions. It is decisive to accept this primary classification, as measures appropriately applied on one type of complexity can be counterproductive if applied on the other. Most of the available planning tools and analytical methods do not address the management of dynamic complexity, necessary in innovative environments where flexibility and tolerance of vagueness are indispensable. Successful application of several strategies to deal with both types of complexity in comparable innovation-driven environments was considered suitable for de-risking the commercialisation of marine energy. The challenges for strategy-finding in a demandingly complex and increasingly dynamic environment are addressed in this research by exploiting a case-specific expert knowledge database. The structured information compression and subsequent strategy-finding process is realised based on calculated rankings of impact factors by systems dynamics software and substantiated by representative interview statements. The analysis makes use of multi-level expert knowledge and the application of a control-loop-based methods. The systems approach as applied in this research comprises the combination of interview-based (bottom-up learning) processes and the application of prioritised strategy options in the form of concerted management action (top-down planning). The approach of processing multi-level interview data by system dynamics modelling represents a powerful method to detect and assess ongoing developments and thus to advance strategy-finding. The systematic and unbiased approach to identify the top-level drivers for commercialising marine energy supports the long-term creation of investor confidence, based on a concept of transparency and credibility

    STRATEGIC RISK MANAGEMENT FOR TIDAL CURRENT AND WAVE POWER PROJECTS

    Get PDF
    Tidal current and wave power, as emerging forms of renewable generation, represent innovations that are confronted by significant technological and financial challenges. Currently, the marine energy sector finds itself in a decisive transition phase having developed full-scale technology demonstrators but still lacking proof of the concept in a commercial project environment. After the decades-long development process with larger than expected setbacks and delays, investors are discouraged because of high capital requirements and the uncertainty of future revenues. Although ideas for improving the investment climate can be found, there is a lack of well-founded arguments and coordinated strategies to work towards a breakthrough in the marine energy market. The objective of this research is to provide stakeholder-specific prioritised strategy options for de-risking the commercialisation of tidal current and wave power technologies. A key principle applied is to integrate a wide knowledge spectrum comprising the technology, policy and financing sectors and to compile the information in a holistic and transparent manner. To gain a broad understanding of the characteristics of presently ongoing marine energy activities and the correlated strategic planning, a comprehensive survey was conducted. Based on this multidisciplinary attempt, an all-encompassing appraisal was possible by avoiding over-concentration on stakeholder-specific views or interests. System dynamics modelling was employed to develop a series of cause-effect relationship diagrams of the key interactions and correlations in the field. It was revealed that the circular relationship between two major risks for array-scale projects – reliability and funding – requires coordinated action to overcome. As funding is necessary for improving system reliability (and vice-versa), showcasing “array-scale success” was identified as the game-changing milestone towards commercial generation. Furthermore, it was found that a number of comparably competent manufacturing firms is required to implement major marine energy projects. This would result from fostering a multi-company market breakthrough concept, based on intensified knowledge sharing and trustful collaborative interaction between competitors. Additionally, effective separation of complexity into “detail” and “dynamically complex” constituents was found to be fundamental for identifying long-term, effective solutions. It is decisive to accept this primary classification, as measures appropriately applied on one type of complexity can be counterproductive if applied on the other. Most of the available planning tools and analytical methods do not address the management of dynamic complexity, necessary in innovative environments where flexibility and tolerance of vagueness are indispensable. Successful application of several strategies to deal with both types of complexity in comparable innovation-driven environments was considered suitable for de-risking the commercialisation of marine energy. The challenges for strategy-finding in a demandingly complex and increasingly dynamic environment are addressed in this research by exploiting a case-specific expert knowledge database. The structured information compression and subsequent strategy-finding process is realised based on calculated rankings of impact factors by systems dynamics software and substantiated by representative interview statements. The analysis makes use of multi-level expert knowledge and the application of a control-loop-based methods. The systems approach as applied in this research comprises the combination of interview-based (bottom-up learning) processes and the application of prioritised strategy options in the form of concerted management action (top-down planning). The approach of processing multi-level interview data by system dynamics modelling represents a powerful method to detect and assess ongoing developments and thus to advance strategy-finding. The systematic and unbiased approach to identify the top-level drivers for commercialising marine energy supports the long-term creation of investor confidence, based on a concept of transparency and credibility

    Comparing nuclear power trajectories in Germany and the UK: from ‘regimes' to ‘democracies’ in sociotechnical transitions and Discontinuities

    Get PDF
    This paper focuses on arguably the single most striking contrast in contemporary major energy politics in Europe (and even the developed world as a whole): the starkly differing civil nuclear policies of Germany and the UK. Germany is seeking entirely to phase out nuclear power by 2022. Yet the UK advocates a ‘nuclear renaissance’, promoting the most ambitious new nuclear construction programme in Western Europe.Here,this paper poses a simple yet quite fundamental question: what are the particular divergent conditions most strongly implicated in the contrasting developments in these two countries. With nuclear playing such an iconic role in historical discussions over technological continuity and transformation, answering this may assist in wider understandings of sociotechnical incumbency and discontinuity in the burgeoning field of‘sustainability transitions’. To this end, an ‘abductive’ approach is taken: deploying nine potentially relevant criteria for understanding the different directions pursued in Germany and the UK. Together constituted by 30 parameters spanning literatures related to socio-technical regimes in general as well as nuclear technology in particular, the criteria are divided into those that are ‘internal’ and ‘external’ to the ‘focal regime configuration’ of nuclear power and associated ‘challenger technologies’ like renewables. It is ‘internal’ criteria that are emphasised in conventional sociotechnical regime theory, with ‘external’ criteria relatively less well explored. Asking under each criterion whether attempted discontinuation of nuclear power would be more likely in Germany or the UK, a clear picture emerges. ‘Internal’ criteria suggest attempted nuclear discontinuation should be more likely in the UK than in Germany– the reverse of what is occurring. ‘External’ criteria are more aligned with observed dynamics –especially those relating to military nuclear commitments and broader ‘qualities of democracy’. Despite many differences of framing concerning exactly what constitutes ‘democracy’, a rich political science literature on this point is unanimous in characterising Germany more positively than the UK. Although based only on a single case,a potentially important question is nonetheless raised as to whether sociotechnical regime theory might usefully give greater attention to the general importance of various aspects of democracy in constituting conditions for significant technological discontinuities and transformations. If so, the policy implications are significant. A number of important areas are identified for future research, including the roles of diverse understandings and specific aspects of democracy and the particular relevance of military nuclear commitments– whose under-discussion in civil nuclear policy literatures raises its own questions of democratic accountability

    What should be recycled: An integrated model for product recycling desirability

    Get PDF
    This research was focused on developing a new scientific approach for prioritising recycling of end-of-life products in a circular economy. To date, product complexity based on the mixture of materials has been used as a predictor of what gets recycled. While the separation of materials that make up a product has been modelled as a measure of product complexity, this does not taken into account the benefits and considerations in recycling products. In this paper, a new agenda and approach to prioritise the recycling of products was developed based on a recycling desirability index. The material mixing complexity measure was inverted into a simplicity index and then extended by modelling the security index for the mix of materials and the technological readiness level of recycling technologies. The extended model is proposed as an integrated measure of the desirability of recycling end-of-life products. From this analysis, an apparent recycling desirability boundary, enabling products to be prioritised for recycling, was developed. This model and analysis can be used as an information source in developing policies and product recycling priorities

    The Local Economic Impact of Shale Gas Extraction

    Get PDF
    Advocates of UK shale gas expansion have focused upon predicted national economic benefits, but local and/or regional impact has been largely neglected. This paper seeks to address this deficit by creating a unique dataset, combining industry data with consumer and supply chain surveys, thereby overcoming the current absence of suitable secondary data. Local economic impact in the Bowland field is estimated via a simple Keynesian local income multiplier model. Results emphasize the importance of facilitating local employment opportunities, through skills initiatives, and development of regional supply chain clusters, to anchor economic benefits within the local economy. Policy implications are discussed
    corecore