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NATTIONAL ADVISCRY COMMITTEE FCR AERONAUTICS

TECENICAL NOTE TIO 11913-

EFFECT OF FINITE SPAN ON THE AIRLOAD DISTRIBUTIONS FOR OSCILIATING WINGS
I — AFRODYNAMIC THECRY OF OSCILIATING WINGE OF FINITE SPAN

By Eric Reissnper

.

A formula is -derived for the press
ing lifting surface of finite span under the asumntﬂon of a ratio of.
span to average chord (aspect ratio) ig not too small. The range
of validity of t;ls formuia, so far as aspe t-ratic iimitations are con-
cerned, is not less than the riangs cf validity of lifting-line theory
for the nonfosc*llat*d wing. '

It is found that the effect of three—dimensionality of the flow may
be incorporated in the results of the two—dimensional theory by adding s
correction factor o +to the basic function ¢€(k) of the two~dimensional
iheory.

The correction texrm ¢ 1is a function that depends on wing plan
form, wing defiection function, and reduced frequency k. Its determi-
naticn reguires the solution of an inftegral eguation which is similar to
the integral equation of 1lifting-line theory.

Qd ’,’S

The present report concludes with an explicit statement of the form
which the results of the theory assume for the spanwise variation. of
1ift, total moment, and hinge moments on a wing which is oscillating in
bending, torsion, and ailercn and tab deflection.

Methods for the numerical evaluation of the results obtained as

well as numerical applications Lto specific problems are given in part II
of this report.o

INTRODUCTTON

The present report deals with the linear aerodynamic theory of
czcillating airfoils of finite swan. It containe the outcome of att empts
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to obtain simplifications and extensions of earliier resulis given in rei-
erences 1 to 3. The guiding thought in the developments is to deduce,
from a rigorous formulation of the problem of nearly plane lifting sur—-
faces, simplified results in applicable form which depend on the assump—
tion of sufficiently large aspect ratio. It is found that such resulis
can be cbtained and that their range of appiicatility, so far as aspect—
ratio limitations are concerned, is at leasV as inclusive as that of
lifting—line theory for the airfoil in uniform motion.

In reference 1 wings of rectangular plan form were considered an
expressions were obtained for the spanwise distribution of lif't and mo—
ment on the airfoil for arbitrary, small periodic displacements cf the
points of the wing surface. In reference 2 these resulis wers extended
to wings of arbitrary plen form. In reference 3 expressions were ou—
tained, on the basis of results in-references 1 and 2, for the spanwise
variation of aileron hinge moment and tab hinge moment. Morecver, it
ras established that the effect of finite span could be incorporated
into the results of the two—dimensional theory, ac given in references
L and 5, by a modification of the basic functicn C = F + iG in an
explicitly specified manner. The term to be added to the function C
in order tc account for the three—dimensionality of the problem vas
found to be the same for 1ift, moment, and hinge mcments but to depend
on the nature of the motion being dealt with. Tetermination of these
three—dimensional correction terms regulres the solution of an integral
equation for the veriation of the circulation along the span. The deri-—
vation of this integral eguation is an important part of the work,

In this veport the foregoing results are ob%ained in what appears
at present to be the simplest possible way. In particular, a consider—
able reduction in the necessary analysis is accomplised by showing that
the effect of Tinite span manifests itself in the expression for the
chordwise pressure distribution solely by a modification of the function
C. Vith this result, use may be made of the known formulas for 1lift and
moments of the two—-dimensioral theory in order to establish the final
results of the present theory without further integrations.

SYMBOLS

u velocity of flight
X, ¥, z Cartesian coordinates
u+U, v, v components of fluid velocity

t time
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()

pressure
density

velocity potential

discontinuities of uw and v inAthe xy—plane
coordinate of leading edge

coerdinate of trailing edge

semichord

semichord of midspan

ratio of span to chord at midspan

veloclty component w at the airfoil

instantanecus deflectlon of points of wing surface measured
normal to xy-plane

regions in xy-plane (airfoil, wake, remaining)
circular frequency

barring of térms, defined by equation (12)
circulation per unit of span

circulation function defined by equation (15)

function defined by equatiohs(39a,:b) and occurring as
kernel of the integral equation (62)

dimensionless spanwise coordinates; y* = y/bg, n* = /b,

dimensionless chordwise coordinates defined by equation

(4ov)
dimensionless coordinate of midchord line; zp,=(x; + xt)/2b,
reduced frequency; k = @ b/U

reduced frequency at midspan
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ko o
function defined by equaﬁion (47)
functions defined by equations (52b) and (53b)
function defined by equation (59)
two-dimensional circulation function given by equation (60)
varisble of integration’
function defined by equation (72)
function defined by Thsodorsen
correction term defined by equation (77)
location of elastic axis in units of semichord b
location of aileron leading edge .in unitis of b
location of aileron hiﬁge line in units of Db
location of tab leadinz edge in units of D
location of tab hinge line in units of b
ilercn and tadb overhaﬁg in ﬁnits of b; 1l =e—-c,u=7Ff-2
bending deflection of wings
angle of attack of wings
aileron and tab deflection angles
1ift per unit of span
moment about elastic axis per unit of span
aileron and teb hinge moments per unit of span

function defined by equation (86)
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FORMUTATION OF THE FROBLEM

The wing considered is of arbitrarily given plan form and is placed
in the path of a uniform incompressible air streaw of velocity U, Small
cember, thickness, angle of attack, and deformations are assumed for the
wing which, for this reason, may be represented by a plane surface of
discontinuity of pressure and tangential velocity in the fluid, parallel
to the direction of U, In addition to the surface of discontinuity
representing the wing itself, there is admitted the possibility of a
surface of discontinuity of tangential velocity (but not of pressure)
which extends downstream from the tralling edge of the wing and whlch is
also teken to be parallel to U,

Iet x and y be the coordinates in the plane of the surfaces of
@iscontinuity, the direction of U determining the x—axis, and let =2
be the coordinate perpendicular to x and y. ILet uw+ U, v, and w
be the compenents of fluid velocity in the x, y, and z directions,
respectively., let p designate the pressure in the fluid and p the
density. With the higher order terms in the velocities neglected, the
equations of fluid motion and of continuity become

(8,) :a-u-+U.§u._=_};§£\\

ot o p - ox
p) F,upd._L o L
(c) ow + U gﬂ -1 ?2

ot ox p Oz

/
du  ov  Ow _ .
ox ¥ Sy Y 0 (2)

. Exterior to the surfacee of discontinuity the flow is without
vorticity so that in terms of a velocity potential ¢,
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(a) u = %g
o) v=2 (3)
e

—~
[#]
—
=
fl
I

oY 1s
N

From equations (3) and (1) an appropriate form of the Bernoulli squation
follows for the pressure p,

Lovd . ()

Vet = (AN
(a) 7 = (&) g=0 ax ).

(b) 5= (av),_, = <A off >

stand for the discontinuity distributions of the velecity components u
and v over the surfaces of discontinuity in the xy-—plane., According
.to the Biot-Savart theorem the velocity component w in the interior of
the fluid is then given by the integral :

o 7(E, m, ) x—-E)+8(E, n, )y —n)
W o= ——— v : dgdﬂ (6)
l”‘:/f ((x ~t)% (¥ = )%+ z2}3/2

From equations (5) it follows that 7y and ® are related to each
other in the form

& oD | (7)
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From equaticns (4) ‘and (5) it follows that the discontinuity of
pressure Ap 1is glven by

The problem of the oscillating lifting surface may now be formu—
lated. Designate the coordinates of the leading and trailing edge of
the wing by =x;(y) and xg (y), respectively, with x,;(0) = -b, and
x4(0) = by, so that b, represents the semichord at midspan. Let gby

stand for the length of the semispan. Distinguish the following three
regions in the xy—plane; (1) the airfoil region R,, (2) the wake

region R, which is the strip of width 2sb, extending downstream from
the tralling edge, (3) the remaining region Ryn. Then there is the

condition of continuous flow outside the airfoil and wake regions, in Ry,

7=8=0 (9)
4and the condition of continuous pressure in the wake region Ry,
Op =0 (10)

At the airfoil the condition of tangential flow is te be satisfied. If
Za(x, Y, t) stands for the instantaneous deflection of points ef the wing

surface measured normal to the xy—plane, this condition in the region

Ra is

g, y P

w, = w(x, y,vo, t) = + U —— (11)

v introducing equations (9) to (11) in the integral representation
for w, equation (£), and taking account of equations (7) and (8), there
may be obtained the general integral equation of lifting-surface theory
for the distribution of the velocity discontinuities 7y, and B, over

the airfoil region. With the solution of this integral equation,
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equation (8) furnishes the chordwise pressure distribution A Pg. Appro-
priate integratior of A p, results in expressions for spanwise 1lift,
moment, and aileron and tab hinge-moment distributions,

Further development ‘is here based on the assumptlon of simply
harmonic motion,

int

_Za(x, ¥, t) = 2.(x, y)e (12)

As a consequenne of the linearity of the tbeoryi it follows also that
velocitles and pressure become products of e~ -and of amplitude func-—
tions 1ndependent of time whlch are designated by bars,

The flrst step in the deduction of the final form of the integral
equation of the problem consists in the determination of the values of
7 and & in the wake region, by means of equaticns (&), (7), (9), and
(10). Eguation (8) takes on the form

Xt x

0 = iw < //‘75 dx' + // 7y dx' > + U7y, (13)
If the circulation I ig defined by
:’:t . '
x

and the ciyculation function ¢ by

(15)

it follows from equation (8) and its differentiated form that 7w. is
given by ' ’ C
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w

Ty =0y %) Te - u* ; (16)

When 7y of equation (16) is substituted in equation (7), there is ob—
tained for 8,

X a__ — w
- [t o7 aQ -1 X e
5 = — &x' = b, — @ J I

Equations (17), (16), and (11) are now introduced in the integral
representation for w, equation (€), in which the coordinate z is
made to approach zero. As was shown in reference 1, the two limit proc-
esses of integration and of letting =z approach zeroc may be interchanged
if the Cauchy principal value of the integrals is taken at the points
£t = x, n =y for which the integrand becomes infinite. There results

e, g) = ;f‘efa(ﬁl Mlx —¢) +8,(¢, 9}y —n) it dn

' (x - €)% + (y )2 [°7
R, |
wt 0 = ; ac
I - Qo
~==2 ] S ulll g)+a}r(¥3/;)d€dn (18)
Ly i(x—€)2+(y—n)2
-RW [ |

Equation (18) holds for all points x, y inside R,. Its left-hard
side is the given function

Vg = 1w Zg + U — (19)

and, according to equations (7) and (9), 5, is expressed in terms of
¥a by means of the formula,
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'5a=[+9- axt (20)
'3 J »
1

In addition, there is imposed the Kutta—Joukowsky condition stating
that 7 and 5 ars finite along the trailing edge of the wing. The
amplitude of the chordwise pressure distribution A Do 1in terms of the
function 7, for which equation (18) is to be solved, is given by

- —Z s [ Ygax' + U7, (21)

The general problem is the solution of equations (18) to (20) for
arbitrary shape (plan form) of the airfoil region Rg. Results equiva—
lent to this solution are knowm for the following two special cases: (1)
the two-dimensional problem to which the general problem reduces when

the region R, is the strip |x| < b =b, and w,; of equation (19)

is independent of y (see for instance reference 5), and (2) the problem
of the wing with circular plan form (references 6 and 7).

The purpose of the remainder of this report is to obtain approximate
solutions of the problem which are applicable subject only to the re—
striction that the airfoil region R, is of sufficiently large aspect

ratio, a restriction that is roughly equivalent to requiring that the
ratio s of span to chord at midspan is sufficiently large. The nature
of these results is, presumably, that of the dominant terms of an asymp—
totic development of the exact solution in terms of the parameter s,
However, no investigation of this aspect of the problem is made in the
pregsent report.

Concerning the range of validity of the results ag far as aspect—
ratio limitations are concermed the siatement may be made, in view of
the nature of the analysis, that the results obtained in this report for
oscillating wings are certainly applicable for all wings for which
lifting-line theory is considered applicable in the case of uniform mo—
tion. There is some reason to believe that the results for oscillating
wings may have a somewhat wider range of validity than lifting—line
theory, as the chordwise waves which occur in the vibration problem may
be responsible for a reduction of the effective chord length while at
the same time having no influence on the effective span length.



NACA TN No. 119k 11
DERIVATION OF SIMPLIFIED INTEGRAL EQUATION OF LIFTING-SURFACE THEORY

Equation (18) may be written in the form

X3 <X < Xy, —8by <y < oby; Wy o=Iy o+ I (22)
where
bo xi(n) _ |
= g - ) , -
(a) I, = EL f f Ve (i; n)(x £) + 8 (¢ ns)Z n)dgdn
Yeb [ (x =£)% + (y = 0)® J ' :
sbo . (23)
D . Lo _ o
(b) Ip=—2 | / eIU AgamME-t)+a () -n) a%dn

- F
A
._\‘

g (x—§>2+<J—n‘]3’a
—sbo xt(n) L :

and where, from equation (20),

¢

g Qv 1 _
5,08, n) = / 2l 1)y

e.1‘7,(1'])

The decisive step in the present solution of the problem as ex—
pressed by equations (22) and (23) is the reduction of the two—
dimensional integral equation to 2 one—dimenszional integral equations
which can be solved successively. For this reduction it is assumed that
the airfoil region is sufficiently elongated in span direction, that the
rate of taper is moderate, and that the velocities do not vary appre—
ciably along the span over distances which are a fraction of the mean
chord, With these assumptions it may be postulated that at every span—
wise section the contribution to the normal velocity wg induced by the

tangential velocities at the airfoil is approximately as if every

—— ———— o ———————
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spanwise section were part of a wing without taper and as if the flow
were two—-dimensional. Equation (23a) then becomes

> xg(y) _ -
- f ¢ hra( £, 7)(x - £)atan
J [(x—§)2+(y n)® ]3/3
—oo Xz(y L
xt(b’) (
1/ 7ol €y ¥) S "
“/t/’ 2t -4 (21)
x(y) - 7

A corresponding approximation ']Ez for the integrel I, 1s ob-
tained by a less direct procedure, Write

-b
SEICSI S
vhere sby O
® }r— . 2 3/a
“sby  xy(n) ’L(x L)+ =)
8%, o L.
A A e -8 <n)( - £) .
T Sy w? P e
~ 8b, x.(1) '_ |

Write next
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In the integral extended from x to xt(q), that is, over part of the

airfoil region, the same approximation can te made as in the expression
for I, If this is done, its contribution to I:3 vanishes and

by o -1 % _,
: .0 e U q (n)y-n) at &
3 = f { > > are 1
‘_(x -£)" + (y - 1)
- 8b  x
o i
With a new variable of integration A = § - x
o Sbo o -.1 L |
~f = i T — \
I o afy. ‘f / (v u.)d)s/gjdn (29)
: dn >~ + (y = )" J
—sb, “o

In order to approximate the remesining integral T, this integral 1is
separated into two parts, one part which equale the value of I, in the
two—-dimensional theory and the other part being the difference between
the two-—dimensional and the three-—dimensional value of I,

I,= 14(2) £ AT, (30)
12 ¢
— U' -
14(2) =Q (y) / " (z E)dg:ns/a
J L (x- £) +(y-n)]
o) -4 2

~ : U :

=2 Q(y) S(z;':—g—; at (31)
ext(Y)

The factor(l (y) may be written in the alternate form
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2 y

if account is taken of the fact that 0 (*sby) = 0.

If equations (31) and (32) are combined, the value of 14(2) may
be written

Sby o 1 w ¢

14(2) =/‘ /“ | em - () ly-nl at a (33)

. J o (x~ E) (y =)
—sb, % ()

The next step is transformation of I, by integration by parts

with respect to 1. Before this step is carried out it is noted that it
is coneistent with the preceding approximations to replace in equation
(27) the limit of integration xt(n) by xt(y). Then

w ' sbg, -
J . (x - £) 4 (y—‘n)g]m
‘Xt{ ¥) ' k—Sbo ,.
® w
..-./ T (x—t)
'xt(y)
ropvo 3 () y - 1) dn
X lf = 11E (3k)
- (x - 8)2./(x~ £)2 4 (y ~q)25
—sbo

as the integrated portion of the inner integral vanishes because
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15
0 (+ 8by) =0
By éombining equations (34) and (33) there follows
sb. o N -4 D¢
‘ (2) n° o~ a T
14“142-=AI4:/ / _(n)el
g x - ¢
~sb, x4(y)
r - -
xL I =0 —-If'_.”' Jdﬁdﬂ (35)
Jx =t (g2 Y70

Equation (35) for A I, may again be separated into two integrals, in

the same manner as I, of equation (28). 1If this separation is made,
the integral between the limits x and x(y)

may again be neglected
with the result that -

Sbo o] Lo =,
AItlz/cf e"lag_gz.()g
. . x—.‘
—isbo,x
LS -t (=) TN

and with A\ = E—x

w 8bo Y
a1, ze TS @) | - /’;( _y=n_
S, MY e -2
—8b,
W
0y 9
y =
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Now, by combining equations (36) and (31),there follows:

o© ‘D 8bg
3 i 4 RIS
I, = ?Q(.Y)/ —~————df-e "y }/ Q' (n)
'X() X_g ’“:b .
£\ 5%
r ® .
X[,/ }( y - ly ~al \ -1 52 thdn
Lo\e e
=1
a

(37)

From combination of equations (37), (29), and (25) there follows
finally as an approximate value of the wake integral I,

(38)

where
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For the applications it is convenient to transform X(x) by an inte-
graticn by parts of the first integral as folicws:

The right eide assumes a definlite value only if

c(x) = ~

and then

2 e an 1 ,
e R (e
1/ (A= + x) X /—KE + X2

N (39p)

[o <] .
wb wb IR }Y T 2 . -2 _
K(X)S*QSlE'i"‘g%c o (1- A2 4+ x »|xl>d)“

Combination of equations (38), (24),and (22) results in the approxi-
mate integral equation of lifting-surface theory, which is the basic re-—
sult of the present work. Because the establishment of this equation
depends on the condition of a ratlo of wing span to average wing clord
that is not too small (so that the wing plan form has the appearance of a
strip), it might be considered to call this equation the integral equa-—
tion of lifting-strip theory to distinguish it from the general equation
of lifting-surface theory on the one hand, and from lifting-line theory
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for the stationary sufficiently elongated wing on the other hand:. That
it is not possible to speak of a lifting-lire theory for the oscillating
wing follows from the fact that according to équation (38) and (22) the
effect of spanwise variation of circulation 18 not uniform across the
chord but varies in a manner depending on the freqﬁency w.

In order to obtain a normalized form of the eqﬁations of the prob-
lem, the following dimensionless variables may be introduced:

(a) ¥ = i/_bo

X - % (x4 + x37)

(v) z =
%’ (Xt haed Xz)

As the space coordinate 2z does no longer occur, from equation (18) on,
_introduction of a dimensionless variable 2z at this stage will give no
rise to doubts as to its meaning in the subsequent developments. Write
as abbreviations

i}
o’

(a) -;- (xy ~ %)

(k1)

(D) == (xg + %)

Zn
2b,

The quantity 2z, is a measure of the local sweep of the midchord line.

The quantity b stands for the magnitude of the local chord so that
b(o) = by. With these symbols equation (40b) becomes

X = bozy + bz (h2)
Also let
b
D o) _
k = %3", ko = T Kp = Koy (43)

vhere Xk is the local reduced frequency and ko the reduced frequency at
midepbn.
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Upon 1ntrodu01ng equatlons (40) to (43) in-equations (38), (2k4), amd
(22) there follows as the normalized form of the integral equation to be
solved :

| ""l V(C 7*)
a(Z,Y) 'é——'f Z—£ d-g

® -

ik ik _‘" .
2%
1

Lo e—lkmf an Kh (5% = %) Jdﬂ* (4)

d’l

e—1k§ ’

-8

Equation (L4) has first been established in reference 2. For the
wing of rectangular plan form (k =k , k; =0) it reduces to an equa-
tion given in reference 1.

The problem from here on is to solve equation (k) fox the function
7&’ to obtain an equation for the spanwise variation of £, and to

express the chordwise pressure distribution in terms »f ﬁa.

In terms of tﬁérvariableA z as defined by equation (hg)‘theifunc—
tion (G of equations (14) and (15) is to be written as"

Gr*) =2 L{k+kem) / Yl &y y¥)dt (L45)

-1

and equation (21) for Ap, becomes

z
} - — ,
- ik/ By dz' + T4(z, 37) (46)
J_,
To be established is the manner in which the presence of the term
containing d/dn* in equation (L4k) modifies the result of the two-—
dimensional theory for &p,.

als
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CALCULATION OF PRESSURE DIS'i‘RIBUTION' ‘

The next step in the analysié is the determination of ¥, from
equation (44) in which the following abbreviation is inserted:

/ ..K [ko(y* = %) ] dn® (47)

Use is made of the following palr of formulas of integral-equation
theory:

b Y
g(z) = = f £(8) 4 ¢, £(1) fintte
2 [ oz- L

S | 8
-2 fi-z 1+ ¢ alt)
2(z) = :rA/l+z_fﬁA/l—-§z---§d‘g

It may be noted that a derivation of the results of the two-dimensional

"-.theory in this manaer has been given in reference 8.

By applying equations (48) to equation (u4k) there follows,



NACA TN No. 1194 21
= __2 /i-z ] 7[1 St Vo (8, ¥%) o
a n/ 1+z L __'l./'l—C z -6
X . I - , — kN )
ik _ —iky 1+ 8 e 0 at
+ —2 ge ¢ i P )
bid J /J.“") ~ § — A /S Z -
-1 1
- . 1 ——— =ik,
Q —ikm- !."l'i-c e 5 —l .
-——e Mt -—~7-dCJ (k9)
2 x J 1.t 3¢

The double integral in equation (49) is reduced to
follows: :

1

a single integral as

a
[/ 2
1 l""g A z -5
o . 1
IR AR ' W I SRS U ¢ a 1
= / e * § J ,/ = ¢ [ an
A LJ / 1-8 (8-2NEz=-8 ]
1 -1
€ 1
M k|1 RS 1 N
= | & P %. Iy ‘ + = 'dQJ
J Lz-» J / 1-¢ Aoz -t/
~1
*© L —
A+l

/e

/)\.~J.

. N -
- [ = - |
1. 2 A

By introducing equation (50) in equation (4g),
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-7-='_g_'l‘..z ( d“l l+§ Va at
& n/lez N ] tz— ¢
-1
L B s
-2 ik (e e )
2 -1z ~\

Y -3 ~ -1k §
q ik + .C’ ) it >
2 ] L=9§ z=1¢

o]

[y

(51)

. According to equations (46) and (L45) it is necessary to integrate
equation (51) between the limits ~1 and 2z, with 2z' as the variable
of integration. By interchanging the order of integration with respect
to z', {, and A, respectively, the following integrals occur (see
reference 8): '

A

= /T =z Azt n -1 1-¢
= - i e 2
f/l+'z'§-—z' o+ sin Z+/l+£A1(Z; §). (52a)

3.

Z

/1 =z' az! n » — 1 -

Y e LR LS TV WCRS (532)
l+2' M=12" 2 A+ 1 .
-1

The functions A,n are defined by

_J;Zl-zﬁ +~/71——§8«/l—22 (52b)

A1(Z’c)=2 nl-—z‘{;—-,\/l'__ca J 1 - 22

- z) (M + 1)\
A(zx) 2 tan™t </(l+z)()~-—l)/ £ (53b)
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The following formulas will also be needed:
al\1=‘\/l—za l~-z< / C )()?c)
ot Iz «/l+z /1 ‘_ga" /1 | z-c

1 A+ L 1
«/l+z<Jx2_ LV T):) (53¢)

With equations (52a) and (53a) there follows from equation (51),

Z 1 S
. )
L - 1+ ¢ yn -1 -
v dz' = = = (-— + 8in 2z ) + A, |w, 4
t . : -
-1 -1

[0 o3

ik f’ /n o+ 1 -
-0 + <-—+ s:Ln > + Aa—] o ikA an
b1 / )\.-—l - )

~ _ T
Q elkm / - § /T 4 sin 1z> + Alielkgdg (55h)

:kn

Equation (54) leads immediately to the integral equation fcr the

spanvise variation of (. . Let. z =1 and there follows, in view of
equation (45) and in view of the fact that AL (3, t) =0 and

A (1, \) = —n,
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l+§_
B

~1k Ge m[ < / "im'dk.
-—e_lkmf /l-—§ e_u(t’ at (55)

Equation (55) can be simplified by means of the following relations
of the theory of Bessel functions:

o0
M+ 1 S9N
- 1" an
@ [ (i
1

Yo L (evkn) =
b

(“) —2/ at

v -1k
=- "’g' (\Hl:(:»z) (¥) + iHO(Z) (k) > - ?-.H{‘- (56)
1
' ikt
(v) // ii%_e at =n<Jo(k)—-iJl (k))

Hence o

Q=-2 b i(k+km) / 4 v af

b, -

-

+ ikﬁeik ( -;—[H (2) + 1 Ho(a)
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and by canceling two of the Q- -terms against eavg o»ber
: 7

. | iy /_.;9_ _
5 Jo — 15y b o= op ° Ly /. 1_ tVadl (e
TTTTT b, Y% I (2) (28)
z nix| B, (2) 4 iHo(z)] o by & nikl 7, (2) 4 :m, ! ']
2 u 2 L ’ 2
Define now a function u by the relation
J. —1id, I, - id,
b= - _ ?‘) o - i e : (59)
nik[Hl 2’ 4+ 1B, Z’J e | (Jo = 1) =1 (J1 + 35) }
. LI .
and write as an abbreviation
/ /'f:—j :
a
e n -t (60)
Po W[chz) ; o<2)]
Equation (58) then assumes the form
8 %) + ule) 223 = 82 (59 (e

o

2 -—
cifculation. The function Q is the distribution of 2 according
to the two—dimensional theory., The Q—term represents the influence of
finite span. With equation (47) for @ +there may be written

Equation (61) is the integral e?uation for the spanwise variation of
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Q (5*) + n(k) P-?f g{k K[ X, (y* — n*)] an¥ -a2) (5% - (62)
‘-S .

The next step in the analyeis is to subtract cquation (55) mul-
tiplied by 1 ( g + 8in* z) from equation (5u4): '
T\ 2

Yy dz'- 1 (E + ein * z> b e_i(k"'km) 9]
. a n\2 b,

1

=-§-fA1(z, £, at

-1

i
- / (—ﬂ—+51nlz +A> o1k 4,
2
1
A N |
q -1k ik
Lot fa e netta (63

-1

The second and third integral in the right—hand side of equation (63)
are now integrated by parts,
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-y N Do, 1(kky) ~
— 1 1 \ o1} - .
dz' —=( X in Tz Y. e Q

1

5 _ ik —iky
=;./A1"a““;r°“e |

-ik\ @
X \f [-’5+ sin * z + A_(z, )»).g e .1
{ B ~ik J
1
[o0]
: ~ikA
_ o 5 / oh, o,
n . S ~ik
1
A ¢
. —i}:§ 70 A -ik
Q _—iky < oy ) .
-6 A, — - ] o= af (64)
T 1 -k / 3t  —ik
-1 1
According to equations (52b) and (53b),
Ay (2, £1) =0 A, (2, 1)=01
. - - (6)
__ = . 1 i :
Ae(z, ® ) = — \ 5+ ein Z>J

The third of these relations is verified by means of the identity

- fi=z m -1
'21;a,nl ——-——-2—=~~—-s:m‘z
l+ 2z 2

By means of equation (65), and by noting that bo/b = ko/k, it is

seen that the integrated terms in equation (64) cancel and
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k S~ oA
v _2 - _ %o o gy 2 ik 5y
v/‘7adz—ﬂ!/Alad§ = = =
=1l -1
1
- \OA &
1 g lkm/mz_eiksdg (66)
ik ne - 5,(,

Now by combining equations (66) and (51), as in equation (46), there
follows for the pressure distributions on the airfoil

+Egﬁe—ikm 3 </1~Z/’“+1 1 oA oiEM oy
B Jy 1+ 2z A—-1 2z — oA
l-"lkm 1_2'-1+§. 1 oA\ —ikbt
= / - at
< we v7[)< ~//l +2 /10 z-¢ 3t /°

Equation (67) simplifies considerably when equations (52c) and
(53c) are taken into account. There follows
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AT, — _
~-a _ 2 ( 1 1+ ¢ 1 — ik A > Vg 4 ¢
oU T, 1+ 2z 1-t z- ¢ .

R
ik, _ . ; ~1k\
+ —20 e-lkm l__—_-___g_ . axr
1S J 1+ 2z . 2
1 AT -1
1
S N -]
1 - ~ik " i 2.9 g
+ == Q e o / 3 Z : 9—-.:..—.'_:—_:.:::‘ d f, (68)
b1 ¢ l + 2 s l — gg
=1

Equation (48) contains the noteworthy result that the term with (Q and
also the term with § lead to chcrdwise pregsure distributions which
are both proportional to v/(l - 2)/(1 + z). Note that according to

equation (44) these two pressure terms are caused by downward velocities
oo

across the wing of the form v/p e"ikE (z - Q)—ld { and e_lkz. The
1

fact that these two different velocity distributions lead to the same
simple pressure distribution is here arrived at by an analysis which
does not reveal the inner reason for this occurrence., A modification of
the analysis so as to clarify this point appears to be worth while, par-
ticularly as the fact itself accounts for the relatively simple form in
which the aerodynamic span effect modifies the expressions for the air
forces and moments of the two—dimensional theory. :

'In order to obtain the final form of the expression for A pg, use
the following known formulas of the theory of Beesel functions:

’ o 1kM ‘
(@) NaCET R

' ) (69)
] ik
(b) 2

el
o -/l_ga

A
o
fo)
~~
n
—
=
”

£ = n J (k)
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and express the quantity Q in texrms of { by means of equation (61),

-(2) -

- 0 . . 0
euh /k (10)
Then write
_2 z [T+ 0 1 a0\ = 1=z
n/(/1+z~/1—§z‘_§_1m1>%‘d§+ 1+ z
(11)
where

S = -jkm< H, (2)0 ,_,Q '

e

0

2o | 5 at (Q - A5 ey ]

=

it

ky hp(e) [H6<'2) . _(2) - 1) (B - 3_ )] (1)

~(2) '
Introduse the value of Q( from equation (60) and the value of w
frem equation (59). Then :
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| g (2) ?‘ |
x[ H (z)o;'ino(e) * <”l%5 - l>

1

H+1(1H +H> <1+ 13 \ bt
2 To =131 / A
: ~i=-2— “/—-l—-" d()
H1+]H - x 1~

y Hl______ ’5 _ Hy iJ; >
* I:Hl + 1Hg o ( ﬁ(z) l><Hl + 1H6 * Jo - idy ] (73)

Introduce in conformity with reference 4 the function

(T4)

Equation (73) then becomes

S——/ l_gwdﬁ[ l+<5(ﬂ;—yfl><0+%~i_{;—‘}:] (75)
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By introducing equation (75) in equation (71) there follows:

PAVEETE SO

1
_2 1=z [ 1+
oo M/l + z L/1 1l-

L <‘“Q““”l>< \—131‘ |

: // wad@ (76)

Equation (76) is the general result to be established. A corre—
spondlng formula for the two-dimensional theory is given in retference 8.
Equation (76) shows that the aerodynamic span effect in the present
theory manifests itself solely by a modification of the basic function
C(k). An additive correction term occurs, which is given in the form

C(k) (77

1J: (k) J
Jo(k) — 1J3(k)

Ol

and which is seen to depend on the ratio of three—dimensional to two-
dimensional circulation function (2. In order to evaluate the correc—
tion term for a given wing deflection function 2z, it is then
necessary only to solve the integral equation (62) for the spanwise
variation of circulation.
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LIFT AND MOMENTS FCR BENDING, TORSIONAL, AILERON, AND TAB DEFLECTION

For the applications (see reference 10) the following deflection
functions are of particular interest:

Bending deflection: Z, = h(y) = hfp(y¥)

Torsional deflection: Z, = a(y)(x — ab) = an(x — ab)f (y*)

a
Aileron deflection: Z, = B(y)(x - eb) for cb< x < b
Tab deflection: . Za = 7(y)¥(x - 'fb) for db< x £ b

Lift and moment functionsaccording to the two~dimensional theory may bve
found in reference 5. Modified so as to include the usrodynamic span
effect these functions can be written in the following form, as was
shown in reference 3:

- > -
L o« (—15-—+ ikl'C+oh‘!} L
ngZb N 2 L : - b
2 Y
+n{3£+——-+[l+ (—-—a) ik][0+oa‘}L§
L2 2 - _'j
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20U%p?

~|

(79)

|
[+
+
o
N
—
—
[<%
j
+
=
N
~~
o8
N
—
| SN
@]
+
[
=
e
—

M ]
B [ m® 1.,
“"‘}”-{Bhl+5E31k C+chf

o' |

2pUZb2

[C+07J}7 (80)

+
(Ii—‘
[ —

=

H

-~

2

+

=

V]

——

2
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o

g-[DB + 1k’DB2 .kzDgL] e (d) [El + éﬁ Ez] [-C'+ UB],} B

2%

(b 410 -2 |+ Ba) |m(a) + Ena)]
l.7 2 " 7] ? Ll 2 ]

x[c : 07]} 7 | (81)

The terms A, B, and D are defined in reference 5; The terme E are
of the form

By = Tio ~ 1T Ey(d) = Tyo(d) ~— mTey(a) }
Ex = Tay — 21Ty Ep(d) = Tya(a) ~ 2mTyo(d) $ (82)
Bz = T1o — 21T20 E4(d) = lekd) — 2mTpo(d) J

with the terms T also defined in reference 5.

The terms OJ(J =h, a, B, y) as defined by equation (77) are given
by
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B 131 (k) 1/ Q4 o\
% " [C ¥ Jo(k) - iJl(k)] ( 55(2) l> (83)

The functions () (2 ) of the two—dimensional theory as’defined‘ by equa-~
tion (60) dre given by

. N
o) () - B ...lf}.g.e_l.l.%_ 1kg..;
h bO kﬂl(a)(k) b.
. il’m
5(2)=1_)_h1ue [l+<v-——-a> 1k]5
¢ Pg kHl(z)(k) '
| N
1k
5.(2) _b _bkiCe. — 1/ ik \. 3
o g (B + e ) B
- Ty ik .
G,(2) 22 Mo — Lig ), ny(a) K3
b, k.Hl(g)(k) ! o |
y

The functions 0 3 of the three—dimensional theory are, according
to equations(62) and (39b), the solutions of the integral equation,
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e e e g — = e

(])+""H(k)[7 ;QJ
b K

8

L e ‘ R N :
ap | E e e e nead, | = § () 8
* Ogs 'ys(- — nael ( Oly i I) : 1 (3%) (85)

The finction u 1is defined by equation (59) as

J (k) -1 Jy(k)
r(k) ° A

i

i { [3,0) =5 2()] = 1 [3300) +yo<k>1}

The function F is, according to equation (39b),

oo

F(x) = / e’i)\'<i+}— ﬁ ”2 >dx (86)
io

This function occurred previously in reference 9, where a different
theory of the problem of the oscillating wing of finite span was put
forward. A discussion of the theory of reference 9 is given in ref-
erence 1, Tables 1 and 2 contain values of the two functions 4 and F
for a significant range of the variables k and x.

It is apparent that the main task in obtaining three—dimensional
corrections to the results of the two—dimensional theory consists in
solving the integral equation for €, The second part of this report
(reference 10), which deale with applications of the theory, contains a
practical method for doing this.

Magsachusetts Institute of Technology, 4 ’
Cambridge, Mass., December 3, 1945,
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~ " TABIE I.- VALUES OF THE FUNCTION F OF EQUATION (86)

X F(x) X F(x)

0.00 o - 1,5711 2,2 0.113 - 0.h251
.05 2,750 — 1,L4681 2.4 097 - ,3951
10 2,109 — 1.3751 2.6 .083 - 3601
20 1.490 — 1.2L48i 2,8 072 - .3451
.30 1,155 - 1.1L6i 3.0 063 —  32hi
bo .935 — 1.060i 3.2 055 - ,3051
.50 178 - L9871 3.k 0U8 — o891
.60 658 — 9221 3.6 Ok3 — o7l
.70 564 — L8651 3.8 .039 —  .2501
.80 8o - L8131 4.0 035 —  ,oh8i
.90 Jo7 - 7681 b.2 031 -~ 2371

1.00 376 —  .126i ik 028 - 2261

1.10 .333 — .689i L,6 ,026 — L2171

1.20 297 — .65hi 4.8 024 - 2081

1.20 265 — ,62h1 5.0 022 — 2004

1.40 ,238 - ,593i 5,2 ,020 — ,1921

1.50 21h - 56T 5.4 .018 — ,1851

1.60 194 — . 5hoi 5.6 LOLT - L1791

1.70 176 ~ L9171 5,8 .016 - 1721

i-gg .lﬁg - ,?Qbi 6.0 .015 - 167
. A6 - L B75E ® S log2

2.00 134 - U581 1/t x

TABLE II.~ VALUES OF THE FUNCTION u OF EQUATION (59)
X p(k) k u(k)

0.000 0,5000 — 0,0000i 0.650 0.2139 -~ 0,06651
020 LB10 - ,0h231 . 700 2062 -~ 06101
L0Lbo 60T ~ 06651 . 750 .1991 - 0557
,060  .4h10 - ,03290i .800 Jd924 - ,05071
,080 . Loog ~  ,09Loi .900 .1801 - ,0413i
Jue L hk0s1 - L1018 1.000 .1688 —  ,03291
A25 3857 - .10821i 1.250 L1436 - 01591
150 3690 - ,1120i 1.500 1218 -~ ,00k2i
A75 0 3522 - 11304 1,750 1027 + .00314
200 .3393 -~ ,11391i 2,000 L0864 + ,0066i
225  ,3268 - ,11304 2.100 .0807 + .0070i
250  ,3154 - 11161 2,150 0780 + ,0072i
275 ,30k9 - 10991 2.200 OS5k + 00721
2300 ,2955 - 10761 2,250 L0730 + ,0072i
.3%0 2787 - ,1023i 2,300 0705 4+ .0070i
00 o644 —~  095ki 2.350 L0684 4+ 00691
450 ,2519 - ,0903i 2.400 L0663 + 00661
500  .2L08 ~ ,08hni 2.48 L0632 + ,0061i
550  ,2288 - 07751 2.5k0 L0610 + ,0057i
600 ,2220 - 07221 2,600 0591 + .00%21
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