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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE NO, 1832

SMALL BENDING AND STRETCHING OF SANDWICH-TYPE SHELIS

By Eric Reissner
SUMMARY

A theory has been developed for small bending and stretching of
sandwich—type shells. This theory is an extension of the known theory
of homogeneous thin elastic shells. It was found that two effects are
important in the present problem, which have not been considered
previously in the theory of curved shells: (1) The effect of transverse
shear deformation and (2) the effect of transverse normal stress )
deformation, The first of these two effects has been known to be of
importance in the theory of plates and beams, The second effect was
found to occur in a manner which is typical for shells and has no
counterpart in flat—plate theory.

The gensral results of this report have been applied to the
solution of problems concerning flat plates, clrcular rings, circular
cylindrical shells, and spherical shells. In each case numerical
examples have been given, illustrating the magnitude of the effects
of transverse shear and normal stress deformation.

The results of this investigation indicate the necessity of
teking account of transverse shear and normal stress in sandwich-~type
shells, as soon as there is an order—of—magnitude difference between
the elastic constants of the core layer and of the face layers of the
composite shell. It was found that the changes due to transverse
shear and normal stress deformation in the core may be so large as to
be no mere corrections to the results of the theory without transverse
core flexibility.

The actual magnitude of the changes is greatly dependent on the
geometry and loading condition of the structure under consideration
so that no general rules may be given which indicate for which. elastic
modulus ratio the changes begin to be significant.

Solutions of problems in the present theory may in general be
obtained by mathematical methods which are similar to those employed
in the theory of plates and shells without the effect of transverse
shear and normal stress deformation included. The present work does.
.not include consideration of buckling and finite deflection effects.



5 : NACA TN No, 1832

INTRODUCTION

_ In this report an sxtension of the classical theory of small
bending and stretching of thin elastic shells is considered. Instead
of a homogeneous shell, investigation is made of a shell constructed
in three layers: A core layer of thickness h with elastic
constante E,, G,, and v, and two face layers of thickness t with

elastic constants Ef, Gy, and Vy. In the developments certain:

restrictive assumptions are made which somewhat 1limit the general
applicability of the results. In so doing formlas are obtained which
are as compact as possible while still describing the essential
characteristics of the sandwich—type shell.

The thickness ratio t/h is assumed small compared with unity;
at the same time the ratio Est/E;h 1s assumed large compared with

unity. This latter assumptlion means that the face material 1is so

much stiffer than the core material that the contribution of the core
layer to stress couples and tangential stress resultants of the composite
shs1l is negligible. It is known that for flat plates these assumptions
necessitate the taking into account of ths effect of transverse shear
deformation. (See for instance, reference 1. )} Ths same would be
expected to be true for curved shslls, and the present repcrt, therefore,
gives a system of equations in which this effect is incorporated.

A further effect which, it appears, has not been considered
previously in the analysis of small deflections of sandwich structures
ig the effect of transverse normal stress deformation. In the present
report it is shown that this effect arisgs in a manner which is typical
for shells and has no counterpart in plate theory. It may be likened,
roughly, to what happens in the bending of curved tubes.

The process by which the general results of this report are
obtained is as follows: First, each of the face layers of thickness t
is assumed to behave like a thin shell without bending stiffness. The
loads applied to these face shells, henceforth called face membranes,
ere- of two kinds: (1) External 1oads and (2) loads caused by the stresses
in ths core layer. Next, the core layer of thickness h 18 assumed
to behave like a three—dimsnsional elaestic continuum in which those
stresses which are.parallel to the faces are negligible compared with
the transverse shear and normal stresses. On the basis. of these two
assumptions three steps are carried out, First, the equilibrium
equations of the core layer and of the face layers are obtained. Then
an appropriate expression for the strain energy of the composite
structure is derived. Finally, Castigliano's theorem of minimm
complementary energy is used to obtain the relations which connect
stress resultants and couples of the composite shell with the quantities
which describe the state of deformation of the composite shsll,
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The system of equations which is obtained in the foregoing manner is
specialized for the following cases:

(1) Flat plate-

(2) Circular ring

(3) Circular cylindrical shell

(4) Spherical shell with axisymmetrical deformation
In each case & number of problems are solved explicitly and the
appreciable effect of transverse shear and/or normal stress deformation
is illustrated numerically.

This work was conducted at the Massachusetts Institute of

Technology under the sponsorship and with the financial assistance
of the National Advisory Committee for Aeronautics.

SYMBOLS'
h core—layer thickness
t face—layer thickness
gl, §2 : curvilinear coordinates on middle surface of

composite shell

€ distance coordinate measured along normal to
middle surface of shell .

%y Up coefficients of linear element on middle surface
of shell

Rl’ R2 principal radii of curvature of middle surface of
shell

Npmm direct stress resultants in upper face membrane;
n=1,2;m=1,2 :

Nom3 direct stress resultants in lower face membrane

Pnus Pnl tangential components of external load intensity
on upper and lower membranes

dys 97 - normal components of external load intensity on

upper and lower membranes
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components of transverse shear stress in core layer
component of transverse normal stress in core layer

values of transverse shear stresses for € =% h/2;
=1,2 '

values of transverse normal stresses for ¢ = * h/2

values of transverse shear stresses at middle surface
of shell

transverse shear stress reéultanta

direct stress resultants parallel to middle surface
for composite shell; n = 1,2; m = 1,2

stress couples for composite shell; n =1,2; m = 1,2

tangential components of external load intensity for
composite shell; n = 1,2

normal component of externﬁl load intensity for -
- composite shell

external load inténsity term defined by equation (22)
strain energy

elagtic moduli of isotropic face~layer material;
V=Vf ‘

elastic modull in transverse direction of cofe—layer
materlal

effective'tangential components of displacement of
elements of composite shell

effective normal component of displacement of elements
of composite shell

effective components of change of slope of normal
to middle surface of.composite shell

component of strain (efy = °§m/Ec)
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D* = (1/2)t(h + t)2E,

C =C*/(1 —v2)

D
X, ¥

r, 6

m, m

g, 6

bending stiffness factor (D = D*/(1 —v2))

Cartesian coordinates in plane of flat plate

~ polar coordinates in plane of flat plate -

radius of circular ring, cylindricél shell, and
spherical shell

surface coordinates on cylindrica; shell

parameters defined by equation (63)

half wave length of sinusoidal load distribution

quantities defined by equation (197)

complex quahtity defined by equation (200)

‘surface coordinates on spherical shell

quantity defined by equation (74)

parameter defined by equation (190)

I — GENERAL THEORY

Statics of Sandwich-Type Shell

In order to derive a complete system of equations for the shell
composed of face layers and core layers it is necessary first to
consider separately the statics of the face layers and that of the
core layer of the shell. Combination of the results obtained for
these twb_components of the composite structure must and will lead
to those differential equations of equilibrium which hold for elements
of a shell, whether this shell is of homogeneous or nonhomogeneous

construction,

In addition, however, relations are obtained which

are characteristic of the sandwich~type shell,

Coordinate system on shell.— A curvilinear coordinate system

(€1, £p, ¢) 18 introduced as follows: Iet &7 and €> be coordinates
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on the middle surface of the composite shell and let { be the distance
of & point of the shell from its middle surface, measured along the
normal to the middle surface. In order that this system of coordinates
be an orthogonal system, choose the §£;, £, curves as lines of curvature
on the middle surface (in the case of shells of revolution the lines of
curvature are identical with the meridians and parallels on the middle
surface).

The linear element in the foregolng system of coordinates is of
the form

£ \2 -~ t E
2 _ .2 2 "2 2 2
ds< = aj (l + 'RE) dgl +\G2 (l + -Rr2> dge + at (1)

where a; and ap are the coefficlents of the linear element on the
middle surface and R; and Rp are the principal radii of curvature

of the middle surface (see fig., 1). Formilas for the calculation of
the quantities ap and R, are contained in texts on differential

geometry. They are collected, together with other.results, in
reference 2, which deals with the theory of homogeneous thin shells.

Statics of face layers.— The face layers are treated as thin shells
of thickness t and it is assumed that the bending stiffness of these
thin shells about their own middle surface may be neglected.l Because of
this neglect from now on they will be designated as face membranes.

The middle surfaces of the face membranes evidently are'given with
reference to the three—dimensional system of curvilinear coordinates
vy €= %(h +1t) and € = - l(h + t). From equation (1) it follows
‘that the linear element on the middle surfaces of the face membranes
is given by

£1\2 ' '
0o = a?(1 Y AP e oL e Bt v at? ()

The components of external load intensity on the upper and lower
membranes are designated by P1ys peu, and a4, and by . P15 Poys and a;,

respectively (fig. 2). The core—layer stresses which act on the upper
and lower membranes are given as T1tus Totus and ot, and by’ T1l1s Tolis

lThie, of course, means that no local buckling phenomena are |
considered in the present work, :
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and Ot s respectively. Finally, the direct stress resultants in the
" upper and lower face membranes are designated by Nyy,, Nyp,, Nojy,
and Npy, and by Nyp3, Nipy, Npyj, and Nppy, respectively (frig. 2).

There are then three equations of force equilibrium for the
elements of each of the two membranes. Writing

_ h + %
anu—anl.+——-2Rn>

: - (3)
= 1 -2+
any mn( o )
the equations for the upper—face membrane are the followingez
dopuMiiu | do1uM2lu |y, O%u _ - Sozu _ o (4
dt; + dt, + N12u 3, 22u 3 + Q0o (P1u 1tu) (%)
Ao, N datq,,Nn - das,, da
~Pul2u u 22u + Noyy .a_g_— - Nllu aglu + GfluGQu(PEu _ 72§u) =0 (5)
of1 oo 1 o
N N
oy o + 2eu —Qu + Oty| =0 (6)
Rl+h+t'R1+h+t)
1 2Ry 2R,
The corresponding equations for the lower—face membrane are
dapyNiq; | 3a34No13 Oy g oy
N i — N =0
St thay 221 56, * 11921 (P11 * Tat) (7)
1 2 2
662 N daq N aq,a o
Moy | 99Npoy | 1_y 11 e N =0 (8
St Ter, T leusy Mgt o1 1007 (P27 + T2£1) (8)

2These are obtailned from the corresponding equations of reference 2
with a changed to ap, and with stress couples and transverse shear
stress resultants omitted. To make up for this omission, the loads on
the two membranes are assumed to act at their middle surfaces; this means
terms of the order +t/R are neglected (but not terms of order h/R).
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0';1 = 0

~ As bending moments and transverse shears are assumed not to be
acting in the individual membranes the moment equilibrium equations

become the symmetry relations

Ny oy

Nio3

= N21u‘

= Nppy

(10)

Before analyzing the state of stress in the core layer it is
convenient to see what relations follow from equations - (h) to (9) for

the composite shell,

Statics of composite sghell.— It may be seen that, in view of the

fact that all face—parallel stresses in the core layer are neglected,
the following expressions for the face—parallel stress resultants and
couples of the composite shell are obtained:

: _ h+t h
Nll = (1 + —2%;—>Nllu + (l bt

(11)

(12)

(13)

(14)

(15)

(16)

(9)
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] . | ]
My =24t (1 + %)Nm - < - h_al%l_t)Nl2lJ (17)
e N v I

In the same way the followlng expressions are obtained for components
of external force and moment intensity:

N Ry N e TARE. v

‘g = h+t h + )\, —hi+t\(f_h+ t
'q'<l+ 232><1+ 231>qu+(1 s U T )u (20

=h_-t__t<1+h_t_i><1+h_t_ﬁ>P _<1_h__+_§><1_u_tp (21)
n 2 [ 2Ro 2Ry mu , 2R2 231 ) ni

Further, a load term of the following form will be encountered:

R O T O e

which bears a relation to equation (20) similar to that which equation (21)
bears to equation (19). This last term would represent, for a homogeneous
shell, the average transverse normal stress at any station of. the shell,
assuming that the loads q; and q; alone are responsible for this stress.
For a homogeneous isotropic shsll this term is of no importance. For a
sandwich—type shell, as will be seen, it may sometimes be of importance.

In order to obtain force and moment equilibrium equations for the
composite shell the face—membrane equilibrium equations (4) to (9) are
combined suitably. Adding equations (4) and (7), and (5) and (8), '
respectively, the two equilibrium equations for the force components
rarallel to the middle surface of the shell are obtained. In order to
reduce them to known form (see reference 2) the following relations are
used between the core—layer—surface shear stresses Tatu and Tncz,

and the transverse shear stress resultants Q eand Q.
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R (o o

o) B (- ) ] - o0

Equations (23) and (24) will subsequently be shown to be in agreement
with the usual definition for the transverse shear stress resultants by
consideratlon of the stress distribution of the core layer.

With equations (23) and (24), there are obtained by combination of
equations (4) and (7), and (5) and (8) — carrying out addition as well
as subtraction — the follow1ng four equations: ‘

dapl daq Mo do dap il -
S SR e g e g tewe(gy ;)0 (9
aaele N acblNgg + N BGQ N 30,1 + GQ(% + p) 0 (26)*' :
01 -~ M ot w%lRs t Pe) =
k3, 3, 2k, Rp S
a“QMll BOL1Me'1 day dap _ \x
Se; ¢ o, T l2dE, M sy aap(m —~ G) =0 (27)f
. dapMip . daiMpp dap a1 -0 (28)*

3¢, Top, T RLay TMusgt 02 (T = Q)

Two further equations are obtained by adding and subtracting,

respectively, equations (6) and (9). Adding equations (6) and (9) and
taking account of equations (11) (1&) and (20), there follows:

a1a2[§}ll. igf%)-— q + (} + h5§;3><é + h;ﬁ;%)cgu

- (-t h_a:;_f)cgz] -0 (29)
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"In order that this reduces to the correct equation of transverse force
equilibrium as given in reference 2,

— 9% [(1 + hﬁgt)(l + heﬁlt)"Cu - (1 ‘%ﬁ‘f)(l - h_eh’Tt>°§ 1]

_ SueQr | oma@p
TR

(30)

Equation (30), Just as equations (23) and (24), can again be verified
independently by consideration of the state of stress in the core layer.
On the basis of equation (30), equation (29) is written in the form .

7
' N

| 7
dusQ)  da3Qp Z/ 11 Nop " &
Se7 + 365 a %@l + g + aqang = 0 _(31)*

The last equation, uss of which is required for the sandwich~type
shell and which has not previously been given, is obtained by
gubtracting equation (9) from equation (6). Taking account of
equations (15), (18), and (22), there results

2ujap My | Mpp h it h+t
_h—+—5<§1_ + R ) 2a)ap8 + aqas (1 + —-2—%‘—2——> <l + —2—1121—>c§u

+ (1 - h—gﬁe—tXl - hﬁl—t)céz] =0 (32)

Provigionally, there is written

<1 + heﬁgt)(l + haﬁlt>°§u + (1 - h—z—i‘!—zﬁ)(l ~ ll—g—hlﬂ)cgz = 20ty (33)
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r

and it will subsequently bes shown that Oty Trepresents the value
of of at the middle surface of the shell. Combining equations (33)
and (32) yields

1 (M Moo\
B * 5 + t(g; + Ro ) 8=0 ) (34)*

Equation (34) has no relation to the sixth equation of equilibrium
for an elemsnt of the shell which expresses the condition of moment
equilibrium about the normal to the middle surface. That equation which,
as is known, is an identity when resultants and couples are expressed
in terms of stresses does not occur in the present derivations, or rather
it is contained in equations (12), (13), (16), and (17), which give
explicitly the sllght differences between ng and Ngl, and Mo

and Mel

Stress distribution in core layer.— In order to verify independently
equations (23), (24), and (30), as well as for the subsequent derivation
of appropriate stress—straln relations, it is necessary to determine the
distribution of stress in the core layer.

Assuming(that the components of stress gy, Op, &and Tlé in the

core which would contribute to stress resultants and couples of the
composite shell are of negligible importance,3 these components of
stress may be set equal to zero and only the components of transverse
shear stress and transverse normal stress Tif(, T,ot, and of may be

retained. The differential equations of equilibrium for these three
remaining components of stress in the system of curvilinear coordinates
defined by equation (1) are obtained, from the general form of these
differential equations in reference 3, in the following form:

_(l+§§i>2<l+-§_> 1§4=o L (35)

(36)

9‘{'0/

(o¥) IQ/
Ve ¥
—
'—l
+
e}
n)l”*
\_/
/,_,\
+
n
e
]
(@]

31t is for this purpose that the order—of-magnitude relation
/tEf << 1 1is assumed.
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s %)(1 oy *s%:[“é(“é)ﬂﬁ]
sl e - o

The values of the three astress components at the middle
-surface ({ = 0) are designated by the subscript m. Integration of
equations (35) to (37) then gives . ,

T

e ()
s §/Rl) @+ t/m)

Tl§ =

Tot = 2ty _ (39)
(1 + C/R2)2(1 + §/Rl)

A\
L

. | (v
£\ £ - __S. Tgm/ (a1 Tolm :
PN - o W[MIQ a) | g (erela /Rz)] o)

The transverse shear stress resultants Ql and Q are o‘btained
from equations (38) and (39) in the form

"

(h+t) /2

%

Tn§<l + '£'>d§ = = RpTntm
Bm 1 +=—
f(h+t)/2 N 2R, 2R

_ (h + t)Tptm
h+t
1'(2%)

l“I'he integration must be extended over the thickness of the core
layer and also over half the thickness of the face layers, in accordance
‘with the prior assumption that the atresses Tj¢,, Tnl1s cgu,
and o0f; may be taken to act at the middle surfaces of the respective
face membranea. :

(k1)
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Now, as intended, the proof is carried out of equations (23), (24),
and (30), which were used to obtain the differential equations for the
composite shell.

To verify equation (23), from equations (38) and (39) for the
left—hand side of equation (23), the following equation is obtained:

™mfm  _ _"™fm  _ . b+t Tnlm
l_——-
R 2k, <2Rn

end this, in conjunction with equation (41), verifies equation (23).

To verify equation (24) in the same manner, from equations (38)
and (39) for the left side of equation (24), the following equation
is obtained:

htt/ "ntm . _ "nim - (b + £)Thtn
2 h+t h+t 2
l+—2-1¥1— 1-‘—2? 1_(h+t)

ERn

and this, in conjunction with equation (41), verifies equation (2k),

To verify equation (30), equation (40) is used to write for the
left side of equation (30)

d [%T1m d [®1Totn AR 3 [uTotn
+ + +
Bél.l N h+t otp 1,0+t .851 1_ h+t 3k, 1 h+t
C 7 TERy 2R, 2R, 2R,
d 20T 1t m ¥"8 2 Toty

and this, in conjunction with equation (41), verifies equation (30).
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The section on the stress distribution in the core layer is
_concluded by listing the form which equations (38) to (40) for the
stresses. in the core layers assume for "thin" shells, that is, for
shells for which h/R << 1. From equations (38) and (39), in
conjunction with equation (L41), it follows that

QY
=53 T

' (k2)*
%

T2f = h+t

From equation (40), in conjunction with equation (41), it follows that

& % |
01908 = %020tn — § S t%‘l + —5%2-2'> (43a)

It is necessary to note for some of the following considerations
that, in view of equation (31), instead of equation (43a) there may
be written . - :

o b (M1 Nop
Of = Oty — T R + % (43p)*

It is seen that in this approximation the transverse shear stresses are
uniform across the thickness of the core layer, while the transverse
normal stress is composed of two terms, one uniform across the thickness
and the other varying linearly across the thickness.

No furthsr calculations are needed with reference to the state
of stress in the composite shell. The next step is to complete the
system of differential equations for stress resultants and couples by
deriving an appropriate system of stress-strain relations.

Strain Energy of Sandwich-Type Shell

In calculating the strain energy of face membranes and core layer
it is assumed that both are isotropic and elastic, with elastic

constants Ep, vp =V, Gp = Ep/2(1 + v) and Eg, Vo, Ge = Bo/2(1 +Ve).
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Poisson's ratio for the face membranes is written without a subscript,
because, in view of the assumed stress distribution, there is no explicit
occurrence of Poisson's ratio v. for the core layer.

The strain energy for the composite shell is the sum of the strain
energles for the face membranes and for the core 1ayexj

= mp 4 Mg (k)

For the purpose of obtaining stress—strain relations, both ny and nc
‘are expressed in terms of stresses rather than in terms of strains.

Strain energy of face layers.— Considering that the element of
area on the middle surfaces of the membranes is of the

form a.lor.2<l + B t)(l + h—i—i> dty 48, and that the stresses

2Ry 2Rs
in the membranes are the stress resultants divided by the membrane

thickness t, there is, from well-known principles, the following
relation:

_1ff 2 2 2 '
T = gff@;[l“uu * Mooy™ = AVMypylon, + 2(1 + V)N12u2:|
X (1 + ll—Ei’il—t)é + _'}lg'%éj_:)“l“’a ag; dat,

| 1ff1fy. 2 2 _ -
, ¥ EfftEf[Nlll + Nopy™ = 2V oy + 2(1 + V)NIE"L]

x (1».. l‘zﬁﬁ)( - h_a.-RLe.t)alag a&, ak, o (45)

'Equation (45) is transformed into an expression containing stress
resultants and couples of the composite shell by means of equations (11)
to (18) which lead to the relations
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-

2
Mi+g b

byt
2(1 " —-'t—>Nllu

2Ry
’ | g (46)
h+t _ -
21 - Bt =M - g i

" with 6orresponding formlas for Njo -and N22.5

In this transformation the cases are limited to those for '
which h/R << 1. Then, with the two constants C* and D* defined by

) C* = 2tEg
(47)

D* %— t(h + t)°E,

the following expression for np 18 obtained:
2 2 2
=3 {'C%z[Nn + Npp™ = 2V Ny + 2(1 + V.)NIQ]
1 2 2 :
+ ]_);[Mll + MQQ - 2VM111\422;+ 2(1 + V)Mlge]} Q0o d§l (1§2 (’4»8)*

Tt may be remarked that equation (48) could have been given directly, by
anslogy with known results for the isotropic homogeneous shell.

Strain energy of core layer.— With the stresses o7, 05, and 7o
assumed to vanish, there results for the strain energy of the core layer

DNote that equations (46) and corresponding equations can be used
to calculate the stresses in the two different face membranes, once
stress resultants and couples in the composite shell are known.
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hit : | ‘
2 0€2 Tl§2 + 72€2 ) t : ¢ : :
e =3 - <Ec e <1 + E)(l + E) dfaya, by akp (49)
-bit \

Again the terms {/R compared with unity are neglected and, consistent
with this neglect, the values of the stresses T, ¢t and of are taken
from equations (42) and (43).

The value of ot may be chosen from either. equation (43a) or
equation (43b). The form of the results depends somewhat on which of
the two equations is chosen, in the sense that the meaning of the
.deformation quantities which are to be determined depends on which
of the two equations is taken. This question is decided in the
following manner: As all resultants and couples enter the expression
for the strain energy only as themselves and not in differentiated
form, except when equation (43a) is used, the selection of equation (43b)
- for ot -is proposed, thereby excluding derivatives of stress resultants

and couples from the expression for the strain energy .

Introducing then equation (43b) into equation (49) yields

2
_1 _,1__9_?__ L _t (N,
e T2 o| B T E ¥ \R, 32 -4
(h + t) Gc
x dfaqjay aky ak, , . (50)
The integration with respect to { is carried out and .

equation (50) becomes

tm * 315 FI‘ + R, " %)2} a0y d§1 dé, (51)*

It was to be expected that the terms containing the modﬁlﬂs of
rigidity G, would occur in the foregoing form. The contribution of
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the present report up to this point, besides giving the new equation (3%)
for otp, is thought to be the determination of the form in which the

effect of transverse normal stress deformability manifests itself in
the strain energy of the sandwich shell.

Stress—Strain Relations for Composite Shell

In what follows a system of stress—strain relations for the com—
posite shell is obtained by the use of Castigliano's theorem of minimum
complementary energy. The manner in which the theorem is used here
appears to have been employed first by E. Trefftz (reference 4) for the
purpose of avoiding geometrical considerations in the derivation of the
gtress—strain relations for thin homogeneous shells with smrll defor—
mations, without consideration of the effects of transverse shear and
normal stress deformation.

Assuming for the present purpose that all boundary conditions for
the shell under consideration are stress conditions, the theorem
consists in the statement that among all statically correct states of
stress the actually occurring state of stress makes the strain energy
of the system a minimum, "In the application of the theorem the fact
is taken into account that statically correct states of stress only
are to be compared, by means of the Lagrangian multiplier method.
Before minimizing x an Integral is added to it which contains the
six equilibrium equations (25) to (28), (31), and (34), each of the
s8ix equations multiplied by a Iagrangian multiplier. It can then
be shown, by using Castigliano's theorem with prescribed boundary
displacements instead of with prescribed boundary stresses, that
‘each of the six multipliers has the meaning of one of the displacement
quantities which occur in the shell problem.

With the foregoing understanding of the meaning of the multipliers,
the multiplier of equation (25) is designated by wuj; that of

. equation (26), by wup; that of equation (27), by By; that of

equation (28), by Bo; that of equation (31), by w; and finally that
of equation (34), by k. It is known that wuj, u,, and w represent
the effective components of displacement in the El, 52, and ¢ direc—
tions, respectively., Further, it is known that B3 and B, represent

the angles through which the normal to the middle surface of the shell
turns toward the &; and £&o curves, respectively. There is no

‘6For the special case of the flat plate this has been carried out
explicitly in reference 1. - For the case of the homogeneous shell,
without effect of transverse shear and normal stress deformation, the
proof has been given in reference 4, Ths proof for the more general
case which is here consldered is not included as it does not offer any
clearer insight into the problem and tends to lengthen the analytical
discussion.
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immediate simple geometrical interpretation for k and, while such
interpretation in terms of an average transverse normal strain might
be. deduced herein, k is considered as an auxiliary variable presently
to be eliminated.

Combining now equations (L4), (48), (51), and (25) to (28), (31),
and (3%) in the manmer indicated, the following variational equation
results:

.

1 1

+ %?[Mn? + MQQQ’— zmuMzg +2(1 + v)M122]

2 2 2

+ Q" pnit|l. 2 1M1 Vo .

+ T t)Gc + ., olm + s _l + R——2 -~ ajan d&l d§2

dapN11 . SaiNpy da1 _ dap
+ 8 gl + —=—== + Np»o — Non —=
1[ dE, dt;, 3k, 22 3¢,

aq‘21“12 , Sl dap daq

* “1“2( >] 2[3e; TR,  tlay, Ty,

% dapMy | daalpy 3 dap
+e1%e\gy p2>] R T, T Mew, M,

_ [3agro , So1Meo _ a1
+ (M Ql)]* P21 5e, Yo, o 5 .~ 5

+ ajop(mp — Qg] agijl . ?xlee _ “1“2@‘1— Nop _ >J

M
+k[c,;m+h1t§§;+%a>_e,] a6y atp = o (2)
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The variations in equation (52) are carried out and integration is
done by parts to eliminate derivatives of variations in the double

integral.

The line integrals along the boundary which occur due to

this integration by parts vanish, because it has been assumed that all
stresses are prescribed at the boundary and therefore their variations

vanish at the boundary.

The resultant variational equation is

SN, |ML=VNe2 1 du up S w  hait M3 Noo
LAY IS @1 3, T T2 3k, Ry T 1ERRL  Re
. _ 1 dup  ul a2  y

8N22[N22 _ lel

C¥ ap Jf, ajap JE; Rp

h+t (N Nop 2(1 + V)Mo 31 dw
(R - o)) o2y me 1 2

Uy Say 3 Sup  up dap Mg = VMo
t a5, T 3, @ oy, | M
_1 ¥ By Oay g Kk

91 08 %1% ok,  (h + t)Rp U1%2

Mpp — VM3 _ 1 982 _ _B1 dap

* 5M22[ i % 3E, ~ 192 3F
+ k|, 8M12[2(1 + VIMp 3 3B

(h + t)Rp @1ap D* . % JEy

Bl Sa1 _ 1 dB2 . B2 dop 9 ul
Y@ 3, T O % T W% oy P CU|w T e, T R

ow

L oW
85#] + 9

By — a1

h t
chn[j§§“' Ot +

Q Uo
QQ[(h + t)Gg * ﬁ; - P

—3—2] ajap gy dgy = O (53)

('LlCL
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As all nine variations in equation ( 53) are independent of each other,
it follows that the contents of all nine brackets in equation (53) must
vanish separately. Thus the following nine stress—strain relations are
obtained for the sandwich shell, indicating with an asterisk those
which appear in final form,

Maf, , (h+t)C* _y&v_(h+t)c*>

c* 12EGR, 2 C* \  12E.R;R,
ou U O ' . '
1M 2 Oxp (h + t)q
a1 38, @ @102 3k, ' Rl T T12EcR) (54)
N221+(h+t)0* __I\_ILJ___V_(h+t)C*
du u 8(1.2 (h + t)
=4 2 1 th + t)g
g &, * agop 3 2 Ry T IR, (55)
2(1 + v) _@ ) :
C* »Nl 0»2 ok, on]_) onl BEIC;Q> (56)*
Mg - VMo _ 3 OB1, B2 dm _ _x 1 (57)
DX a1 3f;  M% Oy 992 (h 4 t)R,
Mop— VM3 _ 3 Bp By dmp x5 (58)
D* ap 98,  @10p Oy @y (h + t)Ro

2(1+v) ,  _a 3 M), 3 /B |
S Mo = 22 552@1) + 2 agl(az) (59)
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9 1w _ % *
B+ 000 Lrary; R (60)

Bfr up . (61)*

(62)

It may be verified that the meaning of the quantities wu,;, up, w, By,
and B, 1s as has been indicated by comparing equations (54) to (61)

with the corresponding equations of reference 2 for the homogeneous
shell with E; = G¢ = », .

 The system of equations (54) to (62) may be brought into a
slightly more concise form as follows: Define the quantities A, Ap,

and Mo by

(h + t)t Ep . (63)

>
n
"
N =
i4
=

_1(h + t)t Er
M2 =3 RE®, E.

¢

and eliminate k from equations (57) and (58) by means of equation (62)
and the equilibrium equation (34). Retain equations (56) and (59) to (61)
in the forsgoing form and write for equations (54%) and (55)

1,. '_u__;x) _oxfl w1 _up du1 v
(1*‘3*1)“11 (- § MeJvee = o 3%, T #1095 3k, T Ry

h + t)o* )
¥ (IQECRi 1 (6h)>
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1 (., _1 _ 1 Juwp  w dmp oy
(l + 3 7\Q>N22 <V 3 )vl2>Nll = (qe 3¢, * Tyas 3t + R2>
(h + t)C*
G (65)%

Equations (57) and (58) become, if D¥*/(h + t)E; = % t(h + t)Ef/Ec,
according to equation (L47), : _ \

- pxfl 981 , Bp a1 . p*
@+ M)M1 = (v - M2)Mee = <“‘1 ot “1“2‘352) P (G

@+ MM = (v = )”le)Mll D*( % + @i %Ze-l-) + cR2 (67)*

With these last transformations there is obtained a system of
- equations which is formally equivalent to the corresponding system of
equations for the homogeneous shell. The 5 equilibrium equations (25)
to (28) and (31) and the 8 stress—strain relations (56), (59), (60), (61),
and (64) to (67) are used for the determination of 13 quantities: Five
stress resultants Ny;, Nop, Njp, Q;, and Qy; three stress couples Mg,

vbe, and My,; and five dlsplacements and changes of slope ujy, uy, w, By,

and Bp. The quantity ofy which occurs in.the sixth equilibrium-
2 m

equation (equation (34%)) may be determined directly, once the shell
bending and stretching problem has been solved. '

It is seen that the effect of transverse shear deformation enters
equations (60) and (61) only and that, when G, = », these equations
give the values of the known theory of homogeneous shells without
transverse shear: deformation (references 2, 3, and 4), »

The effect of transversa normal stress’ deformation enters -equa— -
tions (64) to (67) only. It is seen that it is, in part, responsible
for the occurrence of apparent stiffness factors C*/(1 + A)
and D*/(1 + \). Thus, according to equation (63), the effect of
finite E; 1s to make the shell more flexible in bending and stretching
than it would be with E; = o, This effect, however, is present only
in curved structures and not in plates and straight beams, as the
quantities A have one or both of the radii of curvature in the
denominator. A further effect of finite E, is occurrence of the
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external load terms q and 8 1in the stress—strain relations. Both
these effects represent, roughly speaking, what happens to the shape
of an element of the composite shell if the length of the core fibers
in transverse direction is changed, without any stretching or
compressing of the face—membrane elements.

Having derived the general system of equations for the small
bending and stretching of sandwich—type shells, it remains to apply
these equations to specific problems which may be of interest and to
determine the quantitative effect of the terms which are characteristic
of the sandwich—type shell, Some of this work is done in part II of
the present report, which follows.

It may be stated once more that for these specific applications
the five equilibrium equations (25) to (28) and (31) and the eight
stress—strain relations (56), (59), (60), (61), and (64) to (67) are
used.

II — APPLICATIONS OF GENERAL THEORY
Flat Plates
The problem of the flat plate is considered first in order to show
that the results of reference 1 are contained in the present results
and in order to solve some problems in the theory of plates which have

not been solved in reference 1,

Rectangular plétee.— Using notation which is customary in plate
theory there is set

€1 =x Er =7 ag =ap =1 Ry =Ry =w )

U = u up =V By = By Bo = By

e Nap = Ty Q=% o (68)
% =9 My =M Mpp = My Mpp = M

Pl = Px Po = Dy m) = my m?'= m, )
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The equilibrium equations (25) to (28)

N, gy
= =0
ox ¥ dy * Px
o) o [
N N
=Xy , I =0
> oy W
3 9y ]
= Ty tes’
o d
S%x + Sgkl - Q+my =0
Oy |, My _ _
= 'y G+ - 0

The stress—strain relations (56), (59),

" to (67) become

NACA TN No.

and (31) become

(60), (61), and (64)

Ny — VNy = C* %
Ny had va = C* '?T; >
ov
2(1 + V)Nyy c*@; ax)
S
aw B
Qe = (b + t)G, ( g)
>
ow
%=(h+ﬂ%< +§9

1832

(69)

(70)

(71)

(72)
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d8 h
- = D¥* —tX
MX ‘VM.y D Sy
3B
- - D* =PY
My —vMy =D Sy r (73)‘
- {38y as)
2(1+V)Mxy-D 5 &I |

As in the small-deflection theory of homogeneous plates, the
equations for stretching (equations (69) and (71)) are independent of
the remaining equations for transverse bending. Equations ?69) and (71)
for the stretching are not affected by the elastic properties of the
core layers. ,

Equations (70), (72), and (73) have been treated in reference 1 by
means of a stress function V¥, which, together with the deflection w,
was teken as one of two basic variables. In what follows an alternate
treatment is given, in which the problem is reduced to three simultaneous
equations for the quantities By, By, and w. On the basis of these three
similtaneous equations a problem not considered in reference 1 is treated,
namely, the bending of a rectangular plate which is simply supported on
all four edges.

To reduce equations (70), (72), and (73) to three simultaneous
equations for By, By, and w, first a quantity ® is defined by

)
w:a_B£+_ELY. (7&)
ox oy :

Introducing eqﬁation (72) into the first of equations (70), in view of
equation (74), there is obtained

®+ V2w = = q/(h + t)G, | (75)

\

Next, Qy, My, and My, are taken from eguations (72) and (73) and the

result is substituted in the second of equations (70). This gives, after
glight transformations,

-

7This same problem has also been solved by L. H. Donnell by a
method which differs from the one employed here. (See reference 5
where the case of the homogeneous plate is considered.)



o8 NACA TN No, 1832

le S Vzﬁx —2(h + t)GBy + %;{;Djéb - 2(h + t)GCw] +m =0 (76)

In an analogous manner the following further equation is obtained:

VEB —2(h + t)GeBy + a—[l—Df&V -2(h + t)Gcw] +my =0 (77)

1+V ay

In order to solve equations (75) to (77) two equations are next obtained
involving w. and. ® only. Differentiating equation (76) with respect
to x and equetion (77) with respect to y and ‘adding the two resultant
equations, in view of equation (74), gives

2D*4 205 — h t . 2. % _
__1_v2v 2(h + )Gc(a)+VW)+ax fyyl_o

, and, making use of equation (75),

_. .
v = - %[‘1 3. gyl)] (78)

| Ed

The following procedure may now be carried out: (a) Solve
equation (78) for , (b) with this value of ® solve equation (75)
for w, (c) substitute ® and w in equations (76) and (77) and solve
for By and By, and (d) elimipate extraneous terms in B, and By

by considering equation (74).

‘Before deriving the solution of a problem along these lines,
the explicit differential equation for w which follows by comblning
equations (75) and (78) may be given

T2y - ;[q . %@mx . amy)] _ v (79)

-D x dy (h + t)Ge

Note that the effect of transverse shear occurs on the right side of
the equation only, In order to compare the magnitude of the q terms
on the right of equation (79), assume that relevant changes of q
occur over distances of order 1 (where 1 may or may not be a
representative diameter of the plate). Then, as order—of-magnitude
relations, there results
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2 - o(-L >
Efth2
, > (80)
i S A
(h + t)GC 22th

From equation (80),
gecondary effect as soon as 1
order.

it follows that transverse shear ceases to be a

ig of order \Iﬁ \’Ef/Gc or of smaller

Bending of rectangular plate with simply supported edges.— The edges‘
of the plate are assumed to be at x = O,a and y = O,b and along these
edges moments and deflections are assumed to vanish. Further,

My = my =0 i
© o r (81)
q=22qmnsinkngcsinpny
m=1 n=1 J
where
Ap = mr/a
, (82)
bn = nn/b
From equation (78), it follows that
-—ZZ——m——sinstinuny+wh (83)
M+ g

where Wy, is a harmonic function,

equation (75),

Putting equation (83) into
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1 :
Vzw ,= B Z Z qmn[xmz fD“nE * (h +lt)GC:| sin kmx Sin by = “h

which is integrated to

2, 2 |
= Z Z ()‘m ) [ + D(<1>;m+ t);:)] sin Ax sin w,y + vy, (84)

where wjp 1is the general solution of ‘Vawh = —wh. It is to be expected

and may be shown explicitly that for the plate which is simply supported
all around wy =, = O and, as in the Navier solution for the plate

without transverse shear deformation, the particular integral is the
complete solution of the problem.

Equation (84) may be rewritten in the more explicit form

o

. ZZ an{l +5 1 —E\i)‘e)GQ (h ;2t)t[m2 + n2(a.2/b2):|}

[m2 + n? a2/b2)] 2

X sinn—éﬂxsingbﬂy . (85)

When Gg = «, equation (85) reduces to Navier's solution wy. Equation (85)
is more readily interpreted by means of the ratio w/wN of deflection

with and without transverse shear deformation. On the basis of
equation (85), there may be obtained the following equation (86),8

8setting 2/2(1-v2) = 5.4 and (Ep/G.)t(h + t)/a? = B,
equation (86) takes on a form which" contains as a special case the
result of equation (18) of reference 5.
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Dv‘—’wN

w
w (a6 . _(n+ t)tEy Py

N N 2(1 - ¥, wN
_ zg::g: apn €in mmx/a sin nmy/b
_ © Ef (h + t)t w® + n2(a?/b2)
=1+ (- v2)G jg: qpp 8in myx/a sin nxy /b (86)
Bn + n2 (a2 /p2 ]d

For the case of a uniform load intensity q = Constant and for the
center of the plate (x = a/2 ¥y = b/2) equation (86) becomes

jg: zgj s{n mr/2 sin ng/2

_11_22_ Ep (h : t)t | +/n 2(a 2/102)/
_ ) sin mx/2 sin nx/2
S 2 Z w2 + n2(a22)]°

The ratio of the series is 1, 98 when a/b 1, and the ratio of the
geries is 1.11 when a/b = 1/2.

(87)

For the case of a concentrated load at the center of the plate
the deflection ratio at the point of load application assumes the form

‘ . (sin mn/? sin nx/2)2
No_q. 1_6 Ee (h + ‘b)t Z 1 (az/bE) (88)
VN 2 (1 - ve)Gc :g: (sin mﬁ/é sin mr/2)2
+ 2 e/be)]

Now it is easily shown that the numerator series in equation (88)
does not converge and consequently w/wN = o 1n this case., A more
detailed consideration shows that in any plate theory which takes
trangverse shear deformation into account the deflection under the point
of application of a concentrated load must become infinite in contrast
to what happens when transverse shear deformation is not taken into
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account, This difference, of course, vanishes as soon as the load
intensity becomes finite, and then the theory with transverse shear
deformation taken into account 1s more accurate than the theory which
does not take into account this effect.

For the sake of numerical illustration take again the square
plate (a/b = 1) with uniform load distribution. According to equation (87)
the deflection at the center 1s increased because of transverse shear by
the factor

Mo Ep (h + £}t
— 1+ 9.7 ol (87a)
Teke h = 1.0 inch, t = 0.1 inch, a = 10 inches, Ef/G, = 200

b4
end v = 1/3. Then according to equation (87&3 w/wn = 1 + 2.3, 80
that in this case the deflection with transverse shear is more than three
times the deflection when shear deformation in the core is neglected.

Returning now to equation (84) for w and equation (83) for
and substituting these two equations in equations (76) and (77) in order
to determine the changes of slope By and By, after slight transfor—

mations there results

Yy
_-%- 2 Z (.Am;fn:?)e sin )\mx cos “n%

‘Equations (89) are remarkable for the reason that they are not affected
by transverse shear deformability. According to equations (73), the

seme is then true of the bending and twisting couples My, My, and Mygy.
It is not easy to see why, in this statically indeterminate problem, the
magnitude of the internal forces, as well as that of the deflections, does
not depend on the elastic properties of the core. The analysis, however,
shows that the distributions of Mg, My, and Mgy, and therewith

of Qp and Qy, remain the same as those obtained under the assumption
that Ge¢ = ».. In this connection the following remark may be made.

cos Mpx sin upy

W™
M
!

(Mu2 + up )2
4 . (89)

By
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Evidently the following three boundary conditions s W =M= By =0
along the edges x = O,a, have been satisfied. In order that the last
of these three conditions be satisfled there are necessarily nonvanishing
edge values of the twisting couples Myy. The same is true in the theory
without transverse shear deformation, where, however, no alternative
possibility exists, as in that theory only the boundary condi—
tions w = My = O are relevant. For the present system of equations
three boundary conditions must be formulated for every plate edge. Thus,
it is possible although mathematically complicated to solve the problem
of the rectangular simply supported plate with the edge condition By =0
replaced by the condition Mxy = 0. In that case, which will not be
pursued here, there evidently will be a distribution of internal stresses
which is modified by the effect of transverse shear deformation.

- Cylindrical bending of plates.— As a further relatively simple
example of application of equations (70), (72), and (73) problems are
considered for which )

3 )y = 0
3 )fox = al Vax = ()

. My =m0 | .
My = vig )

and where consequently the problem reduces to the following system of
equations:9 :

Q' +q=0 )

M' = Qp +my = 0

g (91)
Qg = (b + t)Ge(Bx + w')

(1 - V2)Mx = D*Bx'

J

9Note that in order to obtain the problem of the sandwich beam from

equations (90) and (91) the only changes which are necessary amount to
setting v = 0 in equations (91), '
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To set into evidence the effect cf finite values of G, in

equation (91), the following system of equations is deduced from
equation (91):

.(IV) Dq'!
Dw = v 29
17 (h + t)Gg
Dq
= = D' — — 2
M (h + t)G¢
= — Dw'?' — Dﬂ'
% - (h + t)Gg =
R

+-—-—-—
(h + t)G,

Solutions to the.following problems are listed:

(1) Simply supported plate of span 1 carrying a

~load g = gp cos mx/l. Boundary conditions: w(x1/2) = My(21/2) =

W = @[1 + P Ep (h + ’c)t]cos /1
Pl 2 a-Ple, B (a0t

. (92)

(93)

(94)

(95)

0.

(96)10

As the problem is statically determinate as far as moment and force are
concerned there is no modification of My amd '‘Q; due to the finite

value of G.

lOThe factor in brackets may again be written in the form 1 +5.48

with B = (Ef/Gc)/[kh + t)t/lé], using the notation suggested in
reference 5. ’

B
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(2) Simply supported plate of sman 1 carrying a uniform
load q = a9

4 4 2 -
_%! J3 —1l=2 8p -
" 76 2k kﬁ—é) 1] ‘*[l e t)Gcle] [(’72) l] o

‘From this for the center deflection,

4
I (1 2k Ep (h + t)t
w(0) = 2. %9 [1+ s J (98)

It is seen that the correction factor for the center deflection is almost
the same as that for the cosine load -curve (equation (96)), the only
difference being a change of the factor =»2/2 = 4,93 into 2k /5 = 4,80,
that is, a reduction of the shear correction factor by at most 3 percent
is present.ll

(3) Built—in plate of span 1 carrying a uniform load q = qqp.

The boundary conditions are: w(+1/2) = By(£1/2) = 0 (and
not w'(x1/2) = 0),

L 4 2
30l Jirx\* _ 4] _ __ohp _ |
B GO R (e )

From this there follows for the center deflection,

L
_ %ot
w(0) = 280

Ep (h + t)t ‘
[1 + 24 - v2)Gc B ] (100)

~ Comparison of equations (100) and (98) shows that for the built—in -
plate the effect of transverse shear deformation is very much more

1lyote that according to equation (87a) the shear correction factor
for the square plate of width a = 1 is more than twice as large as the
shear correction factor for the plate strip of width 1. )
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pronounced than it is for the simply supported plate, a factor Eh/5

in the latter case being replaced by a factor 24 in the former case.l?
As a further result in this problem of the built—in plate, by putting
equation (99) into equation (93), it is found that the moment

function My does not contain any terms depending on the effect of

transverse shear deformation. This again is somewhat surprising as
in this case it_is not possible to determine the moment function by
statics alonse.

Circular plates; rotational symmetry.— As no examples of solutions
of circular sandwich—plate problems have as yet been published and as
it is of some interest to determine in which way the shear correction
factors change in going from a problem for the plate strip to the
corresponding problem for the circular plate, the equations for
axisymmetrical transverse bending of circular plates are briefly
discussed.

Polar coordinates r,6 are introduced and notation which is
customary in plate theory is used. As a consequence of equa—
tions (70), (72), and (73), the following system of equations is
obtained:

dggr +rq =20
e (101)
drM,
-3377—-Nb - rQr + rm, = 0
Q = (h + )G, (B, + dw/d.r) (102)

12, gomewhat similar percentage increase must take place in going
from equation (86) for the rectangular plate with all four edges simply
supported to a formula (which has not yet been derived) for the rectan—
gular plate with all four edges built in.

13ag & problem where the moment distribution is in fact dependent
on the effect of transverse shear there may be mentioned the problem of
the cylindrically bent plate with both ends built in, which carries a
load gy = q3x instead of the load qqg = qp. This problem also mey be

solved by means of equations (92) to (95).
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M. — WMy = D* dB,/dr
(103)
Mg ~ VMp = D¥Bp/r
According to equation (79), the equation for the deflection w
will be
‘ drmy v2q
WPw = q + 121 - 104
X% = g 2T & " (nst)o (10k4)
where V° = (l/r)d[r af( )/dr]/hr. Having found - v by means of
equation (104), B, may be determined from
dw Q. av .1 ..
= - } — = =E g rq dr 10

and therewith M. and Mg are obtained from equations (103).

In the pfesent problem it seems to be somewhat more convenient to
proceed as follows: Combine equations (101) and (103) to obtain as
equation for the change of slope B,

SET-I L IRPEEL 196

Baving 'Br, M, and My are found from equation (103) and Q., from the
second of equations (101),

RN

> (107)
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dr

|
o
BP
<T™

Q = 1 ‘h‘ﬁr) - mp (108)

Finally, with this value of Q., w -is found by integrating equation (102),

-
~

L p  (1arg) Jumrdr )
L[]Br R )G \r T ) T v v)eg (109)

~

Deflection of circular plate with built—in edge.— The bending is

now considered of a plate with transverse load q = gn(r/a)® and
with mp = 0. First, from equation (106),

-1 3
r dné@
DB, = c] § + cz(i) + c3 § loge ¢ + s h)(n " 2)2\5) (110)

Attention is restricted to camplete plates with no concentrated
load at the center, and consequently it is necessary to set Cy = c3 = 0

in equation (110)., This gives

H

3 n+3
dné
DB, =cy =

T L (n+4)(n + 2)2\3)

(110a)

Putting equation (110a) into equation (109), there results for the
transverse deflection w '

o=

= — El'z 5 qna3 n+h ]
) | 2 (a) (n+4)(n + 2)2\a) o

. ‘ 3 n+2
—D |5 dn8
* a2(h + t)Gc[%Cl (n + 2)2( ) ] (111)
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Taking the case of a plate of radius a with built-—in edge, that
is, with the boundary conditions

B.(a) = w(a) = 0 . (112)

there results ‘
T 7 (n+ W) (n +2)21\8 & )

and

e oAt J(r/a)™ 1 1 (r/a)2 -1
(m+2)2] (n+kh)2 2 n+h
S 20)
a2(h + t)G, (a)

From equation (114) there follows for the deflection at the center of
the plate _ '

qn&h [% . (n + 4)2 Er (h + t)t

o(n + 2)(n + 4)2 o+ 2 (1 —-Vz)Gc o2 (115)

w(0) =

Conglder the following special cases:

(1) Uniform load distribution g, = qp. From equation (115), it

follows for the ratio of defiection with and without transverse shear
deformation that .

w(0) - 148 Ep (h + t)t .

[wo] , (1-w)e, (116)
Ge=
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s

Equation (116) may be compared with equation (100) for the deflection
of the infinite plate strip of width 1 with built—in edges.

Setting 1 = 2a, it is seen that, while the transverse shear correction
factor for the strip has a value 6, the corresponding factor for the
circular plate is 8. This is consistent with the earlier comparison
between the simply supported strip and the simply supported square
plate, except that there the change is from 4.8 to 9.7.

(2) Linearly increasing load distribution q = qir/a. From
equation (115), it follows that

w(0) -1.2 Ep (h + t)t (117)

g~ 3 @-vR)e, €

showing that the correction effect is only slightly greater than in the
cage of the uniform load distribution.

(3) Load increasing linearly from.edge to center, q = qg + qy(r/a).
(a1 = —90). From equaiion (115), it follows by superposition that

L
- 908 :
Dw(O)-ﬁxgxl[l+8(l_V2)G =

L
9 1.2 Er (h + t)t
2 X 3 X 25

~ h3qoal* 3000 Ep (h + t)t
MO =330 BT T i, & (18

Comparing the factor 3000/387 = 7.76 which occurs in equation (118)

with the corresponding factors 8 and 8.33 in equations (116) and (117)
it is seen that, in the foregoing three problems at least, there is
little difference between the transverse shear stress correction factors
in the case of three different loading conditions for the circular,
clamped—edge plate. The fact that this agreement should not be expected
to hold generally follows again by considering the case of a point

load at the center of the plate, for which the ghear correction factor
would again be infinite.
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The examples of this section should be augmented by the solution
for the circular. plate of radius a, which carries a load distributed
uniformly over a smaller circle which is concentric with the boundary -
of the plate.

Circular Rings

Ag the simplest example of a curved sandwich structure there are
considered in this section stresses and deformations of circular rings
in their own plane. As was found 1n the general developments of-

" part I of this report, in a curved sandwich structure there will be
the effect of both transverse shear and normal stress deformation.ll

There are set for @he relevant coordinates and variables

£y = 80 a1=1 |
Ry =a up = v
BL =B Ny =N
Q = Q My =M r (119)
Py =D m - m
é( )/35 =a( )/ade =()'/a
Mo=r=d[ms t)t/a2] (Er/Ec) )

The equilibrium equations (25) to (28), (31), and (34) reduce tq
the following equations:

]
o

N' + Q + ap
(120)

[
o

Q' — N + ag

14The effect of transverse shear stress deformation on homogeneous
circular rings has been considered by L. Beskin in reference 6.
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M' —aQ +am =0
’ | .(121)
otm = 8 — [M/(n + t)a] ST

The stress—strain relations (56), (59), (60), (61), and (64) to (67)
reduce to the following equations: : ' .

<1 + % x)n -z C*[v' V4 %‘1] - (122)
Q= (h+ t)Gc[B + 2wt - v)] | (123)
(1 + MM = -3; D*(B' + 8/Eg) (124)

The load terms p, g, m, and 8 are given, according to
equations (19) to (22), by

Lo
1l

| h+t h +.t
: ‘ R R
- h+t _h+t
q = (} + o8 >qu + <1 oo >q3
n o+t no+t ho+ t
| m=2t201 4 22 2)p - (1 - 242
| 2 [( " 2a )pu ( 78 )Pz]

h+t h+t
[(1* Pa ,qu'<l‘ 2a >ql]

> (125)

@
]

1
2
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Ring sector acted upon by end bending moments.— As a first problem
on circular rings, which illustrates the effect of transverse normal
stress deformation, there 1s taken this basic case for which, as is
known, there must be the same stress distribution at all sections
6 = Constant of the ring.

According to equations (120) and (121),

N=Q=0

M=M e (126)
Oty = — My/(h + t)a
J

Equations (122) to (124) becoms

v 4+ w=0

B+ (w~v)/a=0 (127)

(1 + M)My = D*8'/a (128)

The significant result of this consideration is contained in equation (128),
which may be written in the alternate form

p* B* D* w'' 4w
M= = S = (129)
Yo & 1 + A l(h+t)tEf —a2
141+ Bt
2 a2 &,

Thus, in this case of pure bending the transverse flexibility of
the core 1is responsible for a reduction of the bending stiffness

factor D* = % t(h + t)eEf which is obtained exactly when E; = 0
and practically when E; is of the same order of magnitude as Er.

Equation (129) shows that the reduction of D* is significant
vhenever E. is so small that the ratio E./Er 1is of the same order

of magnitude as the ratio (h + t)t/a°,



L _ NACA TN No, 1832

As a numerical example take the following values: h = 0.9 inch,
t = 0.05 inch, a = 20 inches, and Ef/Ec = 1000, for,which‘ ’

1(h+t)t B 1 _ 0,95 X 0.05 _
5 2 T, - 2 X oo X 1000 = 0.059j

indicating a reduction in bending stiffness of about 6 percent.
Changing a from 20 inches to 10 inches changes the effect from

6 percent to 24 percent. Changing Ef/Ec from 1000 to 2000 increases
the effect from 6 percent to 12 percent. Altogether it may be said
that this effect is of noticeable magnitude for some -geometrically
reasonable structures when the modulus ratio Ef/E; 1s of the

order 1000 or more. Assuming aluminum face layers with Ep = 107 psi,
this means that E, % 104 psi, which is-well within the range of some
pregent—day core—layer materials, ‘

Comparing equation (129) with the earlier formlas for the effect
of transverse shear stress deformation, for instance with equation (116)
in which a represents the plate radius and observing that G~ %-Ec,
it is seen that the correction terms are of the same form, the difference -
being an appreciably larger numerical factor in the expression representing
the shear effect.

Closed circular ring acted upon by uniform radial load.— Having
rotational symmetry, d/d6 = 0 and v =B =0, Also set p =m = O,
The remaining equations permit the determination of the stresses in-
the face and core layers in a way which depends on the extent to which
the load is applied ‘to the outer (upper) and inner (lower) face membranes.
Equation (12) becomes

From equations (121), it follows that

Otn = 8 — [M/(h + t)a] (131)
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The stress-strain relations (122) to (124) give

¥_1fj.,A (h + t)g _ag A _ (b +t)c*|  aq
P de - Gtegh 102008 ow

- D* 8

R (133)

A closed circular ring subJected to a uniform radial load
distribution q is stressed not only by a uniform axial force N = aq,
as would be expected, but in addition is stressed by a uniform bending
moment M, the magnitude of which is given by equation (133). The
explanation of this result is that for a ring with relatively soft
core the circumferential stress distribiution depends on the extent to
which the external radial load is applied to the inner and outer forces,
respectively. Roughly speaking, for a sufficiently flexible core layer
the load g, goes predominantly into the outer face layer while the

load g, goes predominantly into the inner face layer.

According to equations (46), in the present case for the stresses
in the two face layérs,

My =g N+pdlon

(134)

li
=

o
l
b

=

N,

According to equations (130) and (133) and in view of the definitions
of D*¥ and A, this may be written

N, = & 2A8.
N = 261 1+ x)

(135)
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Combining next equations (131) and (133), for the transverse
normal stress in the core layer, the following expression 4is obtained:

%m = T | (136)

For a specific example assume that the radiasl load is applied
entirely to the inner face of the ring go that g, = 0 and, according to

equation (125)

q = (;._ h+ t
| - - (137)

With q and s given by equations (137), e@uatiéhsv(l35)fand (136)
become : ' ’

=1 _ b+ t) 2N
Ny 2@' 2a >l-+k
: > (138)
—l _h t (l + EX)an
Ny = 2<1 2a > T+ X
__l' ~ b+ t) 91
%m = 2( Za )1 Py (139)

It is seen that the flexibility of the core layer increases the circumfer—
ential stress in the loaded face layer in the ratio (1 + 2A)/(1 + A) and
decreases it in the unloaded face layer in the ratio 1/(1 + A), where A
is defined by equation (119) compared with the equal values of these
stresses when E. = o, /

Considering once more the numerical data under the section entitled
"Ring sector acted upon by end bending moments," it is found, for
instance, that the .stress in the inner face layer may be about 6 or 12,
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or 24 per¢%nt higher than the corresponding stress calculated without
teking igto account the transverse flexibility of the core layer.

Ring sector acted upon by radial loads q,; and qj, uniform in
circumferential direction and with vanishing resultant q.— Again it is
assumed that d( )/d6 = 0, m = p = 0 and now in addition that q =0,
so that, according to equation (125), the only nonvanishing load

term is 8. Further, it is assumed that the emds 6 = £ a of the ring
sector are free of sfress, that is, N(3m) = Q(2x) = M(2a) = O. The

ordinary theory of circular rings would then indicate the absence of
deformations in the entire ring. In the present case there is found
a type of deformation peculiar to the sandwich ring, which may perhaps
be compared to the action of a Bourdon gage.

Solving first equations (120) and (121) and satisfying the end
conditions of the ring sector,

N=Q=M=0

(140)
Oty = 8
The stress—strain relations (122) to (124) are then
N
v' +w=0
aB + W' —v =0 > (141)

1
J}.
g

Bl

Assuming s independent of 6, from equation (141) there is obtained by
integration, with constants of integration Aj, A,, and A3,

=8
B o 6 + Ay
v=-af-0+Aa+ Ay cos 6+ A3 sin 6 (1k42)
v =a éL + Ap 8in 6 — A3 cos 6
c
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As a specific example consider a complete ring, slitted radially
at the section 6 = n, 80 that a = %, Prescribe furthermore the
symmetry conditions B(0) = v(0) = w(0) = 0. Under these conditions
there is obtained from equation (142) :

Ecﬂ = —ab
Ecv = —a8(6 — sin 9)‘ > (143)
Ecw = as(1 — cos 6)

From equations (1L43), it follows that the radial slit, which is

of zero width before the loads q;; and q; are applied, opens under

the action of the loads to a width given by

v(=x) - v(x) = 2na ﬁL = 2na(1'+ Q§§—§ %% (14%)
c

For a numerical example take a = 10 inches, h =1 inch, t = 0,05 inch,
E. = 10,000 psi, and qu = 20 psi, and obtain

v(-n) — v(x) = 0.132 inch © o (145)

The foregoing three examples of ring analysis have been discusgsed
in some detail, because they illustrate relatively simply the effect of
tranasverse normal stress deformation in the theory of curved sandwich
structures, without involving at the same time the effect of transverse
shear stress deformation.

Bending of semicircular ring by end shear forces.— Now a problem is
considered in which both the values of E, and G, affect the result
of the analysis. In the.equilibrium equations (120) and (121) all
external load terms are set equal to zero and then, by integration and
from the boundary conditions, that is, from -

N(i£)=Mi-2’l =0

n

: (146)
W 8) = 20 | |
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the following expressions for N, M, and Q are obtained:

Q=Q sin 6
N = Qy cos 8 ' (147)
M= —aQo cos @

The stress—strain relations (122) to (124) become

(1 + k/3)Qo cos 6 = (Q*/a)(v' + W)
Q 8in 6 = (h + £)Ge[B + (w' = v)/a] (148)

—(1 + M) Qpa cos 6 = (D*/a)B!’
Integration of the last of equations (148) gives
D*8 = —a2(1 + \)Q, sin 6 , (149)

where a constant of integration has been eliminated by means of the
symmetry condition B(0) = 0. Substituting equation (149) in the second
of equations (148),

: 2
1 a<(1 + )
Ro BiI-l 9{(}1 e Tond ]

2 h + t)t E |
Qo sin 9%—*[1 +%L—Z§—l—@§+§§>:l (150,)‘

Z(w' = v)

Simultaneous solution of equation (150) and the firat of
equations (148) for v and w gives as general expressions for v
and w, '

4
L}

Aecose+Alsin9+AQcose
(151)

£
It

A6 sin 6 — (A + B)cos 6 + Ay sin 6
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where Aj; and Ap are arbitrary constants of integration and A
and B are found to be

Qoa3 1 (b + t)t(Ep Ep D* A
JAE-- tial | R SRS LLAT b S o) [N VY
0% |- 2T 2 \B. G/ T acx\ T3

- ( (152)

_ Qoa3r— (h + t)t Er  Ep\ D A
B P22 \E TG/ alcr\( t3

=

As further conditions, it is prescribed that v(0) = v(g) = 0, which

makes A, = A) = O in equation (151). There remains

A6 cos 6

<
|]

(153)
AG sin 6 — B cos 6

3
1}

Of particular interest are the values of w(n/2) and w(0), the first
of these giving the radial deflection of the point of load application,
the second giving the change of radius at right angles to the applied
load. It is found that

P £)4 Er\  px A
W(g-) = A 'g = if —]ST-I:J. + 5 -——-——'—a2 Cér'—(; + "G—(;> + a?C:<l + -3')] (15,-!»)
. 3 : ' .

Equations (154) and (155) contain the interesting result that, for
this problem, transverse shear and transverse normal stress affect the
outcome formally in nearly the same way. If the generally unimportant
terms with D*/aQC* are omitted, which amounts to the usual assumption
of circumferential inextensibility of the ring, then the effects of
finite E, and G, occur in exactly the same way.
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For a numerical example take h ='0.9 inch, t = 0,05 inch,
a = 20 inches, Ep/E; = 1000, and E¢/G; = 2000. This gives

1 (h + t)t 1

2 g2 16,800

D* _1(h+t)2__1

a2Cx L a2 1770

yol(ht)t Er _ 1
2 a2 E. 16.8

1(h+t)t B _ 0
2 g2 Gc 16.8

The factors in brackets in equations (154) and (155) become

1 o 1 1 _
Y T 1770(l T 3Ix 16.8> =118

and

1 2 . _1 1
1Y %8 %8 1770(1 T 3x 16.8)

~

= 1,18

Thus, in the present example the flexibility of the core is responsible

for an 18-percent increase of deflection—load ratio, and of this 12 percent
is due to transverse shearing and 6 percent to transverse normal stress.
Compared with these two effects the effect of circumferential extensibility
of the composite ring is seen to be negligible, As a further numerical -
i1llustration, it is noted that reducing the ring radius a from 20 inches
to 10 inches, with all other data unchanged, changes the 18-percent
correction to a T2-percent correction. ‘

Bending of complete circular ring under action of two concentrated
radial forces at 6 = ix/2.— The solution of this problem may be obtained
by superposition of the solutions for the semicircular ring under the
action of end shear forces Qg (equations (146) to (155)) and under the

action of end loading moments My (equations (126) to (129)).
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The first step consists in determining M, in terms of Qp such
that the sum of the PB's from equations (129) and (149) assumes the
value zero for 0 = n/2 that is, the value of the superimposed bending
moment at 6 = n/2 must make the tangent to the deflected ring at
this point horizontal. Combining equations (129) and (149) in this
manner, there is obtained

or

= (2/x)aQg | (156)

It may be noted that equation (156) is a further case of a statically
indeterminate problem where transverse shear and normal stress flexibility
do not affect the internal force and moment distrlbution but affect only
the state of deformation of the structure.

Further, the radial deflections w(x/2) and w(0) due to the
action of Mo are calculated, in order to combine them with equations (152)
and (153). Integrating equations (129) and (127) with the boundary
conditions v(0) = v(n/2) = O, there is obtained for the displacements
due to My, ' ’ '

~(1 + M¥ge?(1 — & cos 0)

D*w =
(157)
D*v = (1 + X)Moae(e - % sin e)
and, in particular,
D% (0) = (1 + x)Moa?(g ~ 1)
(158)

—(1 + X)M’oa2

()
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Combining equations (158) with equations (154) and (155) and taking M
from equation (156), there follows for the resultant displacements

A -
-

(@ - 8- o Zn s %ﬂ}

- S G- D00 2o - Zxl 3}
J

_(h+ t)t Bp
oa? G
Equations (159) may be written in the alternate form

r (159)

w(0)

where A has been put as a further abbreviafion.

A _ Qoa3 D* A
w(n/2) = 0.149 —DT{I + A+ 5.29[&; + a?C*(l + §)]} (160)
w(0) = —0.137 %2 |1 L5, 3.65[ng — 2% (1 + l) (161)

When A = Ag = O and when the composite ring is assumed axially
inextensible, which amounts to putting D*/a2C* = 0 in equations (160)
and (161), then equations (160) and (161) reduce to well—known results
of circular-ring analysis. o

Comparing equations (160) and (161) for the closed circular ring
with equations (154) and (155) for the open semicircular ring, 1t is
noteworthy that for the semicircular ring A and Ag¢ occur with equal
welght, while for the closed circular ring the influence of Aq is
considerably greater than the influence of A, Thus, for the closed
circular ring the effect of transverse shear deformation is much more
important than the effect of transverse normal stress deformation, while
for the open semicircular ring both effects occur in a much more nearly
equally important way.

For a numerical example of the use of equations (160) and (161)
take again the values for the numerical example given in the section
entitled "Bending of semicircular ring by end shear forces." This
gives for the expressions in braces
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1 _,2x5.29  5.29 _
l+%8t 168 T - 1o

1 2 X 3.65 . 3.65

1+ 768 * 168 1770

= 1,50

Thus, while the effect of transverse stress deformation for the open
circular ring amounted to 18 percent, the corresponding corrections
for the closed ring are 69 and 50 percent, respectively.

The next step in the analysis of sandwich—type circular rings
would bé the general solution of the system of equations (120)
to (124) for arbitrary load distributions. This, evidently, is
- possible and further specific examples of interest might be analyzed
on the basis of the general solution. Such extension of the work of
this section is, however, left for future considerations,

Circular Cylindrical Shells

In this section the general system of equations of part I of this
report is restricted to the equations of the theory of circular cylindrical
shells. The treatment of sandwich—type shells of this kind is shown to
be not appreciably more difficult than the analysis without the effect
of transverse shear and normal stress.

As specific examples some problems of rotationally symmetric
deformations are treated. In particular the influence coefficients
are obtained for a semi—infinite shell acted upon by bending moments
and transverse forces at one end of the semi—infinite shell. With these
influence coefficients an explicit solution is obtained for the problem
~ of the infinite circular cylindrical shell acted upon by a pressure
band of zero width.
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, In the general equations of the problem there are set for the
relevant coordinates and variables,

€, = a6
Rp = @
Q =
Mo = My
B1 = Bg
mp = my

52‘= b q R ==
N7 = Ng Npo = Ny
@ = Qg My = Mg
u =v u =u
Bo = Bx Iy = Mg
Pl ; Pg Po = Px

al =ap =1

Nip = Npp % Nxg

Mpp = Mo = Mpg

g (162)

o

The equilibrium differential equations (25) to (28), (31), and (34)

become
aNx laNxe _ i
5 Ta o Tx=0
3 Myg . 1 Mg Qo
S tam tetPT0
0Qy 199 TNy
5 Ta% 70
' oMy 1 Mg _ ]
x MY U + g = 0
}
My 1 Mg _ _
3 &3 % +mg =0 )

(163)

(164)
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e |
Oty = 8 & s 0)a N (165)

The stress—strain relations (56), (59), (60), (61), and .(64) to (67)
%[kh + t)t/hg](Ef/Ec) =,

become, with Xp = AMp = 0, Ay

Por 4
% ¢

o=

. (h + t)q
12aE¢

|

Q

*
T

(1 + %)Né ~ VN; =

x - g = o($2) | - e

Q = (h+t)GcQae+;}§g-§>

Qx.= (h + t)Gc<Bx +%§>

-y -

)
.(l+k)%—vp&=p*(%§+‘a%)

My — Wy = DX g%) r (168)

3B OB
2(1 + V)Mgg = D*(S;Q + _-}5: 6—93—) J

When G; = Eg = » (and therewith X\ = 0) equations (163), (164),
(166), (167), and (168) reduce to the known system of equations in which
deformations due to transverse stresses are neglected. The solution. of
the present system of equations is not essentially more difficult than
the solution of the system with G; = E; = w, In particular also here



NACA TN No. 1832 : 57

there ma.y be obtained a trigonometric double—series solution, as a
generalization of Navier's solution for the flat plate (references 7
and 8). '

For this trigonometric double—series solution there is set,

q = Zqu sin mé sin nx/1

Pg =Z Zpem cos mé sin nx/1
px=22pmsinmecos nx/1
mx=XZmnmsint cosnx/Z.
'me =Z Zmemcos mé ein nx/1
s=225msinmesinnx/l J.

;=Z Z Vam 8in m sin nx/1
v = X Z Vom cos mé sin nx/1
u'= Z Z Y sin‘ mo co,e; n_x/z r (170)
2 Z Bymn 8in mo c':os nx/1

2 Z Bomn cos mé sin nx/1

-

r (169)

Bx

Bo
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oSS st con s
% - ZZQGmncosmG sin nx/1

Ny, Ng) = Z Z (Yeom> Nemn) sin 10 sin nx/1
0SS e [ O

(e, M) =z X(Mxmn, Moy ) 8in m6 sin nx/1

0 = jg:-zg:;anmn cos mO cos nx/} ‘ |

When equations (169) to (171) are substituted in equations (163)
to (168) there remains for every value of m and n a system of
13 simultaneous equations for the 13 Fourier coefficients which occur
in equatione (170) and (171).

A system of only five simultaneous equations for the five Fourier -
coefficients in equation (170) is obtained if first equations (163)
and (164) are reduced to five equations for the five unknowns w, Vv, u,

By, and By, by means of equations (166) to (168).

For the present, the task is not carried out of obtaining the
deformation and 1nternal stress Fourier coefficients of equations (170)
and (171) in terms of the Fourier coefficients of the load terms in
equation (169). Instead, the axisymmetrical case, to which
equations (169) to (171) reduce when sin m9 and cos mé are

interchanged throughout, and then only the terms for m = O are taken,
is treated geparately.

Axisymmetrical deformation of circular cylindricai shell.— In
equations (163) to (168) set '

3( )30 = 0 )

o( )/ax = ()¢

Nyg = Q9 = Mgy =0 & | (172)
v=2R8g=0

mg = pg = O
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and thén the following system of equations has to be dealt with:

Nx' + Px = 0]
(173)
Q' - (Ng/a) + ¢ =0
M'=-% +mg =0
(174)
otm =8 - Mg/(h + t)a
(1 + 3o - vie = oo+ pe]
. (175)
Nx - VNQ = C*u'
Q = (h‘+ t)Gc(Bx + W' (176)
(1 + \)Mg — vM; = D*g/aE,
| (177)

My ~ v = Drpy

The system of equations (173) to (177) may be reduced to two
similtaneous equations for B, and Qy, a8 follows: First,

express Mx in terms of Bx by means of equation (175) and substitute

the result in equation (174). From the first of equations (177), it
follows that '

-y : D*s (178)
BT S Tty |
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and this, introduced into the second of equations (177), gives

M = (Lt MD* g VD*y

(179)
L4r=v " " am (14 -12)

Equation (179) is introduced into the first of equations (174) and,
restricting attention to shells of uniform section properties, there
is obtained

1+ )\.!D*2 Be'' — Q = —my — VD*_B > (180)*
1+r-v aE.(1 + A — v?)

To obtain the second of these equations, first, introduce into
equation (176) the value of w' which follows from equation (175),

giving

~

C*¥(h + t)q' |
o Eai[(l “ e’ - iz - _(ﬁ)g—] .

In equation (181), Ng' and Ny' are taken from equation (173) and,
after slight transformations, there is obtained

Comparing equations (180) and (182) with the corresponding
equations without the effect of tramnsverse shear and normal stress
deformation, it is seen that the effect of transverse normal stress,
which 1s represented by A, merely somewhat modifies some of the
coefficients of the left sides of the corresponding system of equations
with E, = ». In contrast to this, the effect of finite G, is to

introduce a new term into the left sides of these equations. This new
term may be of appreciable importance, as will be shown, :

Having solved equations (180) and (182), MxA and My are obtained
from equations (179) and (178), respectively; Ng follows from
equation (173) in the form

Ng = a(Qg' + q) A (183)
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and w follows from equation (175) in the form

w = (a/C*)[}l + X/3)an' + aq + vl/npx de (184)

The following examples illustrate the use of equations (178) to (184)

Infinite circular cylindrical shell with periodic load distribution.—

In specialization of equations (169) to (171), set

i

qu-sin MX
8, 8in ux
Px, COB MX

My, COB WX

vy sin pux

u, cos ux

Bxy cos ux

qu COB X
Ny, 8in ux

Ne s8in ux

!

My, 8in px

Méu sin ux

-

J

-

( , (185)
L (186)
e (187)
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By introducing equations (185) to (187) into equations (180)
and (182), two simultaneous equations are obtained for the ampli—
tudes qu and Bxu’ as follows:

(1 + \)D* o " yD¥* usp
5 W By, + Ky = +
14 h—v2 I T = Ty 1+ A —v2 ake
5 ptE > (188)
AW £ a® '
Bx —a—<l+—)u +——-—-—-—.ng=———(uq + YDy /a)
H C* 3 . 32(h+t)Gc Cx\ H K7
-
To eimplify the further discussion, by setting in equation (188)
My, = 8y = Pxy = O, there is obtained for Bxu and qu :
‘. PR el T
o (1 + A)D* 3
g (189)
-4
J
The quantity K is given by
-1
: 2 E .2 I
K = 1+%+i-——-—Zt eG—f+l+)‘ vo M \I (190)
2 (h+t)a2 % (1404 (n+t)22

where use has been made of the relation u=n/l. In equation (190)

_ the term A/3 will usually be of little importance. The other two

variable terms represent the effect of transverse shear deformation
and of shell curvature, respectively. When the radius a is so large

that Zh/(h + t)ga? << 1, the shell behaves under the action of the
given load essentially as a plate strip. The effect of transverse
ghear is important as soon as the term (2/x°)(12/a2)(t/(h + t))(Er/Gc)
is not small compared with 1,

Before evaluating a numerical exemple the following further
formulas which are readily obtained from equations (179), (183),
and (184) are listed:
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dp
=+K
MKH U-2
Ny = aq,(1 - K) > (191)

Equations (191) show that in this problem not only is the deflection
increased because of the effect of transverse shear, and with that
the hoop stress resultant Neu, but now also an effect is found on

the bending-moment distribution qu, in the opposite sense. The effect
of transverse shear is to reduce the magnitude of the bending moments

in the shell. This result is in contrast to what was found for the
examples which were worked out in the sections on plate analysis and
circular ring analysis and is therefore of particular significance.

Equation (191) for W, may be compared with the corresponding
expression for a simply supported plate strip of width 1, with
sinusoidal load. The result for this case must follow from equation (191)
in the limit a-—>«o and agree with equation (96), which was previously
obtained. To compare the last of equations (191) with equation (96),
the last of equations (191) is written in the form

l+k—v2(l)h l+(_g>2 1+ A (h+t)t_1: »
— (1 + 2)D* % 1+ A—v2 2 12 G q‘ (192)
u =
14 1+ \— VE(l)h c* A, (i)e ot Ep H
(1 + A)D* \t/ o 1. 3 h+t G
1+ —-v 1y C*
1+
(1 + 1)D* ()

Equation (192) reduces to the equivalent of equation (96) if in
it a —» o,

' From a comparison of equations (192) and (96), it is further
concluded that the correction due to transverse shear is greatest
in this case when &a = o, go that, in this case, the curvature of"
the shell tends to reduce the addltlonal shear deformatlon below
the value obtained for the slmply supparted plate strip.
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For a numerical example first take h = l inch, t = 0.05 inch,
= 10 inches, 1 = 20 inches, Ef/Gc = 200, Ep/E; = 1oo v =1/3,

and A = % ;_OEI%%ME 100 = 0.025. The factor K of equation (190)

becomes

=
I

. _1
2 400 X 0.05 4(1 - 0.09) 160,000
] S22 222 %100 2
[1 +0.008 + 5 T xL.05 < Xt T 3 100 X 1.1

(1 + 0.008 + 3.86 + 5&.5)'l = 0,01685

while without transverse shear and normal stress deformation

(K) gyEgem = (1 + 54.5)7F = 0.0180

The correction in this case amounts to about 6 percent,

Changing the moduli ratio to Ep/Ge = 2000, Ep/Ee = 1000,

= (1 + 0.08 + 38.6 + 54.5) = 0.0106

instead of K = 0,01685, The correction in this case smounts to
0'01306102'0106 X 100 & 70 percent, Thus again there is a case where
omission of the effect of transverse shear deformation would give
results which could not be used. However, it is noted that the effect
of transverse normal stress deformation is quite small and may here
safely be neglected.

If the foregoing values of K are introduced into equations (191)
it is seen that the percentage corrections apply to the bending-moment
value directly but that for hoop tension and radial deflection the
corrections are very small indeed., In fact, in order that there be
appreciable corrections due to transverse shear on hoop tension and
radial deflection, it is necessary that the half wave length of the
simusoidal load q be so small that K 1is at least of magnitude 0.25
or more,
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A case of approximately this kind is obtained if the half wave
length 1 1is changed from 20 inches to 10 inches and the moduli ratios
are again taken as Ef/Ec = 100, Ef/Gc = 200. Then,

K = (1 +0.008 + 0,965 + 3.41)~1 = 0,1865
whereas
(K)yegoew = (1 + 3.451)1 = 0.227

The percentage change of X and therewith of M, 1is slightly more
than 19. The percentage change of Ng and w is about ul

The foregoing numericel examples show that the effect of transverse
shear may be significant in cylindrical sandwich—shell analysis and that
moreover its magnitude will not in general be predictable by the analysis
of an equivalent flat—plate or straight—beam problem.

For the infinite circular cylindrical shell with
load q = q, cos ux the essential results are given by equations (190)

and (191). These results may be extended directly to the loading

condition
q = an cos upX

‘ (193)
My = nn/1
By superposition, from equation (191) the following formulas are
obtained:
A N
M = Z (‘1n/“n2>Kn cos pnX
Ng = a ZE: an (1 - K, ) cos ppx - ” (194)
v = (a2/C*) jg: qn[i - (1 + X/3)Kn] COS HpX J
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The values of Kn are obtained from the formula

_ A, 2 12t LB+~ v2) AL e
*n = l:l "3 22 (h+ t)a2 Gc (1 + M)l (b + $)2 QJ (195)

‘Having the solution for the infinite shell with periodic load
distribution, it will be only necessary to add to this the general
solution of the differential equations without external load terms,
in order to obtain the complete solution for any edge condition of
the axisymmetrically stressed circular cylindrical shell of finite length,
This additional solution will now be obtained,

Finite circular cylindrical shell acted upon by edge moments and

forces.— To solve equations (180) and (182) with right—hand sides equal
to zero, equation (182) is differentiated twice and By'' is

gubstituted from equation (180). This gives

a2 Mo IV _ 1 e, 1ar=v2,
C*<l ¥ 3>QJC (h + t)GC Qx' + (l + )\-)D* QX =0
or
& — 2mPay"t 4+ kmya = 0 (196)
where
=4 ‘ ic* - 1 t _Ei
LrENT A m e @ \/(1 + 2/3)(h + t) Ge (1972)
1
m2=<lzc* 1+ )= V2 W[ 142 (1970)
a2D* (1 + A)(1 + k/3) \,(h + t)a (L + M) (1 + r/3)
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The auxiliary equation corresponding to equation (196) is

r* - 2m.12r2 + hmeh =0 (198a)

or

r® = m? % mlh - hmgh | (198b)

The solution of equation (196) occurs in two different forms, depending
on whether r2 of equation (198b) 1s real or not. According to
equations (197) and (198b), r2 1s complex as long as

mlj* < )-I-meh

or

’ (199a)

L[ tBe ]2< h[l—ve/(l+x)]
a¥ (b + t)(1 + 1/3)Ge (h + t)2a2(1 + >»/73)
S

To clarify this condition, neglect X (which is of very little importance
‘here) and equation (199a) then becomes

<z (199v)

When equation (199) holds, a quantity k may be defined by

k = \/m12 + 1 \/hmeg - mii (200)

and the four roots of the characteristic equation are k, k, -k,

and -k, where a bar indicates the taking of conjugates. The solution
of equation (196) may be written R .

K = Clé_kx + Eié_kx + Cgekx + Eéekx. . (201)
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Where equation (199) does not hold, which is the case for very small
values of G¢/Ef only, all four roots of equation (198a) are real and of

the form

~
ky = \Im.l2 + mlh — bmy2
kp = k3

” (202)
k3 = \]m12 - \’mlh - b»meg
ky = —k3

and the solution of equation (196) can be taken in the form

kix —ky1x k3x

Q = Ale + Aye + Age + Ahe 3 (203)

Before applying either solution to.a specific problem, there are
noted the following relations which follow from equetion (200)

E = |x|? = on)?
(20k)
k = \ﬁ?xfuqa + 2m22
Semi—infinite shell acted upon by edge bending moment and shear
force.— There are the following boundary conditions,
*
M (0) = il_i_LlQ__ By r(o) My
1+ M-

| (205)
Qx(0) |

%

while for x = o these same quantities vanigh,1?

15For the same problem without the effect of transverse shear and
normal stress, see reference 9.
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Of particular interest in this solution are the values of
deflection w(O) and change of slope B,(0) at the section where

the loads M, and Qy are applied.16

Taking first the case Ef/Gc < 2a/t for which equation (201)
applies, it is seen that the conditions at infinity require that

Cob =Cs =0 (206)

go that

*x - -kx
Qx = C1e  + Cje ~ (207)

The values of B, may be obtained by integration from equation (180)
in the form

( )D* C1 — T1 _%
1 +Xx D 5 By = E% o iX +.:% e KX (208)
1+ -V . %

where two constants of integration have been discarded to satisfy again
the conditions at infinity.

With equations (207) and (208) there is obtained from the boundary
conditions (equations (205)) that

Cy1 + Ei = Q0

(cr/x) + (Ba/E) = o (209)

16Without transverse shear and normal stress deformation these
relations are ' ‘

_ o ji=v2 4| __haPD*
v(0) = \rox aMO*\‘(live)c*Q(J
—v2 h’(l — v2)cx
=\ L=V A Sl A4
Px(0) = N s a[% " AN s MCJ

in agreement with equations (236) of reference 9, where the homogeneous
shell is considered,
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This determines Cl and Ei in the form

2
¢, - K% + [x[M
k~-k%
> (210)
T _ kQ + |k|2Mo
1= =
k -k

-

Equation (210) is introduced into equation (208) and there is
obtained as the first of two "influence coefficient" formulas

{;_tl&.)DT*g B (0) = — H{LIE[QO + (k + B (211)

+ A -

The second of these formulas follows from equations (184), (207),
and (210) in the form

cx  w(0) _ _l1l® =
T3 a2 T Hk| Mof.(k+k)Q<;| , (212)

Equations (211) and (212) may be written in more explicit form,
using equations (204) and (197). The results are

(1 +2/3)(Q + »=v2)
Bx(o) = \I%\/ 1 + A QO

a®D* (1 + A)(1 + A/3) (B + t)(1 + 1/3)

. . -
. \I\]hc 1+ M= . (C*/a=Gc) My (213)
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and

Py L (1 + X/3)(l + A —v9)
w(0) = - QT;QFI 1+ Yo

o ,
_8f; A LC* 1+A—-Y (Cc*/a2G,)
c*( ' X\ ‘\Ja?D* (1 + 21 + 2/3) Tt t)(L+ r/3) % (214)

Neglecting the generally small effect of finite E; in

equations (213) and (214), that is, putting A = O in these equations,
there may be written instead .

5
Lula = v3ox

215)*
" a20% \] 2\/1 - v2 Gc (215)

ﬂw(o) = — é:il;:;gg My — EE QJE&!;:;XElQi 14+ ___EZE___ Ei % (216)*
Noxpx cx asD* 2\’1 - y2 Ge

Equations (215) and (216) contain the noteworthy fact that the
correction factors for the effect of transverse shear are independent
of the ratio t/h of face—layer thickness to core thickness. The
complete formulas of course mist and do contain the influence of the
core thickness h.

B, (0) = -2

It is further noted that, while equations (211) to (216) have been

derived for the case that m.lh < hmgh, for which the complex solution

holds, they are also valid, as is readily shown, when hmeh > mlh.

Comparing ‘equations (213) and (214%), and (215) and (216) with the
equations listed in footnote 16 it is seen that: (1) The effect of
transverse shear modifies the deflection due to QO and the rotation
due to My but not the other two coefficients, (2) the effect of

transverse normal stress enters all four coefficients but only in a
minor way, and (3) the reciprocity relation that the deflection due '
to Mp is the same as the rotation due to Qp is carried over from

the theory without the extra effects,
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For a numerical example the following data are chosen: t = 0.1 inch,
= 1 inch, a = 10 inches, Ef/E; = 100, Ep/Ge = 200, v = 1/3,

and A = £ £1.X0.1 300

5 100 0.055, and, from equation (197),

=L [ Q.L1X200 _ g )¢
T \l 1,018 x 1.1 _ °

= 1-0,09 = 0.294
e \/100 X 1.21 X 1.018 ?

Then, according to equation (204),

x| = 0.173

k +%=\2 \V0.18 + 0.173 = 0.84

while without transverse shear deformation (ml = O) the value

of k + k = 0.59. According to equations (211) and (212), the effect
of transverse shear in this case is to increase the rotation due to
the edge moment in the ratio 0.84/0.59 = 1.42, an effect of 42 percent.
The same increase is found for the deflection due to the edge shear
force. Rotation due to the shear force and deflection due to the
moments are practically unchanged. Likewise, the effect of transverse
normal stress in this case is of negligible importance.

As a further numerical example there is chosen t = 0,05 inch,
h = 1 inch, a = 20 inches, Er/E; = 1000, Ef/G; = 2000,

and X =1 -LL%*-;—()@ 1000 = 0,065, and, from equation (197),
1 0.05
m = = 2000 = 0,48
1 20\/1.022 X 1.05 3

hll — 0.09

1 .

m2 = = 0.218
\J1.05 x 20 1.022
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From equation (204) then

k]2 = 0.095

x + K= \2 \[0.234 + 0.095 = 0.8

while without transverse shear deformation (mi = O) the value

of k + k = 0,44, Thus the effect in this case is to increase edge
rotation due to edge moment and edge deflection due to edge shear
force in the ratio 0.82/0.44k = 1.87, an effect of 87 percent.

Infinite circular cylindrical shell acted upon by transverse line
load .— Calculation is restricted to the determination of deflection and
bending moment at the section x = O where the line load of intensity 2Qp
is assumed to act. The result of the foregoing paragraph may be used as
follows. Consider the infinite shell cut in two parts at the section x = 0
and assume a bending moment M, of such magnitude that the slope B, (0)

is zero. According to equation (211), this gives

Mg == ——=- - (217)

andtherewith

| ) 12 2 )
cer(0) _ (k + %)% — |x| Y
(1 +1/3)a2 k+ Xk Q = - —= 2 5 2 (218)
* : + \’2m12 + bmo

Equations (217) and (218) become, with equations (204) and (197),

- Mg = - ke (219)
\]2\/ Cx __1sA-v2 . _C*e® 3
a2D* (L + A)(1 + 1/3)  (h+ t)Gc 1+ \/3
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\/ 1+ M —v2 . C*/a 1
1 + 3) a®D* (1 + M2 +2/3) (h+t)Ge 1+ )\/3

w(0) = (220)

o \[ 1 4+ A — V2 C*/a. 1
2D* (L+2M)(1+2/3) (b+t)Ge1l+2Arf3

To give these formulas a somewhat less unwieldy appearance, the
effect of finite E,, that is, A = O, may again be neglected, as is

permissible in most cases; and there may be written

J(h + t)a —Qo (1) *

MO=
N - +?) \F,,__l B
a
2 41 -2 Ge
14,1 tZr
a .
w(0) = — V1 = v2 a? V1-v2 % (220) *
4 E, Ef
t h + t)a
\/( ) \/l,*’——l""_ig_'(}_f
o\1 -2 ¢

Some numerical examples are given as follows.

Taking t = 0.1 inch, a = 10 inches, Ef/Ge = 200, and v = 1/3,
transverse shear deformation reduces Mg to 1/V2.05 times the

value which holds when Gg = =, that is, there is about a 30 percent
reduction in My, At the same time the deflection under the line

load is 3.05/\2.05 = 2,14 times what it is when G; = »; that is,
there is an increase of about 115 percent in w(0).
Teking t = 0.05 inch, a = 20 inches, and Ep/Ge = 200, My is
- decreased by a factor \/h/5 = 0,89, while w(0) is increased by a

factor 1.5/\[1.25 = 1.3k,
Teking t = 0.05 inch, a = 20 inches, and Eg/G, = 2000, M, is

decreased by a factor l/\/3.62 = 0,526, while w(0) is increased by
a factor 6.25//3.62 = 3.29.
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Equation (220) for w(0O) may be compared with equation (116) for
the circular plate of radius a. This comparison shows that, while for
the plate both the ratios t/a and (h + t)/a enter into the correction
factor, the correction factor for the cylindrical shell contains the
ratio t/a only; that is, the corrections (but not the results) are
independent of the ratio of face—-layer thickness to core thickness in
this case of a cylindrical shell.

Spherical Shells

In conformity with customary usage, the following notation is
introduced:

£, = af >, = &b . o =1

as = sin ¢ Ri=Ry=a N1 = Ng

Nop = Ny Nip = Npy = Ngg Y =

@ = 9 My = My My =My > (223)
Mp = Mgy P = Py P, = Py

m = g m =g up = u

u =V B1 = Bg - Bo = Bg

Attention is here restricted to problems with rotational symmetry
and the following relations are used:

o )/de =
(224)

Ngo = Qg = Mgg = pg = mg = v = By = o

The differential equations of equilibrium (25) to (28), (31),
and (34) become, setting

o( )/o¢ = a( )/af =



% | | MCATNTo. 183 |
(sffn ¢N¢)' ~ cos @iy + sin #ag + a sing pg = O | (225)
(sin §ag)* — sin §(Ny + N) + a sing g = O (226) |
(sin ¢M¢>' — cos ¢Q9 -a -sin gag + a §1n¢ mg = O (227)
ot + (Mg + Me)/(h + t)a —-s =0 ', ‘(228)

The stress—strain relations (56), (59) to (61), and (64) to (67)
become, if there is set in accordance with equation (63)

h t)t E ‘
x1=,x2=x12_l———( ;2) ﬁ— : ~ (229)

o . Big — (v - Bwo = ox(ge o Bt 1) | (230)
e
P = (0 + 00 (g + L2 | (232)

(1 + Mg = (v = MMy =‘D;<B.¢"+ 2) (233

T (LM — (v - X)M¢.= D?*<B¢ cot ¢ + f;) (a3
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There is first given a simple special solution of this syetem of
equations and then a generalization 1s obtained of the two simultaneous
equations for Q¢ and B¢ which are fundamental in the theory of

homogeneous isotropic shells.

Uniform stress distribution in a spherical shell.— Set in
equations (225) to (23h).p¢ =ug = O and assume that Ng, No, Qg, My,
and My are independent of @#. TFrom equation (225) it follows that: .

-
N¢ = Ne = NO
(235)
K Qg =0
From equation (226) it follows then that
1
NO =5 8aq (236)
and frbm equation (227) it follows that
Mg = My = Mo (237)
Eqﬁation (228) gives
Oty = 8 — 2My/(h + t)a : (238)

“In equations (230) and (231) set u = O for reasons of symmetry and
obtain _

o t(h + t) Er q

. (1+%_)~—‘V)NO=-E-V+ P (239) |
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or, with No from equation (236) and A from equation (229),

(C*/a)w = -21.<1- ~ ¥)agq (240)

Equation (232) is identically satisfied when- Bg = o. Equations (233)
and (234%), in conjunction with equation (237), give

| 2
(1 + 2% — V)M = (D*/a)(s/Ec) = %i&%.‘l%f .

or

MO - (h + tZaA s | (2)41)

' l+20—v

Then, from equation (238),

\

_ gl—.VtB (2142) .

g =
bm = T o0 = v
Equation (242) may be compared with equation (136) for the circular ring.
According to equation (46), there are obtained from equations (236)

and (241) the following expressions for the stress resultants in the
outer ("upper") and inner ("lower™) face layers:

N
: h+t _ (3 s
S (1+2a )Nu"a<h+1+2x—-v)
" (243)
( _,lﬂ—.:f—t>1\r = a(ﬂ - J__>
2a b 1 +2a-=-vV

-

Comparison of these results with the corresponding results for the
~circular ring (equations (135)) shows that for given values of g
end 8 there is a greater difference between N, and N, in the
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spherical shell than there is in the circular ring, the reason being
the relatively larger influence of the s—term in equation (243),

For a specific example, it is again assumed that thé radial load is
applied entirely to the inner face so that g, = 0 and, according to

equations (20) and (22),
2
h+t
q=<~2&>qz
. 2‘
1/ h+t
- 5(? -TY ) 17

Substitution of equation (24%) in equation (243) gives

> | (ohh)

-

‘ 2 a
-<1+h+t>Nu=<l_h+t> G _1-v

28 28 r1+2};-v
| g (245)
N, = _h + t\821 1 4+ k) —v
[ 2 2a L 1+ 20—y ' J

As a numerical example, taking X = 0.0595, as in the example given in
the section entitled "Closed circular ring acted upon by uniform radial load,"
and V = 1/3, it is found that the factor in N; which contains the effect
of the core flexibility is (1 + 0.36)/(1 + 0.18) = 1.15. Thus, where
for the circular ring there was a 6-percent stress increase, there now
is a 15-percent stress increase.

Reduction of axisymmetrical problem to two simltaneous equations
for Qg and Bgf— The fundamental results of reference 10 for

homogeneous shells may be readily extended to sandwich shells, as
follows: '

Equations (225) and (226) are used to express N¢ "and Ny in
terms of Q¢.

Ng = cot ¢Q¢ + F1(9) (246)

Ng = Qg + Fo() | (247)



80 NACA TN No, 1832

In equations (246) and (247) the functions F; and F, are given by

Fp = ;Eiga‘]‘(q‘c?s ¢ - pg sin ¢)sinv¢ ag (248)

F, = B%in.¢ Fl " apg sin #] (2k49)
Next the displacement components u and W are expressed in terms

of Q¢, by means of equations (230), (231), (246), and (247).

Subtraction of equation (231) from equation (230) gives

St = cotg ) = (1 + v) (ig - M)

= (1+ v)[—<Q¢' ~ cot ¢Q¢> + F) — F2:| (250)
Fquation (112) is integrated to
(c*/a)u = ~(1 + v) (qg + F3) . (251)

where F3 is given by

. B ,
F3 = —sin ¢L/‘ 1(¢:in Fo(f) ag (252)

Equations (251) and (252) are introduced into équation (231) and the
following expression is obtained for w:

(C*/a)w = (1 + X/3)(cot ¢Q¢ + Q¢'> + F), (253)
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where F) 1is given by '

(h + t)

Fh=___i'2+——%+ (1 +.v)cot¢F3+(l+->3¥>F2—( ‘%Fl (254)

Equations (251) and (253) are introduced into equation (232) for
and the first of the two simultaneous equations for Q¢ and B¢ is
obtained in the form

(h—Qth-)E: = B¢ + E-];li(l + %) (cot¢ Q¢ + Q¢'>‘ +.Fut

+ (1 + ‘V)(Q¢ + F3>]

which may be rearranged to readl’

Q" + oot f gt - [°°t2¢ oy ok ] )]Q"’

1+A2/3 G, (h+t)(1+ /3

TS g = E(® | (255)

The function Fs is given by

r (1 +Vv)F3 + F)

-5 T l+>»/3' (256)

Introducing the operator

L

m

()" + cot B )" — cot?@( )

lM™hen A =0 and G¢ = » and when no external loads are present,
this equation checks with the first of equations (g) on page 469 of
reference 9. '
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equation (255) may finally also be written:

| (L - m)eg + x/3 By = F5(9) S (e
where
_ (2t Er_ .o MN_1 '
Hl = <h +t Gg v 3)1 + A/3 (258)

The second -of the-two similtaneous equations is obtained somewhat
more directly as follows: Write equations (233) and (234) in the form

_ D*/a ' - :
YT o [(1 # g’ (v - deot 4 o
v (14 v)s/Ec] ‘ . , (259)
My - D*/a [(2+ Meot g py + (v - gy

1—v2 + 201 + v)

(14 V)s/Ec] " (260)

Introduce equations (259) and (260) into the moment equilibrium
equation (228) and obtain

D*fa [B¢“ + cot § B¢' - <cét2¢ + ; : ;)B¢ + (1 + V)S'/Ec;

1—v2f2x(1+v)

+ (1 + V)S'/EG:I - 3Q¢ + amg = 0 (261)



NACA TN No, 1832 83

Again, using the operator 1, this may be written in the form C

(-2 Dpg-Sh-» vy -rm  (e6)

The function Fg 1is given by

Fg = —(1 + v)—%—— —[l v o+ 2X(l + v)]m¢ (263)

Equation (262) may be compared with the second of equations (g)
on page 469 of reference 9.

Anslysis of edge effect for spherical shell.-— The special case of

no distributed surface load and no concentrated load at the apex of the
shell is obtained by setting

F5=F6=

Following again a known procedure from the theory without
transverse stress deformation, there may be set

Q¢ \lsin

> (264)

by B
\/sin¢ )

-~
t / Q].' 1 Ql
Q = = cot
¢ sin 2_ ¢ sin
. > (265)
1t 1
\‘sin ¢ \/ sin 2 \’ gin ¢
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with corresponding formlas for B ! and B? . Introduction of

equation (264) into equations (257) and (262) gives

1t 1_3, 2> , C* =
Q +<ul+2 hc°t¢Ql+1+x/3ﬁl 0 (266)

By'' ~ <f =X _ % + % cot2é>81 - %%[i - v 4 21 + Vi]Ql =0 (267)

+

(-
>

Attention is restricted to the cases for which F5 =Fg =0 1in
equations (266) and (267) and the problem is considered of the shell
subject to edge loads (M¢)O’ (Q¢)o, and QW}O at a section ¢ = ¢,

Assuming that cot @y 1s not large compared with unityl8 and that the
effect of the edge loads is restricted to a narrow edge zone so

that | Q| << |@", | 81| << |B1''], equations (266) and (267) may be
simplified to

¥ B =0 (268)

Q-+ ———
1 1+ )3 ' ,

2
Bl"—%—l—v2+2l(l +v)]Q1=0 (269) *

Equations (268) and (269) show that the influence of finite Es(\ # 0)
in the edge—effect problem consists, except in extreme circumstances,
in minor modifications of the results for E; = o». The quantity T

which represents the influence of finite G, and which is

N

~ 2t
L B

OI'—*;M

(270)
(]

may, however, in practical cases be large compared with unity and not of
negligible influence on the results.

18men  cot 1 > 1 the shell is termed a "shallow" shell which is
not considered in what follows.
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Equations (268) and (269) may be compared with equations (180)
and (182) for the cylindrical shell. This comparison shows that the
influence of finite G; 1in the edge—effect problem is of the same

nature for the spherical and cylindrical shells., Thus, results of the

same quantitative nature will be obtainable as in the section on
cylindrical shells under the headings entitled "Finite circular cylindrical
shell acted upon by edge moments and forces" and "Semi-infinite shell acted
upon by edge bending moment and shear force."

This work is not herein carried further to specific applications.
It is apparent that such applications may be worked out with hardly any
more difficulty than when the effect of the core deformebility is not
taken into acgount.

CONCLUDING REMARKS

A system of basic equations has been derived for the analysis of
small-deflection problems of sandwich—type thin shells. This system of
equations reduces to love's theory of thin shells when the transverse
shear and normal stress deformability of the core of the sandwich is of
negligible importance. The system of basic equations has been applied
to a number of specific problems from the theory of plates, circular
. rings, circular cylindrical shells, and spherical shells, and it has
been found that the effects of both transverse shear and transverse
normal stress deformation may be of such magnitude that an analysis
which disregards them gives values for deflections and stresses which
are eppreciably in error.

Numerical calculations have been in the nature of sample calcu—
lations, illustrating both the use of the equations and the possible
effects of using them. ZExamples have been chosen from the point of
view of relative simplicity as well as with the thought to illustrate
most clearly the consequences of the extra deformations which have
been taken into account. It is unavoidable that, in so doing, some of
the examples may be of little interest for aircraft structural analysis
and that some problems may not have been analyzed which would have well
fitted within the contents of this report and which at the same time
would have been of considerable practical importance.

The general analysis has been restricted by the following two
- order—of-magnitude relations: (1) t/h << 1 and (2) tEp/hE, >> 1,

where t is the face—layer thickness, h is the core—~layer thickness,
E¢ 1is the elastic modulus of the isotropic face—-layer material,

and E. 18 the elastic modulus in the transverse direction of the
core—layer material. Therewith it is felt that .very likely nearly
all situations have been covered in which the effect of transverse
core flexibility is of significant practical importance. It is
evident, however, that if desired the theory could be extended so as
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to include cases where one or both of these two order—of—magnitude
relations are not satisfied. The main limitation of the present
analysis is the omission of all finite—deflection and instability
effects, '

Massachusetts Institute of Technology
Cambridge, Mass., May 26, 1947
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Figure 1.- Element of composite shell, showing coordinates and dimensions.
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Figure 2.- Element of composite shell, showing location and orientation of
stress resultants in face layers and core layer and orientation of external
loads. '
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