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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 227k 

EXTENSION OF THE THEORY OF OSCILLATING AIRFOILS OF FINITE 

SPAN IN SUBSONIC COMPRESSIBLE FLOW 

ByEric Reissner 

SUMMARY 

As part of aninvestigation of flows around and. forces on an oscil-
lating finite wing in subsonic compressible flow, the exact double inter 
grals occurring in the theoretical formulation of the three-dimensional 
nonstationary aerodynamic forces have previously been reduced to single 
integrals over the range of either one of the two independent variables. 
The present report describes a method for solving the resultant three-
dimensional problem based on a generalization of approximate methods for 
solving two-dimensional problems. It is shown that the calculation of 
three-dimensional corrections to the two-dimensional theory involves 
only the solution of a one-dimensional integral equation for the spanwise 
variation of circulation, provided tabulated values for the kernel of the 
integral equation are available. 

INTRODUCTION 

The present report is a sequel to an earlier report (reference 1) 
on the problem of the oscillating lifting surface of finite span in sub-
sonic compressible flow. In the earlier report the exact double-integral 
equation of the problem had been reduced to an approximate integral equa-
tion in such a way that the double integrals are reduced to single nte-
grals over the range of either one of the two independent variables. The 
present report describes a method of solution of the resultant three-
dimensional.problem. The proposed method is a generalization of any one 
of the known approximate methods for the solution of the two-dimensional 
problem. It is shown that the calculation of three-dimensional correc-
tions to the two-dimensional theory involves, within the framework of the 
proposed procedure, nothing more than the solution of a one-dimensional 
integral equation for the spanwise variation of circulation. The solu-
tion of this one-dimensional integral equation will be no more difficult 
than the corresponding solution for the problem of incompressible flow, 
once the kernel of the -integral equation has been tabulated for an appro-
priate range of parameters. Determination of the numerical values of 
this kernel function is not a straightforward matter because of the 
particular analytical form in which this function appears. Applications 
of the present theory depend on the execution of this numerical task.
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SYMBOLS 

quantities defined as g*(x*,y*) = g(x,y); 
X*(x*,y)	 X(x,y) 

xx	 -	 dimensionless coordinate ((x - xm*)/b*) 

yX	 dimensionless spanwise coordinate (y/sJi - M2) 

*	 dimensionless coordinate 

G,K	 kernels of integral equation (1) 

= 

Xm*	 quantity indicating amount of sweep 

quantity defined by equation (2) 

= I/S\/3i_ M2 

local semichord divided by semichord b at midspan 

x,y,z	 dimensionless coordinates 

k	 reduced-frequency parameter 

circulation function 

g	 function defined by equation (8) 

X	 function defined by equation (6) 

variables of integration 

k.
l-M2

pressure amplitude at lifting surface 

modified potential function
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lVa = r(x,y,O) 

p0 density of stream flowing with velocity	 U 

U main-stream velocity 

b semichord at midspan 

l-M 2 

H instantaneous shape of lifting surface 

M Mach number of main stream 

ct arbitrary constant 

auxiliary variable of integration 

P quantity defined by equation (17) 

Q,wj functions defined by equations (19) and (20) 

SM function defined by equation (22) 

s ratio of semispan to semichord at midspan 

2) ,H1 (2) Hankel functiohs of second kind and. of zeroth andfirst 
order, respectively 

FM function defined by equation (23) 

auxiliary variables of integration 

component of pressure distribution 	 a	 representing 
solution of special two-dimensional problem 

component of pressure distribution 	 a	 representing 
solution of problem when three-dimensional effects are 
neglected 

p(2)	 - quantity defined by equation (28) 

B quantity defined by equation (A 14-)	 .• 

1,11,12 functions defined by equations (A7)
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a	 arbitrary constant 

J0,Y0	 Bessel functions of zeroorder 

F1,F2	 real and. imaginary parts, respectively, of funátion FM 
defined by equations (Al2) 

FORMULATION OF PROBLEM 

The problem which, is considered in what follows consists in the 
solution of an integral equation of the following form: 

p1 
g*(x*,y3f) =	 X*(*,y*)G(x* - *) d* + 

J -1

no0 

iv*e_i\m* ç*(y*)	 e_** G(x* - *) d* + 

Ji 
1 

e_**m*)	 K(y* - *) d*	 (i) dr* 
J-1 

The form of the functions G and K follows from a comparison of the 
foregoing equation with equation'(88) of reference 1. Equation (1) is 
to be solved for X*, in terms of g* and *, and then use is to be 
made of the definition of * in terms of A.*; namely, 

'p1 
*e-1 /
	

X*dx*	 -	 (2 

J-1 

Attention shall here be restricted to the problem of the rectangula 
lifting surface for which

b*=l

(3) 

XmO	 g*g	 -
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Equation (i) may then be rewritten in the form 

p1 
g(x,y*)	 -	 X(,y*)G(x -	 + 

3-i
roo 

ivQ(). 
/	

e 1	 G(x - ) d + 

Ji

K(	 -	 ) d*	 () 

p1 

=	
/	

X(x,) dx	 (5) 
(i-i 

It is now recalled that the function X. is related to the pressure 
amplitude a at the lifting surface by means of the equations 

X = 2 P(x,y,O) = 2	 a	 (6) 

and

a =-	 e'(ivra +	
(7) 

and that the function g is determined In terms of the instantaneous 
shape H of the lifting surface by the relation 

g = Ue	
+	

(8) 
V1_M2 

Note also that

k 

= l2M2	 (9)
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The proposed procedure for the solution of equations ( ii-) and (5) 
depends on the introduction of the function a instead of X into 

the integral equatioL, that is, on the reduction of this equatin, 
when dc/dr* = 0, to Possio's form. This step will be carried out in 
the next section. 

IITEGRAL EQUATION FOR PRESSURE DISTRIBUTION AT AIRFOIL 

Combination of equations (7). and (9) leads to the following 
alternate relation between	 and. 

=-

	

	 a( ,* )ikX t	 t	 (io) 
p0U

Li -1 

A corresponding expression for the circulation function 	 is obtained
as follows:

=	 a	 = 2e	 a(1,) 

=-i 

a	 (t	
(U) 

From equations (6) and. (10) it follows that 

X	
POU[	

a - iVe_Cj aeit	 (12) 

Equations (ii) and (12) are introduced into integral equation (ii-). 
There occurs one term which must be transformed by integration by parts, 
namely, the term
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G(x - ) I	 aelk	 d = 

3-1 

	

e	 G(x- -')d'	 ae1'	 - 

if[J 
e ' G(x- )
	

(13) 

The arbitraryconstant a. may be set equal to infinity. If this is 
done then the integrated portion of equation (13) can be used to cancel 
the second term in integral equation (1 4.). Equation (It ) becomes 

g
	 5 

1 

a	 [e1'G(x -	 + 

ivJ	 G(x	 ') d'e	 ci + 

K(	 _r*) d*	 (lu) 

On the left-band side of equation (lu) the value of g from equa-
tion (8) is introduced. Then both sides of the resultant equation are 
multiplied by (p0U/2b)e'. This gives 

	

____	 +	 = Jl a *)[e	 G(x - 

	

2b\Jl M2	 X	
-1 

1ve 1 Je	 G(x Y) d t] d + 

K(y* -. *) dr	 (15) 
2b	 I	

dr* 
li-i
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Now set rx-
(x- ) = e .G(x -	 - ive(x	 J	 G() d	 (16) 

- 

and.

p1 
pU	 I 

-	 I	 pa( x , y ) e	 dx = -P	 (17) 

•	 J-i 

This leads to the following final form of the integral equation of the 
problem	 •'	 S 

p0u2	
(ii +
	

=	

a(	 - ) d - 

2b \J i - M2	 .	 J1

1

K(y*	 *) d*	 (18) 
-	 I	 •dr 

When - dP/dr1 * 0 this integral equation must reduce to the corresponding 
equation of the two-dimensional theory; that is, the kernel G must be 
reducible to the corresponding kernel in Possio t s formulation of the 
problem. It is not necessary for the present purposes to verify explic-
itly that this requirement is satisfied. 

It is useful to introduce as further abbreviations 

Cl 
=	 - K(y* - *) th1*	 (19) 

dr1* 
d-1

U2	 / =	 _____ (ik +
	 (20) •'	

2b \J l. -• M2 \	
xJ
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Finally, before proceeding, the analytical expression for the 
kernel function K is listed explicitly. 

1	 ,, [ks K(y* - r*) =	 ______	 ______ 
si- M2	 L'	

(y*	 rL*)1	 (21) 

where

p -M I z 
k	 c(2)(MIZ,) + I	

(2)) 
SM(Z)=y2 

ZL	 J_oo 

iks 
_____ F (z) 
Vi - M

-Ia	 ae	
a2+2	

1	 +	 d + FM( z) = --
	

e	
j	 a2 + 2 Wa2 + 2	 J LAO	 J_oo 

r( 
1-IzI eM T2+2 

-	 M2j	

j_	
+ 2	

) 

_iM\JT2+Z2 
fze	

(	 '	 +	 d'r da	 (23) 
T2 + Z2	 "\ \jr2 + 

The difficulty of the problem of evaluating the function K lies 

in the form of the function FM. In an appendix to this report there 
are incorporated some preliminary considerations by Z. Kopal concerning 

evaluation of this function FM. 

SOLUTION OF INTEGRAL EQUATION FOR PRESSURE DISTRIBUTION Pa 

Equation (18) is written in the form	 -	 - 

r 1, 

- wj(x,y*) +	 XQ(y)	 d.	 (2k) 

J-1

(22)
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and it is seen that the expression for a may be considered to be 
composed of two parts, as follows: 

	

= pa (x,y*) - Q a( x )	 (25) 

The term a(2) represents the solution of the problem when three-
dimensional effects are neglected. The term 'a represents the solu-
tion of a special two-dimensional problem, namely, that problem for 

which w(x, y*) = _ehI0. This result holds regardless Of the manner in 
which the solution of the two-dimensional problem is approached, and 
for the present purposes a( 2 ) and	 a may be considered as known. 

It remains to determine the values of Q. In order to do this 
equation (25) may be combined with equation (17). This gives 

	

. p1	 p1 
P(y*) = J	 a(21 1X -	 J Aae '	 dx	 (26) 

	

-1	 J_l 

Use is now made of the definition of Q by means of equation (26), in 
order to write 

P(y*) =

	

a2e	

-	

K d*	 (27) 

In equation (27) the abbreviations 

p(2)( y* )	 (2)(x,y*)eikx dx	 (28) 

p1 

(k,M) =
	 Pae	

dx	 (29)

J-1 

are used in order to obtain the basiä integral equation of the problem 
in the form

p(y*) ' + (k,M)	 K(y* - *) d* = p(2)() 	 (30)
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Equation (30 ) is the appropriate generalization of the previously 
obtained integral equation for the circulation function 	 in incom-
pressible flow (reference 2). It is seen that determination of the 
terms p(2) and , as defined by equations (28) and (29), requires the 
solution of a two-dimensional problem in accordance with equations (21) 
and (25). In view of equations ( 19) and (30) the factor Q in the 
three_dimensionalcorrection term in equation (25) may also be written in 

the form

= (2)	 p	
(31) 

What is left to be done, In order to obtain three-dimensional 
cori'ectiOnS of the kind here contemplated, is to solve integral equa-
tion (30), and there the main difficulty is the tabulation of the func-
tion K. Once. K has been tabulated the problem of subsonic compress-
ible flow is solved to the same extent as the problem of incompressible 
flow has been solved in reference 2. The solution of specific problems 
may then be obtained in the same manner as was done in reference 3 for 
problems of incompressible flow. 

Massachusetts Institute of Technology 
Cambridge, Mass., May 5, l99
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APPENDIX 

SOME CONSIDERATIONS ON EVALUATION OF FUNCTION FM 

By Z. Kopal 

Given

-Ia [ r - 
lxI• 

aeM a2+2	 1	 +	
d + FM(x)=	

j	
e	

a2+2 Jo	 Lco 

	

f ixie2	
(_'	 +	 dT .+' 

Ljoo	 T2 + X2	 \\/T2 + X2	 I 

ra rIxI.-iM\1c	 1 
M2 I	 I	

e	 dT d I de	 (Al) 

	

\/T2±2	 j 

Since

	

ae_1s/4 2 _______	 r e_1MV02 
(	 1	 +iM'\d=----. I	 _____ 

	

22	 I
(A2) 

_a 
I x Ie _	 (_1	 +	 =	 e	 T2+X2 dT 

T2 + 2	 'Jr2 + x2	 X XJa	 \JT2 + x2 

and. since, moreover, the order of' integration in the last integral 
(factored by M2 ) is Interchangeable, the foregoing function FM( X) can 
also be written as

FM(X) = - j	 e	 B(a,x;M) da	 (A3) 

Jo
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where

B =	 i(x,) +	 I(a,x2) - M2 J I(a, 2 ) d	 (Au) 

In equation (A4) the abbreviations 

r e4\/a,2+y2
d.y a 11(a-,ct2 ) - i12(a,a.2 ) I(a,ct2) Ja

	
fy2 + 

Ii(a,a2) L[a

	

M.Jcx2 + 2 dy 

'Jct2+y2 

I2 (a, 2 ) = I	
M2 +	

dy 

Ja	 \Jcx.2+y2 

are used and (since only positive values of x are of interest here) 
is set equal to 1. 	 - 

The whole difficulty of the problem centers around the evaluation 
of the I integrals when M 0. If a = 0, 

rcosM2+dyY() 

Ja.2+y2

(A6) 

sin M	 +	 dy = j0(M) 

Jo 
It can, furthermore, be proved (although the proof is somewhat involved) 
that the I functions, regarded as functions of M, satisfy the following 
differential equations:

(A7)
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M2 	 + M + = Ma sin M\J+ a2

(A7) 
M ___ I2 

which, incidentally, can be written as a single equation of the form 

+ M + a2M2I 
=

-	 (A8) 

If	 a = 0, the homogenous part of the foregoing equations Is easily 
recognized as Bessel's equation of zero order and their solutions are

I= . Y(Ma) 

'2 = J0(Ma)	 (A9) 

1=11 - 

where 110(i) denotes the respective Hankel function., 

When the two particular solutions of the homogeneous equation 
(for a = 0) are known, the lnhdmogeneous equations admit of a solution 

i	 Y0(Ma) + aJ0(Ma) J 
M 

2y0 ( a) in	 a2 +	 d - 

	

aYo (Ma)f 2Jo(a) sin	 a2 ± a2 d	 (AlO) 

and	 - 
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12	 J0(Ma) + aYo(Ma)f 2J0(a) cps	 a2 ± a2 d - 

	

pM	 - 

aJo(ML)J	 2Y0(ct) cos .Ja2 + 2 d	 (All) 

Since both transcendent functions occurring behind the integral 
sign of these integrals can be expanded in rapidly converging power

	

series of	 and subsequently evaluated, these integrals can hence-
forward be regarded as known. This leaves one more quadrature to be 
performed in order to evaluate the function FM( X) - the real and 
imaginary parts of which can easily be written as 

FM(x) m Fl_ iF2 

where 

	

= j [ 

I1(x,) +	 i1(a,x) M2J Il( 2 ) d] cos a da 

rico 

	

II	 12 (x,a2 ) +	 12(a,x2) - M2 J 	 I2 (a, 2 ) d] sin a 

JoL
(Al2) 

F2 = 1 ._Il(x,a2) + _ 11(a,x2
) - M2 f I1(a, 2 ) d sin a da + 

i(x,a2 ) ±	 I2(a,x2)	 M2f I2(a,2)
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