11 research outputs found

    Foot kinematics in patients with two patterns of pathological plantar hyperkeratosis

    Get PDF
    Background: The Root paradigm of foot function continues to underpin the majority of clinical foot biomechanics practice and foot orthotic therapy. There are great number of assumptions in this popular paradigm, most of which have not been thoroughly tested. One component supposes that patterns of plantar pressure and associated hyperkeratosis lesions should be associated with distinct rearfoot, mid foot, first metatarsal and hallux kinematic patterns. Our aim was to investigate the extent to which this was true. Methods: Twenty-seven subjects with planter pathological hyperkeratosis were recruited into one of two groups. Group 1 displayed pathological plantar hyperkeratosis only under metatarsal heads 2, 3 and 4 (n = 14). Group 2 displayed pathological plantar hyperkeratosis only under the 1st and 5th metatarsal heads (n = 13). Foot kinematics were measured using reflective markers on the leg, heel, midfoot, first metatarsal and hallux. Results: The kinematic data failed to identify distinct differences between these two groups of subjects, however there were several subtle (generally <3°) differences in kinematic data between these groups. Group 1 displayed a less everted heel, a less abducted heel and a more plantarflexed heel compared to group 2, which is contrary to the Root paradigm. Conclusions: There was some evidence of small differences between planter pathological hyperkeratosis groups. Nevertheless, there was too much similarity between the kinematic data displayed in each group to classify them as distinct foot types as the current clinical paradigm proposes

    Clinical assessment of depth sensor based pose estimation algorithms for technology supervised rehabilitation applications

    Get PDF
    Encouraging rehabilitation by the use of technology in the home can be a cost-effective strategy, particularly if consumer-level equipment can be used. We present a clinical qualitative and quantitative analysis of the pose estimation algorithms of a typical consumer unit (Xbox One Kinect), to assess its suitability for technology supervised rehabilitation and guide development of future pose estimation algorithms for rehabilitation applciations. We focused the analysis on upper-body stroke rehabilitation as a challenging use case. We found that the algorithms require improved joint tracking, especially for the shoulder, elbow and wrist joints, and exploiting temporal information for tracking when there is full or partial occlusion in the depth data
    corecore