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Research Highlights 

 Clinical analysis required to determine suitability of pose estimation algorithm. 

 Joint rotation required for more in-depth and correct assessment. 

 Exploit temporal information to ameliorate issues with occlusion. 

 Constrain joint estimations to within the anatomical limits of the human body. 

 Consult clinicians to select exercises that provide fewer challenges for algorithm. 

 

 

ABSTRACT 

Encouraging rehabilitation by the use of technology in the home can be a cost-effective strategy, particularly if 

consumer-level equipment can be used. We present a clinical qualitative and quantitative analysis of the pose 

estimation algorithms of a typical consumer unit (Xbox One Kinect), to assess its suitability for technology 

supervised rehabilitation and guide development of future pose estimation algorithms for rehabilitation 

applciations. We focused the analysis on upper-body stroke rehabilitation as a challenging use case. We found that 

the algorithms require improved joint tracking, especially for the shoulder, elbow and wrist joints, and exploiting 

temporal information for tracking when there is full or partial occlusion in the depth data.  

Keywords: Stroke rehabilitation; Home rehabilitation; Clinical evaluation; Depth sensors; Pose estimation 

accuracy 

1. INTRODUCTION 

Stroke was the third most common cause of disability worldwide in 2010 (Murray et al., 2012), ranked by 

Disability-Adjusted Life Year (DALY). Even though motor control can be significantly improved by post-

discharge exercises (Selzer, Michael,, unfortunately only 31% of patients adhere to their home exercise regime 

(Shaughnessy, Resnick, & Macko, 2006). Game-based rehabilitation systems can mitigate this (Burke et al., 2009), 

(Rego, Moreira, & Reis, 2010), (Flores et al., 2008), but they need to provide real-time feedback that reduces 

compensatory movements to enable true motor recovery.  

In order to assess whether consumer-level equipment can provide this necessary quality of feedback, this paper 

presents a clinical analysis of a pose estimation algorithm running on a consumer depth sensor (Xbox One Kinect), 

in the context of stroke rehabilitation, using exercises taken from the Graded Repetitive Arm Supplementary 

Program (GRASP) manual (Harris J. E., 2009). A quantitative analysis of the joint position accuracy was also 

performed to support the clinical analysis. Section 2 indicates previous work in evaluating pose estimation 

algorithms in other contexts. Section 3 explains the methodology of both the clinical analysis and the quantitative 
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analysis as applied to the stroke rehabilitation exercises. Section 4 examines the results and discusses the 

limitations associated with the pose estimations (both clinically and quantitatively). Section 5 draws conclusions 

and posits future work to be undertaken to improve the outcomes. 

2. RELATED WORK 

A number of studies have been undertaken on Kinect 1 and Kinect 2, though within different scenarios. Generally, 

these studies used marker based motion capture systems to establish ground truth. Fernández-Baena et al. (2012) 

examined Primesense’s NITE pose estimation algorithm using depth data from Kinect 1. They claimed that joint 

accuracy could be improved by imposing a fixed length on the bones, and indicated that “Kinect can be a very 

useful technology in present rehabilitation treatments”, though they performed no clinical analysis.  Obdrzalek et 

al. (2012) examined Kinect 1 for elderly coaching exercises and concluded that measurements “could be used to 

assess general trends in the movement”, though they made no clinical claims. Kurillo et al. (2013) found that 

Kinect 1’s pose estimations were sufficiently accurate for reachable workspace analysis. Xu & McGorry (2015) 

compared the quality of Kinect 1 and 2 for poses within activities of daily living, and interestingly found that 

Kinect 1 produces lower errors. In contrast,  Wang et al. (2015) considered that Kinect 2 was superior over a range 

of 12 exercises particularly when occlusion and body rotation occurred. In terms of clinical assessment, Yeung et 

al. (2014) found that Kinect 1 could achieve acceptable accuracy for total body centre of mass movements, but 

performed better for medial and lateral movements than anterior and posterior movements. 

In terms of stroke rehabilitation, Webster et al. (2014) evaluated the joint accuracy of Kinect 1 on 13 gross 

movements. They found that Kinect 1 accuracy is sufficient for gross movement-based rehabilitation systems for 

clinical and in-home use. However, there was no assessment within standard rehabilitation exercises or clinical 

evaluation for the possibility of detecting compensatory movement. Mobini et al. (2013) evaluated the accuracy 

of the flexible action and articulated skeleton toolkit (Suma, Lange, Rizzo, Krum, & Bolas, n.d.) using Kinect 1 

for upper body stroke rehabilitation applications. They found that lateral variations in position did not significantly 

impact joint accuracy, though horizontal distance had some effect. We note that these may be relevant issues when 

the stroke survivors are setting up their equipment without assistance.  

These previous studies concentrated on absolute joint accuracy as compared with a ground truth provided by 

motion capture systems. The comparison with a clinical study, where expert clinicians provide analysis on 

significant aspects of the poses calculated by the equipment, was not performed. During rehabilitation, clinicians 

stress the importance of ensuring that the patients avoid compensatory movements, and so the evaluation and 

assessment of the pose algorithms needs to emphasise this aspect. 

3. EXPERIMENTAL METHODOLOGY 

This section will describe the methods employed for capturing, processing and analysing the data used in the 

clinical and quantitative studies. 

3.1 Experimental Setup 

Our evaluation is based upon version 2.0.1410.19000 of the pose estimation algorithm of the Kinect for Windows 

SDK for the Xbox One Kinect. This provides pose estimations for 25 joints at 30 Hz and allows a user’s skeleton 

to be tracked on a subset of joints. Joint locations were recorded while seated, with default tracking mode in order 

to capture spine joints also. 

Kinect produces a depth image with a resolution of 512*424 pixels (Microsoft, n.d.), as shown in Figure 1. This 

depth image is then used as input to the Kinect Software Development Kit’s (SDK) pose estimation algorithm, 

which is based on the approach presented by Shotton et al. (2011) to infer the joint positions. This reduces the 

original feature space of the depth image (217088 values) to a much more tractable 75 values per frame. Given 

that Kinect’s pose estimation algorithm (Shotton et al., 2011) runs in under 5ms on an Xbox 360 graphical 

processing unit (GPU), further in-depth analysis of human motion can more efficiently take place on this reduced 

feature space. 
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Figure 1: A 3D representation of the depth data (Left). A 2D greyscale representation of the depth data (Centre). The RGB 

colour image (Right). These images are all captured from a single time step from the Xbox One Kinect.  

It should be noted that when Kinect is tracking a body, joints are classified as either tracked or inferred. A joint is 

classed as tracked when confidence in the data is high i.e. there is little or no occlusion of the point cloud data 

surrounding the joint. If there is full or significant occlusion of the point cloud data surrounding the joint, its 

coordinates are classed as inferred. 

 

3.2 Clinical/Qualitative Analysis Methodology 

The gross upper-body exercises selected for analysis from the GRASP manual were, as labelled in the manual: 

Arm to Side, Arm to Front, Shoulder Shrug, Twist and Drying Off (Figure 2). They range from relatively simple 

exercises, e.g. arm to side, to more difficult exercises, e.g. drying off, which requires multiple limbs and a towel 

to be used. All exercises were recorded from a frontal view as this is the expected view for observing patients. As 

we are investigating the pose estimation accuracy in the context of upper-body stroke rehabilitation applications, 

pose positions below the hips and on the hands were not considered. 
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Figure 2: The five exercises selected from the GRASP manual for evaluation. Arm to Side (Top Left): Shoulder joint is abducted 

to 90 degrees and then adducted back to 0 degrees. Arm to Front (Top Middle): Shoulder joint is flexed to 90 degrees and then 

extended back to 0 degrees. Shoulder Shrug (Top Right): Shoulder joints are elevated and then depressed. Twist (Bottom Left): 

Shoulders are flexed to 90 degrees and hands are clasped, thorax is rotated towards 90 degrees in one direction then returned 

to starting position and rotated towards 90 degrees in the opposite direction. Drying off (Bottom Right): Towel is grasped and 

placed behind the neck, arm extension and flexion is performed along the frontal plane. 

To perform a clinical analysis of the pose estimations, recordings of a user performing the GRASP exercises were 

captured in Kinect Studio. The physiotherapists watched a recording of each exercise with the joint skeletal data 

overlaid. The exercise was first performed correctly, and then repeated with each of the common compensatory 

movements (as listed in Table 1) deliberately included. So, for example, the ‘Drying Off’ exercise was performed 

5 times; correctly and then 4 separate faulty versions. The physiotherapists made observations on the accuracy of 

the pose estimations using the key in Table 2, noting accuracy of the joint positions relevant to assessing 

performance of a stroke patient.  

 

Table 1: List of exercises the physiotherapists observed including the associated common compensatory movements. 

Exercise Associated Common Compensatory Movements 

Arm to side Trunk lateral flexion, Shoulder elevation, Thorax rotation, Arm flexion 

Arm to front Trunk backward flexion, Shoulder elevation, Thorax rotation, Arm flexion 

Shoulder shrug Head side flexion, Shoulder abduction 

Twist Trunk lateral flexion, Arm flexion 

Drying off Trunk lateral flexion, Shoulder elevation, Dipped arm, Head side flexion 
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3.3 Quantitative Analysis Methodology 

For the quantitative assessment, the ground truth (GT) was provided by a passive retro-reflective marker based 

motion capture system (Qualisys, 2015). This system captured the exercises at 240 Hz simultaneously with 

Kinect. The participants sat in an armless chair ~2 metres from the Kinect. Previous work has indicated  that at 

this distance, Kinect has an average depth accuracy error of less than 2mm (Yang, Zhang, Dong, Alelaiwi, & 

Saddik, 2015). 14mm passive reflective markers were placed on the centre of the anatomical joints to be tracked. 

Where Kinect’s counterpart anatomical joint is unclear, e.g. SpineMid, the markers were placed over the top of 

the Kinect joint while the user was in a seated t-pose posture, as shown in Figure 3. Multiple markers were used 

on certain joints to determine the location of the centre of the joint. For example, two markers were placed on the 

front and back of each shoulder and the position between the two markers were calculated to get the joint centre. 

 The Kabsch algorithm (Kabsch & IUCr, 1976) was used for rotational alignment of the datasets in the X and 

Y coordinates. It minimises the RMS deviation between the HipLeft, HipRight and SpineShoulder joints for both 

datasets at the t-pose posture frames. As the markers are visually placed on top or near their counterpart Kinect 

joints, rotational alignment is accurate for the X and Y positions. To find a good rotational alignment for the 

datasets in the Z position, a reference frame was defined when the user’s arms were by their side, and the Qualisys 

dataset rotated around the X axis by 0.5 degrees to find the minimum difference in WristLeft Z position between 

the Kinect dataset and Qualisys dataset on the reference frame and t-pose frame. 

After the alignment of the two datasets to accurately calculate the standard deviation (SD) and mean error  of 

Kinect’s joint positions, a seated t-pose posture was selected as the GT frame of Kinect’s joints (see Figure 3). 

This posture presents Kinect’s pose estimation with little difficulty. The joint SDs were modelled as ellipsoids to 

enable visualisation of the variance/jitter of each joint in all axes (Wang et al. 2015). The exercises were performed 

by 5 volunteers, and the calculated results averaged. 

 

 

Figure 3: Seated T-Pose posture used as Kinect's ground truth for determining the SD and mean error of joint positions over 

an exercise.  

 

 

4. RESULTS AND DISCUSSION 

4.1 Qualitative Analysis Results 

Four practising physiotherapists analysed the accuracy of the joint position estimations for each GRASP exercise. 

Their assessments are presented in Table 3. For samples from the clinical evaluation sessions see (“Clinical 

Evaluation of Depth Sensor - YouTube,” n.d.). Physiotherapists were free to comment on any joint, using their 

clinical judgement to decide what was worthy of comment. Because of time constraints, only P1 watched all of 
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the exercises (5 correct and a total of 16 with compensatory movement). Where P1 made no comment on an 

exercise, they confirmed that it was because they considered the pose tracking to be acceptable for assessing the 

exercise with regards to the compensatory movements. However they did explicitly comment on some of the 

exercises that were wholly acceptably tracked, and these are shown in the table. The exercises where P1 had made 

some comment about the tracking quality were presented individually to the other physiotherapists (without any 

indication of each other’s views) to determine whether they also considered the tracking to have some problems. 

To calculate the mean (M) and standard deviation (SD), the categories AT, MT and UT from Table 2 were given 

a value of 1, 2 and 3 respectively. 

 

Table 2 Key used by the physiotherapists for the evaluation of the joint position estimations in Table 3. 

Key 

Acceptable 

tracking (AT) 

A joint’s estimated positions’ result in an acceptable difference from the true position. The 

error in the position does not lead to misclassification in the assessment, e.g. a limb is showing 

no flexion when no flexion is occurring. 

Moderately 

acceptable 

tracking (MT) 

A joint’s estimated positions’ result in a moderately acceptable difference from the true 

position. The error in the position leads to a minor misclassification in the assessment, e.g. a 

limb is showing minor flexion when no flexion is occurring. 

Unacceptable 

tracking (UT) 

A joint’s estimated positions’ result in an unacceptable difference from the true position. This 

change in position leads to a significant misclassification in the assessment, e.g. a limb is 

showing severe flexion when no flexion is occurring. 

 

Table 3 Physiotherapists’ evaluation of Kinect’s Pose Estimation for each GRASP exercise. 

Description P1 P2  P3 P4 M SD Comments 

ElbowRight 

joint 

“Arm to Side” 

All versions 

 

MT AT AT 

 

AT 

 
AT 0.43 P1: Jitter occurs along the axis of the bone, resulting in variable limb 

lengths. 

WristRight 

joint 

“Arm to Side” 

All versions 

MT AT AT AT AT 0.43 P1: Jitter occurs along the axis of the bone, resulting in variable limb 

lengths. 

SpineMid joint 

“Arm to Side” 

Trunk lateral 

flexion 

AT MT AT AT AT 0.43 P2: Angle around SpineMid joint is represented as a straight line 

when trunk flexion is occurring. 

Hip joints 

“Arm to Side” 

Trunk lateral 

flexion 

UT AT AT MT MT 0.83 P1: Hip joints give the impression that one hip is being lifted from 

the seat. 

P4: Hip joints showing exaggerated movements than is true. 

Shoulder joints 

“Arm to Side” 

Shoulder 

elevation 

 

UT MT AT MT MT 0.71 P1: Roughly 25% of the vertical movement is reported in the joint. 

P2: Shoulder position not accurately portraying severity of shoulder 

elevation. 

P4: Shoulder elevation is visible but not to the extent that is true. 

ShoulderRight 

joint 

“Arm to Front” 

All versions 

except trunk 

backward 

flexion 

 and shoulder 

elevation 

MT AT AT AT AT 0.43 P1: As the arm reaches 90 degrees the shoulder joint drops to the 

axilla this gives the impression the arm is at a higher angle than is 

true. 

ElbowRight 

joint 

“Arm to Front” 

MT AT UT MT MT 0.71 P1: Jitter occurs when joint is occluded resulting in elbow flexion 

when the arm is straight. Joint also reports different limb lengths. 

P3: Incorrectly displaying elbow flexion when the arm is raised. 

P4: Jitter can cause confusion with knowing whether the patient kept 

their arm straight during the exercise. 
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All versions 

except elbow 

flexion 

WristRight 

joint 

“Arm to Front” 

All versions 

MT AT UT MT MT 0.71 P1: Jitter occurs when joint is occluded resulting in elbow flexion 

when the arm is straight. Joint also reports different limb lengths. 

P3: Incorrectly displaying elbow flexion when the arm is raised. 

Incorrectly showing flexion extension in the wrist. 

P4: Jitter can cause confusion with knowing whether the patient kept 

their arm straight during the exercise. 

Shoulder joints 

“Arm to Front” 

Trunk 

backward 

flexion 

 

UT UT UT UT UT 0 P1: The shoulders track inwards severely when this is not the case, 

thus falsely reporting elbow flexion. 

P3: Visually looks like the shoulder joints move towards the torso as 

trunk backward flexion occurs. 

SpineMid joint 

“Arm to Front” 

Trunk 

backward 

flexion 

AT MT AT AT AT 0.43 P2: Angle around SpineMid joint is represented as a straight line 

when trunk flexion is occurring. 

Shoulder joints 

“Arm to Front” 

Shoulder 

elevation 

 

UT UT UT UT UT 0 P1: UT occurs when the arms occlude the shoulder. 

P2: Shoulder dips down as the arms occlude the shoulder. 

P3: Initially elevates but when the shoulder is occluded by the arm, 

the shoulder joint depresses. 

P4: Not clear shoulder elevation is occurring. 

Elbow joints 

 “Arm to Front” 

Elbow flexion 

UT AT AT MT MT 0.83 P1: When the elbow is flexed, jitter occurs even when the joint is not 

occluded. 

P4: Jitter can cause confusion with knowing whether the patient kept 

their arm straight during the exercise. 

Shoulder joints 

“Shoulder 

Shrug” 

All versions 

UT UT MT MT MT

/UT 

0.5 P1: Only a minor vertical movement when elevating the shoulders. 

P2: Minor shoulder elevation tracked when significant shoulder 

elevation occurring. 

P3: Not showing elevation to the degree the shoulders are. 

P4: Can see some elevation but not showing the range. 

Wrist joints 

“Shoulder 

Shrug” 

All versions 

MT AT AT AT AT 0.43 P1: Jitter occurs when joint becomes occluded by the legs. 

Hips and 

SpineBase 

joints 

“Shoulder 

Shrug” 

All versions 

AT AT AT MT AT 0.43 P1: Acceptable jitter can be seen, they also slightly elevate as the 

shoulders are lifted even though the true joint positions remain still. 

P4: Hips elevate with the shoulders. 

Neck joint 

“Shoulder 

Shrug” 

Head Flexion 

 

MT MT UT AT MT 0.71 P1: Reporting only minor head lateral flexion when severe. 

P2: Not correctly showing the severity of head flexion. 

P3: Not able to interpret the head and neck markers as flexion. 

Head joint 

“Shoulder 

Shrug” 

Head Flexion 

 

MT MT UT MT MT 0.43 P1: When severe head lateral flexion occurs, the joint has MT, 

resulting in reporting a minor head lateral flexion. 

P2: Not correctly showing the severity of head flexion. 

P3: Not able to interpret the head and neck markers as flexion. 

SpineMid joint 

“Shoulder 

Shrug” 

Shoulder 

abduction 

 

MT MT UT MT MT 0.43 P1: Falsely reporting minor trunk lateral flexion, when no trunk 

lateral flexion occurring. 

Shoulder joints 

“Twist” 

All versions 

UT AT MT UT MT 0.83 P1: Joints track around the axilla as the arms are raised to 90 degrees. 

P4: When arms raised shoulders become depressed down to the rib 

cage. 

Elbow joints 

“Twist” 

All versions 

MT AT MT AT AT/

MT 

0.5 P1: Joint showing jitter and variable limb lengths during the exercise. 
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Wrist joints 

“Twist” 

All versions 

MT AT UT AT MT 0.83 P1: Joint showing jitter and variable limb lengths during the exercise. 

SpineShoulder, 

Head and Neck 

joints 

“Twist” 

All versions 

 

UT AT MT UT MT 0.83 P1: Joints incorrectly track vertically as the joints are occluded by 

the arms. 

P3: Rotation is inferred by arm joint positions.  

P4: Joints elevated when occlusion occurs. 

SpineMid joint 

“Twist” 

Trunk lateral 

flexion 

 

AT UT AT AT AT/

MT 

0.87 P2: Angle around SpineMid joint is represented as a straight line 

when trunk flexion is occurring. 

Elbow joint 

“Twist” 

Trunk lateral 

flexion 

 

UT MT MT MT MT 0.43 P1:Unacceptable jitter. 

P2: Jitter occurring. 

P4: Shows more flexion than is occurring during some of the 

exercise. 

Wrist joint 

“Twist” 

Trunk lateral 

flexion 

 

UT MT MT AT MT 0.71 P1: Unacceptable jitter. 

P2: Jitter occurring. 

Shoulder joints 

“Drying Off” 

All versions 

 

UT UT MT UT UT 0.43 P1: Unacceptable jitter and tracking on the towel. 

P2: Joint incorrectly tracks on towel. 

P3: Joint positions briefly glitch onto the towel. 

P4: Unacceptable because the joint occasionally tracks on the towel. 

Elbow joints 

“Drying Off” 

All versions 

 

UT UT MT MT MT

/UT 

0.5 P1: Unacceptable jitter and tracking on the towel. 

P2: Joint incorrectly tracks on towel. 

P3: Joint positions briefly glitch onto the towel. 

P4: Unacceptable because the joint occasionally tracks on the towel. 

Wrist joints 

“Drying Off” 

All versions 

UT AT AT MT MT 0.83 P1: Unacceptable jitter and tracking on the towel. 

Hip and 

SpineBase 

joints 

“Drying Off” 

All versions 

UT AT MT UT MT 0.83 P1: The hips and SpineBase joints show UT in the vertical axis. 

P4: Joints move around during the exercise. 

SpineMid joint 

“Drying Off” 

Trunk lateral 

flexion 

 

UT UT UT UT UT 0 P2: Angle around SpineMid joint is represented as a straight line 

when trunk flexion is occurring. 

P4: SpineMid does not move. Not showing any side flexion. 

 

 

As can be seen from Table 3, each of the exercises resulted in some undesirable aspects in the tracking. Even the 

more straightforward exercises such as ‘Arm to Side’, which would have little or no occlusion, caused some issues. 

Problems occurred with jitter at the elbow and wrist joints, which could give rise to variable bone lengths. 

Fernández-Baena et al. (2012) commented that fixed bone lengths might improve the joint accuracy. Trunk flexion 

caused problems throughout, partly due to occlusion. It was noted by several physiotherapists that to perform a 

correct analysis of the exercise, joint rotational information is required. This was noted when assessing trunk 

flexion during the twist exercise. 

Of more clinical interest is the variation between the opinions of the physiotherapists. This may partly be due to 

familiarity, as P1 spent much longer analysing the results. The highest variation came from the SpineMid joint for 

the twist exercise while trunk lateral flexion occurred, where P2 rated the joint unacceptable, noting that the spine 

was not showing flexion, while the others rated it acceptable. The mean categorisation shows that exercises with 

objects or substantial occlusion leads to unacceptable or moderately acceptable tracking and therefore can be 

difficult to correctly assess. On occasions joint position estimations would result in an anatomically impossible 

pose, for example shoulder joints tracking inwards towards the spine as trunk backwards flexion occurs. 
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4.2 Quantitative Analysis Results 

The joint names described in this section are taken from Kinect SDK. The “Twist” exercise had a relatively high 

SD, as shown in Table 4 and Figure 4, and shows how the pose estimation algorithm struggles with poses with 

limited depth data of the joint and surrounding areas, such as when the arms were extended towards the depth 

sensor. When comparing the exercises “Arm to Side” and “Shoulder Shrug” against the exercises “Arm to Front” 

and “Twist”, limb joint positions, for exercises performed along the Y and Z axes, are more inaccurate than along 

the X and Y axes. This appears to be due to the unavoidable occlusion.  

Table 4: Table showing the error and SD for each joint position estimation averaged over all repetitions. The right arm was 

used for the arm to side and arm to front exercises. 

Joint Arm to Side Arm to Front Shoulder Shrug Twist Drying Off 

Error SD Error SD Error SD Error SD Error SD 

SpineBase 1.14 0.34 1.18 0.34 2.42 1.19 6.80 3.51 3.09 0.98 

SpineMid 1.13 0.33 1.78 0.37 2.73 1.00 8.39 5.15 4.62 1.60 

Neck 0.77 0.24 1.12 0.27 1.27 0.45 6.53 3.75 2.78 1.17 

Head 0.61 0.15 0.57 0.21 1.36 0.66 4.80 2.55 3.71 1.72 

ShoulderLeft 1.47 0.23 1.56 0.38 2.71 0.97 8.21 5.48 4.90 1.91 

ElbowLeft 4.58 0.45 3.69 0.24 3.89 1.11 15.44 5.41 5.78 1.99 

WristLeft 6.77 0.98 5.61 0.28 6.21 1.54 18.11 5.63 10.80 3.39 

ShoulderRight 1.18 0.47 2.37 1.02 3.06 1.47 10.91 6.13 4.99 2.48 

ElbowRight 2.35 1.15 11.48 6.19 3.75 1.12 16.84 6.58 5.99 2.67 

WristRight 3.27 1.57 15.45 6.69 5.60 1.53 20.47 7.09 14.84 5.20 

HipLeft 1.36 0.39 1.51 0.28 2.81 1.04 7.90 4.10 3.58 0.98 

HipRight 1.31 0.52 1.99 0.38 2.83 0.83 7.90 4.00 3.46 1.01 

SpineShoulder 1.08 0.28 1.79 0.33 2.30 1.01 6.48 3.51 3.35 1.45 

 

 

Figure 4 depicts the SD of the error for all repetitions of that exercise modelled as ellipsoids. Exercise order from top left; Arm 

to Side, Arm to Front, Shoulder Shrug, Twist, Drying Off. 
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In Figure 5, the error of the joint positions are larger for the arm to front exercise than the arm to side, this is 

understandable, as there would be limited depth data for the arm as it is raised to 90 degrees. 

 

Figure 5: Plots showing a participant’s WristRight joint deviation from the ground truth joint position. Arm to side (left) and 

arm to front (right). 

Figure 6 shows the algorithm struggling to track the true movement of the shoulder joint even though there is no 

occlusion in the depth data around the shoulder joint. This could be due to the pose estimation algorithm being 

trained on a dataset containing no or limited data of correctly labelled elevated shoulder joints. 

 

Figure 6: Plot showing a participant’s ShoulderRight joint position in the Y axis when performing the shoulder shrug 

exercise. 

Figures 7-9 show the errors for each exercise repetition for the shoulder, elbow and wrist joints - these are the main 

important joints for assessing the exercises.  Figure 7 shows the shoulder joint has a relatively large error when 

being tracked during the twist exercise. Figure 8 shows the elbow joint with relatively large error on the arm to 

front and twist exercise. Figure 9 shows the wrist joint has the largest mean error when compared to the elbow and 

shoulder joint. It also has a relatively large error during the arm to front, twist and drying off exercises. 

Interestingly in Figure 7 the ShoulderRight joint does not appear to be relatively erroneous for the shoulder shrug 

exercise, but the physiotherapists reported UT and MT for this joint on this exercise. This suggests absolute joint 

error is not a definitive measure of acceptability. 
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Figure 7: Exercise repetition errors of the ShoulderRight joint. 

 

Figure 8: Exercise repetition errors of the ElbowRight joint. 

 

 

Figure 9: Exercise repetition errors of the WristRight joint. 

5. CONCLUSION AND FUTURE WORK 

Based on the clinical analysis supported by the quantitative measures we conclude that the pose estimations are 

mostly inadequate for correctly assessing stroke rehabilitation exercises.  

When performing upper-body gross exercises the shoulder joints act as indicators for incorrect movement of limbs. 

For example, elevated shoulders are a common compensatory movement among stroke patients and needs to be 

detected during rehabilitation exercises. However, the algorithm failed to accurately track the true movement of 

the shoulder joints even when the joints were in a tracked state. This could be improved by retraining the pose 

estimation algorithm with correctly labelled shoulder joints that contain training data with elevated shoulders. 
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Partial or full occlusion in the depth data surrounding a joint causes unacceptable jitter and tracking. When objects 

are required for performing an exercise (eg the towel used in “Drying off”), unacceptable jitter and tracking can 

also occur as the algorithm can transiently misclassify it as a body part, resulting in incorrectly tracked joint 

positions. Similarly, for seated exercises it is recommended a user be seated on a perching stool to eliminate the 

chances of seat arms being misclassified as joints. 

When assessing the suitability of a pose estimation algorithm intended for rehabilitation applications, solely 

performing a quantitative measure does not provide conclusive answers, a clinical analysis optionally supported 

by a quantitative measure is required to determine suitability. This is because the measured accuracy of the joint 

estimations does not take into account that joints require a varying degree of accuracy to correctly assess a given 

exercise. This is evident by the shoulder joints for the arm to front and shoulder shrug exercise, whereby the 

ShoulderRight joint displays similar error in Figure 7 for these exercises but has a mean classification of AT and 

MT/UT respectively from the clinicians presented in Table 3. 

Future pose estimation algorithms should consider using temporal information and extrapolating from previous 

frames for inferring joint positions that have full or partial occlusion. This should also reduce the possibility of 

inferring a joint position incorrectly by ruling out sudden and extreme changes in position. We are currently 

working on techniques that use temporal information in a scalable way to improve joint tracking. Estimating joint 

rotation should be considered for a more in-depth and correct assessment of a patent’s performance. Constraining 

joint estimations to within the anatomical limits of the human body should ameliorate severe tracking error and 

solve the issue of anatomically impossible poses. 

In order to make the task of automatically assessing for compensatory movements easier, clinicians should be 

consulted to try to select exercises that are useful for rehabilitation but provide fewer or easier challenges for pose 

estimation algorithms. For example, clinicians highlighted using less obtrusive objects such as a rod or walking 

stick to perform the drying off exercise, resulting in fewer tracking errors. 

 

Author Contribution 

 

Authors: Joe Sarsfield,  David Brown, Nasser Sherkat, James Lewis, Mohammad Taheri, Cleveland Barnett, 

Louise Selwood, Penny Standen, Pip Logan, Caroline Langensiepen, Christopher McCollin, Christopher Simcox, 

Catherine Killick, Emma Hughes 

Conception or design of the work 

Joe Sarsfield,  David Brown, Nasser Sherkat, James Lewis, Mohammad Taheri, Cleveland Barnett, Louise 

Selwood, Penny Standen, Pip Logan  

Data collection 

Joe Sarsfield, Louise Selwood, David Brown, Nasser Sherkat, James Lewis, Mohammad Taheri, Cleveland Barnett 

Data analysis and interpretation 

Joe Sarsfield,  David Brown, Nasser Sherkat, James Lewis, Mohammad Taheri, Louise Selwood, Penny Standen, 

Pip Logan, Christopher McCollin, Christopher Simcox, Catherine Killick, Emma Hughes 

Drafting and/or Revising the article 

Joe Sarsfield,  David Brown, Nasser Sherkat, James Lewis, Mohammad Taheri, Caroline Langensiepen, Cleveland 

Barnett, Louise Selwood, Penny Standen, Pip Logan, Christopher McCollin, Christopher Simcox, Catherine 

Killick, Emma Hughes 

Final approval of the version to be published 

ACCEPTED M
ANUSCRIP

T



Joe Sarsfield,  David Brown, Nasser Sherkat, James Lewis, Mohammad Taheri, Caroline Langensiepen, Cleveland 

Barnett, Louise Selwood, Penny Standen, Pip Logan, Christopher McCollin, Christopher Simcox, Catherine 

Killick, Emma Hughes 

Conflict of Interest 

Mr. Sarsfield has nothing to disclose. 

 

Summary Points 

What was known before this study? 

 Consumer-level depth sensors combined with pose estimation algorithms have potential for practical 

technology supervised rehabilitation applications. 

 Current pose estimation algorithms designed to run on consumer-level depth sensors are not specifically 

designed for rehabilitation applications and therefore the pose estimations need to be evaluated in this 

context to determine suitability. 

What did this study add to our body of knowledge? 

 Based on the clinical analysis supported by the quantitative measures we conclude that the pose 

estimations are mostly inadequate for correctly assessing stroke rehabilitation exercises. 

 Future pose estimation algorithms intended for rehabilitation applications should consider; exploiting 

temporal information to ameliorate issues with occlusion, constraining joint estimations to within the 

anatomical limits of the human body, estimating joint rotational information for a more in-depth and 

correct assessment. 

 A methodology for clinically analysing the performance of a pose estimation algorithm for use in 

rehabilitation applications. 
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