21 research outputs found

    Physical modelling of the seismic response of gas pipelines in laterally in homogeneous soil

    Get PDF
    This paper reports on results from a series of 1-g, reduced-scale, shake table tests of a 216mlong portion of an onshore steel gas transmission pipeline embedded in horizontally layered soil. A set of first-order set of dynamic similitude laws was employed to scale system parameters appropriately. Two sands of different mean grain diameter and bulk density were used to assemble a compound symmetrical test soil consisting of three uniform blocks in a dense-loose-dense configuration. The sandpipe interface friction coefficients were measured at 0.23 and 0.27. Modulated harmonic and recorded ground motions were applied as table excitation. To monitor the detailed longitudinal strain profiles in the model pipe, bare Fiber Bragg Grating cables were deployed. In most cases, the pipe response was predominantly axial while bending became significant at stronger excitations. levels. Strain distributions displayed clear peaks at or near the block interfaces, in accord with numerical predictions, with magnitudes increasing at resonant frequencies and with excitation level. By extension to full-scale, peak axial strain amounted to approximately 10-3, a demand half the yield strain, but not negligible given the low in-situ soil stiffness contrast and soil-pipe frictio

    INNOVATIONS in earthquake risk reduction for resilience: RECENT advances and challenges

    Get PDF
    The Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR) highlights the importance of scientific research, supporting the ‘availability and application of science and technology to decision making’ in disaster risk reduction (DRR). Science and technology can play a crucial role in the world’s ability to reduce casualties, physical damage, and interruption to critical infrastructure due to natural hazards and their complex interactions. The SFDRR encourages better access to technological innovations combined with increased DRR investments in developing cost-effective approaches and tackling global challenges. To this aim, it is essential to link multi- and interdisciplinary research and technological innovations with policy and engineering/DRR practice. To share knowledge and promote discussion on recent advances, challenges, and future directions on ‘Innovations in Earthquake Risk Reduction for Resilience’, a group of experts from academia and industry met in London, UK, in July 2019. The workshop focused on both cutting-edge ‘soft’ (e.g., novel modelling methods/frameworks, early warning systems, disaster financing and parametric insurance) and ‘hard’ (e.g., novel structural systems/devices for new structures and retrofitting of existing structures, sensors) risk-reduction strategies for the enhancement of structural and infrastructural earthquake safety and resilience. The workshop highlighted emerging trends and lessons from recent earthquake events and pinpointed critical issues for future research and policy interventions. This paper summarises some of the key aspects identified and discussed during the workshop to inform other researchers worldwide and extend the conversation to a broader audience, with the ultimate aim of driving change in how seismic risk is quantified and mitigated

    FEM Analysis of Pipes Embedded in CLSM Under Seismic Wave Propagation

    No full text
    corecore