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Build-X: Expert system for seismic analysis and assessment                           
of 3D buildings using Opensees

Nikolaos K. Psyrras1 and Anastasios G. Sextos2

Abstract. Despite the breadth of the available finite element codes for seismic analysis and 

assessment, the associated complexity in use and the generality in orientation are likely to 

increase the epistemic uncertainty involved in the models, particularly in nonlinear analysis 

procedures. Thus, it is of interest to develop tools for improving the reliable use of existing 

structural engineering software. This paper aims to present the capabilities of Build-X, a 

recently developed knowledge-based system tailored to the prediction of the seismic response 

of 3D buildings. This expert system features a simple visual user interface that supports the 

structural engineer throughout the structural configuration of a building, providing expert 

suggestions as to critical modelling decisions, and automations that increase the reliability of 

the analysis and  accelerate the pre-processing stage. Build-X is linked with OpenSees, a widely 

used script-based freeware for seismic analysis of structures, which is utilized to perform the 

core finite element analysis. Post-processing tasks are easy to handle through the graphical 

engine of the system developed. A verification study demonstrates the efficiency of the system 

and reliability of the results generated, pointing to the way in which Build-X may serve as a 

useful tool for the seismic analysis of newly designed buildings and the assessment of existing 

ones at reduced computational cost and modelling uncertainty.

Keywords. expert system, buildings, seismic assessment, pushover analysis, soil-structure interaction, 
OpenSees
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INTRODUCTION

The unprecedented evolution in the field of computer science and information technology over 

the last decades has led to the development of numerous Finite Element software applications 

focusing on the numerical solution of structural and geotechnical problems. Such tools are able 

to offer a wide range of modeling options by boasting extensive material and element libraries, 

ensure algorithmic stability and solution accuracy, and some are also capable of implementing 

code-prescribed design procedures. By and large, nonetheless, they are characterized as 

general-purpose software. This implies that an average user may require considerable amounts 

of time to just learn their basic features and lots of frustration to master them. Modelling (or 

epistemic) uncertainty associated with the decisions made during pre-processing is likely to 

emerge as an issue of concern when the engineer seeks the response of structures under 

complex loading, as is earthquake ground motion. This uncertainty is further amplified by the 

implicit assumptions adopted by each software, often deeply hidden in long documentation 

files, and the case-specific FE model requirements. This denotes that analysis results are 

plausibly dependent on the user decisions concerning such critical modeling aspects as material 

constitutive laws, complex structural components, soil-structure interaction, and the selection 

of analysis parameters involved that may dramatically affect the response.

The need for rigorous engineering judgment becomes even more apparent in the case of 

seismically excited buildings, a class of problems that involve parameters of increased 

uncertainty. Given the multi-parametric nature of the nonlinear response of structures and the 

probabilistic assessment of seismic loading, even the most pertinent FE software might fail to 

guarantee their users will be able to represent inelastic structural response with a controlled 

and adequate degree of reliability. On the contrary, even the most rigorous algorithms for 

nonlinear structural analysis to stochastic excitation rely on the engineer to provide a reliable 

estimate of the several mechanical parameters, make decisions as per the boundary conditions 

and the effect of soil compliance and damping at the soil-foundation interface. The engineer is 

expected to assume own responsibility on how the software operates and interprets the 

assumptions made. Further, even though very advanced earthquake engineering-oriented 

software platforms have been developed recently (e.g. [1]), their potential effectiveness is 

hindered by the lack of a user-friendly interactive environment.

In the early 1990’s and by virtue of the rising spread of the microcomputer, research interest 

moved towards the development of knowledge-based ‘expert’ systems that could provide 

supportive aid in solving specialized civil engineering problems. These novel codes, based on 
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the principles of artificial intelligence, were built to encompass domain-specific expertise, 

convey it to unspecialized engineers-users in an interactive manner and apply it to actual 

problem solving schemes. The area of structural design has traditionally benefitted the most 

from this type of software, because it involves ill-structured problems by definition, where 

heuristic knowledge is more applicable. We cite here the following notable prototype shells: 

HI-RISE [2], SPECON (reviewed in Ref. [3]), ERDES [4]. In the subdomain of analysis, the 

range of relevant work reported is far narrower; we identify SACON [5], an early rule-based 

system that used backward-chaining to infer suitable analysis strategies and controlling 

problem parameters for structural analysis problems, SesCon [6], a dedicated consultant for the 

use of Seasame69 structural analysis program, and FEMOD [7], an assistant in FEM-specific 

topics. Critical evaluations of expert systems applied in structural design, analysis and damage 

and safety assessment are given in Refs. [3,8]. A comprehensive review of expert systems 

developed to assist in the field of earthquake engineering is present in Berrais and Watson [9]. 

Dussom et al. [10] presented QUAKE, an expert tool for selecting site- and structure-specific 

earthquake time histories. Koumousis et al. [11] proposed a novel PROLOG-based expert tool 

for using and better comprehending Eurocode 8 provisions. More recently, Berrais [12] 

presented a prototype knowledge-based tool for the earthquake resistant design of reinforced 

concrete (RC) buildings with the use of nonlinear dynamic analysis. Further, another study [13] 

discusses the application of another three expert systems in civil engineering. 

To the authors’ knowledge, there has been little advancement in this research field since, and 

no later work related to the seismic analysis of building structures. Moreover, the then 

developed expert solutions have now become outdated considering the rapid progress in 

information technology and in the state-of-the-art in earthquake engineering, and most 

probably unuseable by modern computers due to incompatibility issues. In light of the current 

state-of-practice, which requires more than ever rehabilitation of aging buildings and cost-

effective design against seismic forces of new ones, modern expert systems appear essential to 

aid in conducting demanding seismic analysis of buildings in a reliable manner.

Existing conventional FEA software lack a strict internal construct to responsibly drive the user 

throughout the process of building the structural model and specifying the seismic loading. 

Thus, novice computer users or inexperienced structural engineers are likely to experience 

severe difficulties and delays, particularly in cases where nonlinear behavior is examined, or, 

even worse, end up with underestimation or overestimation of seismic response. This very gap 

in engineering practice is attempted to be bridged by Build-X, the expert system presented 

herein. Although the concept of expert systems is admittedly more applicable to ill-defined 

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177



4

problems, as design is, efforts were made to gather reliable knowledge on numerical modeling 

and seismic analysis methods from the state-of-the-art and state-of-practice, transform it into a 

rule base and apply it appropriately. 

Build-X is a front-end knowledge-based tool developed with the aim of assisting practicing 

engineers in predicting the seismic response of 3D modeled buildings. It takes advantage of 

the sophisticated Open System for Earthquake Engineering Simulation (OpenSees) platform to 

provide through its graphical user interface: 

 stepwise guidance during the pre- and post-processing stages,

 automations that accelerate the finite element model development, 

 expert advice for addressing various building-specific issues that are key factors to the 

reliable prediction of its seismic response, as will be presented in the following. 

Build-X proceeds beyond the state-of-the-art by improving the credibility of the finite element 

model at hand, as well as the efficiency of the analysis procedure as a whole, since it minimizes 

the probability of modeling mistakes and cuts down on the time and effort required by the user, 

notably in the case of multi-story buildings featuring shear wall members and compliant 

foundation systems. Furthermore, seen as having a dual role, it can be an intelligent pre- and 

post-processor for OpenSees, dedicated to the analysis and assessment of building structures 

subject to earthquake effects.

It should emphasized that the focus here is not on OpenSees per se. OpenSees is just the FE 

code selected for the core problem solution; it could very well be any other script-based FE 

solver instead. For instance, one could follow the same rationale and develop a pre/post 

processing expert system using *.inp or Python scripting for Abaqus or APDL language for 

ANSYS.

This text is organized as follows: first, the main features of the software are presented along 

with the system architecture. Second, the sequence of operations is briefly described the 

seismic analysis methods supported by the system and a verification case study, followed by 

conclusions.

SOFTWARE OVERVIEW

Basic concept behind the system 
Build-X was developed exclusively for Microsoft Windows operating systems. Its source code 

is written in VB.NET and was developed in the Microsoft Visual Studio environment. A 

procedural programming language was preferred over a logic paradigm-oriented one (e.g. 
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PROLOG) because it fits better the needs of the software, where many mathematical 

evaluations are to be processed and a neat GUI is to be designed. In cooperation with OpenSees, 

it facilitates static analysis for gravity loads, Eigenvalue analysis, Modal Response Spectrum 

analysis and Nonlinear Static (Pushover) analysis of 3D building structures. In fact, Build-X 

operates as a real-time converter of the user’s choices into a Tool Command Language (Tcl) 

script to be used as input to the OpenSees platform. After OpenSees generates the analysis 

output, Build-X is called back to process and present it in a visually comprehensive way. 

Overall, the software displays the following key characteristics:

 A wizard-resembling sequential flow of actions that prohibits navigational disorientation 

of the user during the modeling process. The user is encouraged to determine the 

configuration of the structural model of the building through a series of logical and strictly 

defined modeling steps that prevent them from skipping or missing significant aspects.

 Expert knowledge provided a priori for simulating critical components of the building in 

a reliable manner and for selecting the most appropriate case-specific analysis parameters, 

eliminating the probability of modeling errors.

 Background code automations implemented at every pre-processing step that drastically 

reduce the time required for the Finite Element model of the building to be completely 

defined.

 A user-friendly visualization engine that allows the user to inspect the Finite Element 

model throughout its generation and review the structural response obtained by the solver.

System architecture
The internal software architecture differs from that of a conventional event-driven GUI 

program. Build-X is structured according to the principles of a knowledge-based system [9], 

consisting of seven distinct, yet interacting components, as demonstrated in Figure 1:

 Knowledge base: It contains a set of four elements that are called upon at specific points 

throughout the simulation procedure to provide expert assistance based on established 

know-how for demanding modelling and assessment tasks. The source of this knowledge 

is well-developed seismic codes and acclaimed researchers in the field.

 User interface: It comprises the pre- and the post-processing module. The visual user 

interface is intended to provide communication between the user and the rest of the system 

components. Typical users are assumed to be structural engineers, office practitioners, 

architects or engineering students with little to no expertise in seismic analysis and basic 

computer skills. On this basis, the user interface was built to be simple and clean. No CAD 
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capabilities are present in it, but all user input essential for the definition of the structure’s 

geometry is handled by an intelligent dedicated module described in detail later on. 

 Inference engine: Utilizing expertise from the knowledge base, the inference engine is 

responsible for controlling the program flow and for continuously updating the context.

 Context: In essence, the context is a collection of data that accumulates in the cache in a 

structured way according to user input and additional generated information; it represents 

the building model at hand. The context is accessed and modified by the inference engine.

 External FEA program: Finite Element analysis is undertaken by the OpenSees platform, 

which is linked to the system in a two-way (input-output) manner.

 Explanation facility: An essential component that provides stepwise instructions, useful 

information and warning messages where appropriate. It is fed by the knowledge base and 

accessed by the user through the user interface.

 External MATLAB libraries: Three MATLAB functions packaged in the form of .NET 

assemblies are invoked by the system to address specific tasks throughout the dataflow.

Flow of operations
The pre-processing stage of a Build-X project consists of ten prescribed steps (Figure 2), 

implemented as appropriately ordered window tabs. The hierarchy of the steps draws from 

common FE modeling logic and traditional practice. In each step, a number of large-sized 

numeric or multi-type arrays are created to store all the information describing the 3D finite 

element model of the building, for instance node coordinates, section properties, gravitational 

load values, etc. A brief description of the operational sequence is given below in groups:

1. In the first and third step, the software engine requests the description of the general 

geometry of the building in elevation and plan (e.g. number and height of floors, number 

and length of bays in principal plan directions), in order to produce the grid layout. 

2. An intermediate step involves the determination of material behavior (linear elastic or 

nonlinear inelastic); on this choice depend the analysis procedures to become available in 

the last step. Reinforced concrete is the fundamental material in Build-X; however, if a 

linear elastic material stress-strain relationship is selected, the option of a user-defined 

material is activated as well. The constitutive material models adopted by the software for 

unconfined and confined concrete and reinforcing steel are the ones proposed by Kent and 

Park [14], Scott et al. [15] and Menegotto and Pinto [16], respectively. The criteria for these 

choices were merely the reliability of the models and the simplicity in formulation. 
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3. Next are the steps to create the actual structural members of the building. First, the user 

is asked to insert shear wall members, if desired; no expertise in discretization is 

required here, as this task is taken over by the expert system which automatically 

estimates the geometric and stiffness properties of the frame finite elements according 

to the popular Equivalent Frame Method [17]. Secondly, position and cross-section of 

column members of the building need be set by the user. Subsequently, the horizontal 

beam members are generated by defining the connectivity between the columns and 

thereafter their sections are selected from a predefined library. In the case that nonlinear 

response is sought, each of the above three modeling steps is followed by a sub-step 

whereby the user has to define the reinforcing steel configuration in every structural 

member, according to given typical layouts. Finally, position and thickness of slabs 

remain to be determined. 

4. To model the foundations of the building, two options are provided: homogeneous 

boundary conditions for the ground nodes and compliant supports. The first option 

allows the user to select between fixed and pinned supports, while the second one 

allows two commonly used foundation types: rigid spread footings and mat foundation. 

Both options require the user to enter the geometry and basic mechanical properties of 

the soil.

5. The next modeling step is the determination of the gravity loads acting on the structure. 

Surface loads applied on slab members are automatically distributed to supporting 

members. Masses are assumed to be lumped at floor levels and are automatically 

calculated by the system. 

6. The last pre-processing step is related to the analysis methods and the analysis 

parameters to be used. In the case of linear elastic simulation, static analysis for gravity 

loads, Eigenvalue analysis and Modal Response Spectrum analysis are activated as 

options. If inelastic material behavior is turned on, the available analysis procedures are 

nonlinear static analysis for gravity loads, Eigenvalue analysis and Standard Pushover 

analysis. The option to consider geometric nonlinearities in the form of global second-

order (P-Δ) effects is also present. 
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Fig. 1. System architecture
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Fig. 2. Data flowchart

7. Finally, the variables stored in memory are manipulated to assemble appropriately 

formatted .tcl files that are subsequently imported to OpenSees. In the background, Build-

X triggers the execution of the OpenSees command shell with these particular files as input 
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and, after all requested analyses are complete, post-processes the output files produced by 

OpenSees and switches to the results graphical environment. Code snippets of this 

communication are provided in Listing 1, where select OpenSees commands are created 

(Table 1 and 2 supplements the explanation of some data variables), and Listing 2. Note 

that all missing variable declarations are implied elsewhere in the source code. In the post-

processing module of the system, the user may navigate freely to review graphically 

illustrated information regarding member and frame internal forces diagrams, deformed 

shapes, Eigenmodes and the Capacity curve, if applicable. This module also includes the 

evaluation of the seismic performance of the building.
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Listing 1. Subroutine called on ‘Analyze’ button click; select lines of code are shown that translate 
internal data about columns and shear walls into TCL commands compatible with OpenSees.

Table 1. Format of the matrix ‘columns’ that stores the information about the vertical (columns/walls) 
members; this table shows the data type representations in each array column (1 through 21).

0 1 2 3 4 5

1 Private Sub Analyze_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) _
2 Handles Analyze.Click
3 SaveFileDialog1.Filter = _
4  "Tool Command Language File (*.tcl)|*.tcl"
5  SaveFileDialog1.InitialDirectory = _
6  My.Computer.FileSystem.SpecialDirectories.MyDocuments & "\Build-X_files"
7  If SaveFileDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then
8  userName = IO.Path.GetFileNameWithoutExtension(SaveFileDialog1.FileName)
9  directoryName = Path.GetDirectoryName(SaveFileDialog1.FileName)
10 userName = userName.Replace(" ", "_")
11 file = directoryName & "\" & userName & ".tcl"
12 'Open text file for I/O operations
13 FileOpen(1, file, OpenMode.Output)
14 dirRec = directoryName & "\" & userName & "\recorders"
15 System.IO.Directory.CreateDirectory(dirRec)
16 Dim OpenSeesDir As String = dirRec.Replace("\", "/")
17 PrintLine(1, "set osdir {" & OpenSeesdir & "}")
18 PrintLine(1, "set shortName [file attributes $osdir -shortname]")
19 PrintLine(1, "cd $shortName")
20 'Start building OpenSees model
21 PrintLine(1, "model BasicBuilder -ndm 3 -ndf 6")        
22 '...
23 'Generate nonlinear vertical elements (columns/walls) in the case of a Pushover analysis
24 For i = 1 To UBound(columns, 1)
25 For j = 1 To numNodes
26 For z = 1 To numNodes
27 'Perform loop checks to find matching end nodes for each column/wall member
28 If columns(i, 2) = nodes(j, 1) And columns(i, 3) = nodes(j, 2) _ 
29 And columns(i, 5) = nodes(z, 1) And columns(i, 6) = _
30 nodes(z, 2) And columns(i, 4) = nodes(j, 3) And _
31 columns(i, 7) = nodes(z, 3) Then
32 If Not columns(i, 0) = Nothing Then
33 PrintLine(1, "element forceBeamColumn " & element & _
34 " " & j & " " & z & " 5 " & 5000 _
35 + CInt(columns(i, 19)) & " 1")
36 Else
37 PrintLine(1, "element forceBeamColumn " & element & _
38 " " & j & " " & z & " 5 " & CInt(columns(i, 19)) & " 1")
39 End If
40 columns(i, 15) = j
41 columns(i, 16) = z
42 element += 1
43 End If
44 Next
45 Next
46 Next
47 '...
48 Threading.Thread.Sleep(1000)
49 'Call OpenSees
50 OpenSeesRun("OpenSees.exe", file)
51  End If
52 End Sub
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Column or 
wall

ID xi yi zi xj

6 7 8 9 10 11
yj zj x-dimension y-dimension z-dimension Number of 

transverse y 
stirrup legs

12 13 14 15 16 17
Number of 
transverse z 
stirrup legs

Confinement 
bar size

Confinement 
bar spacing

Longitudinal 
bars

Longitudinal 
bar size

Volumetric 
transverse 

reinforcement 
ratio

18 19 20 21
Material ID Fiber section 

ID
Member 
direction

Core wall ID 
(if applicable)

Table 2. Format of the matrix ‘nodes’ that stores all node coordinates

Listing 2. Module that controls the linkage between Build-X and OpenSees; control is passed to Build-
X post-processing module after OpenSees has terminated its operation.

Expert knowledge highlights and code automations
Various modeling phases are facilitated by the expert knowledge library of the software. As an 

expert system essentially simulates a decision-making procedure normally undertaken by a 

highly specialized professional, Build-X carries and applies a priori a set of relevant expertise 

on specific modeling issues, and is equipped with a series of automation algorithms, discussed 

in detail in the following.

Model geometry configuration

1 2 3
x y z

1 Module OpenSeesManagement
2     'Check if application process has terminated
3     Sub CheckifClosed(name)
4         Dim allprocess
5         Dim isOn As Boolean = True
6         While isOn
7             isOn = False
8             allprocess = GetObject("winmgmts:")
9             For Each Process In allprocess.InstancesOf("Win32_process")
10                If (InStr(UCase(Process.Name), name) = 1) Then
11                    isOn = True
12                    Exit For
13                End If
14            Next
15        End While
16    End Sub
17    'Start OpenSees with .tcl script as input argument
18    Sub OpenSeesRun(openseesUrl, filename)
19        Dim ProcessProperties As New ProcessStartInfo
20        ProcessProperties.FileName = openseesUrl
21        ProcessProperties.Arguments = filename
22        Dim myProcess As Process = Process.Start(ProcessProperties)
23        CheckifClosed("OPENSEES.EXE")
24    End Sub
25 End Module
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For the sake of simplifying the development of the system, we decided to omit its integration 

with a complete CAD module. Instead, the design of the floor plans is accomplished with the 

use of a smart facility that is based on certain assumptions and restrictions, in the expense of 

course of the unlimited freedom that CAD could allow when it comes to topology configuration. 

These limitations are mentioned in the appropriate section of this text. The subroutines that 

handle the generation of the model geometry make use of conventional Visual Basic user 

interface controls to process the user’s actions (e.g., DataGridView and ComboBox for user 

input, CheckBox for possible member connectivity, Buttons for action confirmation) and of 

the .NET built-in GDI+ API to draw graphics. The produced 2D and 3D views of the building 

at hand are displayed alongside the main input tab.

The sequence of actions is as follows. The user is first asked to configure the global elevational 

attributes of the building. A typical story height and a separate first story height can be set. 

Irregularity in elevation is possible to introduce in a subsequent step. The next action is to 

define an auxiliary   orthogonal grid. This grid is central in defining the general topology m n

of the building, because the system admits structural members only along these orthogonally 

laid grid lines. Exception to this rule are core walls, which are allowed to have wall components 

off the grid lines. Upon drawing the grid sketch, the system initiates the procedure of generating 

load-bearing structural members upon user’s request: shear walls and core walls, columns, 

beams and slabs. This sequence partly represents the overall importance hierarchy of each 

member type in the structure. Shear walls can be inserted arbitrarily on the grid lines, forming 

T- or L- shaped assemblages. U- or double U-shaped walls (core walls) are introduced through 

a separate user form. There follows the creation of columns; every possible column location is 

identified by the system on grid intersection points that are not occupied by shear walls. The 

available column ‘slots’ are indicated by checkboxes on the grid; a total of columns can m n

be created. The user is initially called to specify a reference column pattern, which can be 

customized in the next step, where columns are grouped level-wise and displayed in tabular 

format. In this stage, they can assign column cross-sections one-by-one or discontinuities 

(option ‘Void’). Listing 3 demonstrates how the column generation and drafting works. In a 

similar fashion, the system identifies and presents in Checkbox form all possible beam 

members on the grid by performing compatibility checks against the previously created vertical 

members. Subsequently, the internal subroutines are invoked again to automatically detect all 

potential slab locations considering the existing grid of beams. 

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767



14

This CAD substitute scheme is certainly not the most elegant one, but it vastly accelerates the 

topology generation process, while allowing for introduction of geometric setbacks in elevation 

and plan. The grid orthogonality assumption cannot be violated in any case.

Listing 3. VB.NET code snippet illustrating a part of the graphical facility of the system; the first 
subroutine is used to create the candidate columns and the second one is invoked when the user chooses 
the initial column configuration

Shear wall model generation

1 'Import necessary namespaces
2 Imports System.Drawing.Graphics
3 'Subroutine to generate CheckBoxes for all column slots on XY canvas
4 Sub createColSlots()
5 For i = 1 To yGrid              
6 For j = 1 To xGrid
7 colCheck(i, j) = New CheckBox
8 Me.TabPage1.Controls.Add(colCheck(i, j))
9 Next
10 Next
11 End Sub
12'...
13 Private Sub drawCols_Click(ByVal sender As System.Object,ByVal e As System.EventArgs) _
14 Handles drawCols.Click
15 'Erase all CheckBox controls on XY canvas
16 For Each C As Control In xydraw.Controls
17 If TypeOf C Is CheckBox Then
18 Me.TabPage1.Controls.Remove(C)
19 End If
20 Next
21 'Create necessary GDI+ API variables
22 Dim bitmap As New Bitmap(CInt(xyPicture.Width), CInt(xyPicture.Height))
23 Dim xyGraphics As Graphics = Graphics.FromImage(bitmap)
24 counter = 1
25 For z = 1 To numFloors
26 For j = 1 To xGrid
27 For i = 1 To yGrid
28 If colCheck(i, j).Checked = True Then      
29 'Draw 12x12 column outlines in plan
30 xyGraphics.FillRectangle(Brushes.Silver, gridP_Yscaled(i) - 6, _
31 gridP_Xtrans(j) - 6, 12, 12)
32 'Add the relevant label 
33 If z = 1 Then
34 xyGraphics.DrawString("C" & counter,Font,Brushes.RoyalBlue, _
35 gridP_Ytrans(i) + 6, gridP_Xtrans(j) + 6)
36 End If
37 columns(counter, 1) = "C" & counter       
38 columns(counter, 2) = gridP_X(j)
39 columns(counter, 3) = gridP_Y(i)
40 columns(counter, 4) = gridP_Z(z)
41 counter += 1
42 End If
43 Next i
44 Next j
45 Next z
46 xyPicture.Image = bitmap
47 'Initialize and populate story change ComboBox with admissible entries
48 whatFloor = New ComboBox
49 For i = 1 To numFloors
50 whatFloor.Items.AddRange(New Object() {i})
51 Next
52 whatFloor.SelectedIndex = 0
53 'Assign event handling subroutine for ComboBox selection change
54 AddHandler whatFloorCmbox.SelectedIndexChanged, AddressOf floorChange     
55 End Sub
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Ιn earthquake prone regions, construction practice favours the use of shear walls towards 

enhancing the lateral stiffness of buildings. To avoid the excessive computational cost in 

representing shear walls with continuum finite elements, the Wide Column Analogy (or 

Equivalent Frame Method as is known alternatively) is adopted in this instance [17]. This 

simplified approach suggests that the planar shear wall can be substituted by an assembly of 

3D frame elements that equivalently describe its mechanical behaviour: a ‘wide’ column placed 

at the centroid of the wall section, characterized by the actual stiffness properties of the original 

wall section, and two practically rigid links to satisfy Euler-Bernoulli beam theory hypotheses 

for the wall and restore the wall continuity with adjacent coupling beam members. To extend 

it to 3D space of non-planar core walls, multiple individual planar wall units are interconnected 

appropriately at the rigid link ends. In this case, attention has to be paid to the value of the 

torsional stiffness of the core wall; herein, the following formula is adopted [18].

(1)
4

3
4

1 10.21 1
3 12

w w
T w w

w w

t tJ h t for rigid beam elements
h h

  
    

  

(2) 0TJ for the wide column

To ensure the reliable implementation of the methodology, the user is only asked to define the 

position and the cross-sectional dimensions of the wall. The system’s internal algorithms are 

responsible for extracting the joint topology and element stiffness properties automatically. 

The option of modeling U-shaped wall cores is also available. Based on previous studies [19], 

the adopted technique can be deemed suitable for modeling structural walls of rectangular and 

U-shaped section in ordinary, low to medium-rise buildings, achieving a fair compromise 

between accuracy of results and computational cost. 
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Fig. 3. RC column discretized in fibers according to the fiber section model

Fiber model development
The inelastic deformations of the RC structural members of the building can be estimated by 

means of a Standard Pushover analysis, utilizing the force-based distributed plasticity beam-

column element [20] and fiber section implemented by OpenSees. The fiber beam-column 

model has the advantage of permitting gradual spread of the plastic strains both across the 

section depth and over the member length, over the more idealized lumped model that assumes 

the development of localized plastic hinges at predefined locations along the member primary 

axis. RC sections are particularly fit for this methodology, because they are non-homogeneous 

and thus nonlinearity is more conveniently described at the material level. Additionally, 

coupling of axial force and moment response is directly accounted for. Lumped plasticity 

models can be computationally more efficient as they generally require fewer input parameters. 

However, these parameters are not always straightforward to determine and usually need 

calibration.

The main benefit for the designer is that a complete description of the post-yield characteristics 

of the structural members is possible with the use of only intuitive and easy to determine input. 

The visual interface of the system is specifically designed to this direction. The user is required 

to define the uniaxial stress-strain relationship of groups of fibers-materials and the detailing 

of each member according to standard layouts provided, i.e. number and size of longitudinal 

bars, number, size and spacing of confinement bars, section clearance etc. Based on this input, 
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the expert system automatically and reliably creates the fiber element model for every structural 

member, and this prevents the user from messing with intricate calibrations that depend on 

special information. The Gauss-Lobatto integration scheme is used for the derivation of the 

element stiffness matrices, with 5 integration points for columns and 4 for beams.

Soil-structure interaction
As shown by Mylonakis and Gazetas [21], site conditions may substantially affect the seismic 

response of a structure. Buildings founded on deformable soil have a longer fundamental period 

of vibration than the respective fixed-based ones and, as a result, may respond differently to 

earthquake ground motion depending on the dynamic interplay between the frequency content 

of the soil, the structure and the ground motion. For the case of ordinary buildings, which cover 

the vast majority of day-to-day design practice, seismic codes worldwide typically prescribe 

conventional analysis methods, such as Lateral Load (equivalent static) analysis and Response 

Spectrum analysis. In both cases, damping and the frequency-dependence of soil-structure 

interaction are irrelevant. The same applies to the Nonlinear Static (Pushover) analysis, which 

is the prevalent method for the assessment of existing structures. For the above reasons, Build-

X focuses on static and equivalent linear modelling of SSI effects. 

In light of this approach, three frequently preferred in design practice soil-foundation systems 

are available: surface spread footings, embedded spread footings and mat foundation (Figure 

4). The inertial part of the interaction is implemented through the evaluation of springs 

connecting the ground nodes to the soil medium. The modeling procedure involves computing 

the six static impedance components for each degree of freedom according to the formulae 

proposed by Gazetas [22]. In the case of a mat foundation, the base slab is assumed to follow 

a rigid body motion implemented implicitly by enforcing appropriate constraints for the base 

nodes. Thus, it is sufficient to calculate and assign springs only at the master node representing 

the center of mass of the base slab. The designer then defines the geometry of each individual 

spread footing or of the basemat, i.e. plan dimensions and depth of embedment, if applicable, 

in addition to a pair of mechanical parameters characterizing the soil halfspace (small strain 

shear modulus and Poisson’s ratio). This completed, the expert system computes the stiffness 

constants of all the translational and rotational springs (Table 3). 

For the quantification of the influence of the kinematic effects, Build-X incorporates the 

simplified procedure proposed by FEMA 440 [23], which is based on the work by Kim and 

Stewart [24].
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Fig. 4. Embedded spread footing and the respective 3-D spring model at the soil-footing interface

Table 3. Static stiffness components of rectangular shaped foundation on homogenous halfspace 
surface after Gazetas

According to it, kinematic interaction may be taken into account by means of the ratio of the 

acceleration response spectral ordinates corresponding to the foundation level to the response 

spectral ordinates specified for the free-field conditions. This ratio is used to estimate a reduced 

response spectrum that is consistent with the foundation input motion (‘FIM’) calculated 

analytically with the use of transfer functions [25]. In FEMA 440, different expressions are 

proposed for considering base-slab averaging and embedment effects separately. In the code 
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presented herein, only the former effects can be accounted for and the respective ratio is 

estimated from the following expression:

 (3)

1.2/ 0.304811 0.2sec
14100

e
bsa

bRRS the value for T
T

     
 

where  with ,  standing for the foundation dimensions in plan view and  is the eb BL B L T

predominant eigenperiod, elongated due to inertial interaction effects. When performing a 

performance-based analysis, such as a pushover analysis [26], the ratio of response spectra due 

to base-slab averaging effects is evaluated using the fundamental vibrational period in the 

corresponding direction of excitation and then the acceleration demand is obtained by 

multiplying this ratio with the free-field response spectral ordinate that corresponds to the 

foregoing period value. Base-slab averaging is expected to emerge as a form of kinematic 

interaction when a foundation system with sufficient in-plane stiffness is modelled or rigid 

diaphragms are assumed at floor levels [23]. In Build-X, these conditions might occur: the 

former in the case of a RC mat foundation, while the latter in the case of independent, non-

interconnected spread footings. The previously described methodology is believed to be a 

rational modelling approach when the seismic performance of a building on compliant soil 

needs to be evaluated.

Another important modeling decision concerns the dependence of the soil stiffness on the 

expected strain levels. Under the design seismic action, the supporting soil is expected to 

exhibit nonlinear inelastic behavior. This can be approximated by a reduction in the initial 

(low-strain) soil shear modulus  as a function of the selected level of PGA. To tackle the maxG

error introduced by completely ignoring this effect, Build-X makes use of the following curve-

fitting function [27], which has been derived to fit the relevant values proposed by Eurocode 8 

- Part 4 [28]. This function gives an approximation of the shear modulus reduction factor of 

the soil in the cases of Modal Response Spectrum analysis and Standard Pushover analysis:

(4)3 2
max/ 41.6 17.5 0.66 1, 0.1 0.3g g g gG G a a a g a g     
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Fig. 5. Options to introduce kinematic interaction effects and strain-dependent soil shear modulus

where  is the initial soil shear modulus. The options to account for kinematic interaction maxG

effects and strain-dependent soil shear modulus are illustrated in Figure 5.

Allocation of gravitational loads and mass matrix generation
By selecting the automatic mode to introduce gravity loads on the building, the system 

computes the dead loads acting on frame members. Since slabs are not explicitly modeled with 

shell finite elements, rather rigid diaphragms are assumed at the floor level, a well-known 

approximate methodology is employed to allocate the surface gravity loads imposed on slabs 

to the supporting beams and shear walls. Based on slab dimensions and support conditions, 

tributary lines are drawn on the slab surface dividing it into triangular and trapezoidal sections; 

these are in effect the influence load areas for the underlying structural elements of the slab 

under consideration (Figure 6). The polygonal distributions along the slab boundaries are 

automatically substituted by equivalent uniform ones that yield identical shear forces. Besides 

the self-weight loads, the user has the option to introduce additional dead and live loads on the 

slabs. In the automatic mode, Build-X is also capable of considering the self-weight of non-

structural infill walls resting on beam members.
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Fig. 6. Definition of influence areas on a typical two-way slab with two simple side supports and 
equivalent uniform distribution on the boundary

The mass matrix of the structure is assembled by the program’s algorithms, without any 

interference by the user. Lumped masses are idealized at the geomteric centroids of floor levels, 

assuming mass is uniformly distributed over the floor surface. Their values are estimated 

according to the Eurocode 8 load combination for quasi-permanent actions , with 0.3G Q G

being the dead and  the live loads acting vertically on the floors [29].Q

Seismic performance assessment using the N2 Method 
One of the most important aspects featured in Build-X is that it permits the projection of the 

performance level achieved by the building in a given seismic scenario. The procedure is 

implemented as specified in Annex B of Eurocode 8-part 1 and relies on the N2 method 

proposed by Fajfar [30]. Standard Pushover Analysis (SPA) is a modern variation of the 

classical ‘collapse’ analysis [31] that predicts the hierarchy of structural damage up to the onset 

of collapse. The interested reader is referred to the pertinent references for more information 

about the the analysis method and the assessment procedure prescribed by Eurocode 8.

Of note, the bilinear approximation of the capacity curve of the equivalent SDOF required by 

the EC8 seismic assessment procedure in terms of an elastic-ideally plastic curve is achieved 

completely automatically with the use of a Microsoft .NET -compatible MATLAB library, 

compiled with MATLAB Compiler SDK. The generated .NET assembly includes a class with 

one method, i.e., an interface function that performs the least-squares bilinearization. This 

function makes explicit use of the ‘Free-knot spline approximation’ function developed by 

Bruno Luong, available from the MATLAB online file repository. A VB code excerpt of this 

functionality is presented in Listing 4 and the deployed MATLAB function is displayed in 

Listing 5.
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Listing 4. VB.NET subroutines computing and plotting the bilinear fit on the Pushover curve.

Listing 5. The MATLAB function invoked from within the VB.NET code

Figures 7 through 9 illustrate characteristic stages during the pre- and post-processing modules 

of a typical inelastic simulation of a building model featuring two shear walls, resting on 

deformable soil and analyzed by means of a Pushover analysis. In accord with Eurocode 8 

1 'Import useful namespaces/elements
2 Imports BilinLib
3 Imports MathWorks.MATLAB.NET.Arrays
4 Imports MathWorks.MATLAB.NET.Utility
5 'Declare necessary MATLAB API array class variables
6 Dim uMW, fMW As MWNumericArray
7 Dim outArray() As MWArray
8 'Subroutine invoked to perform the bilinearization
9 Public Sub DoBilinearFit()
10 'Cast native .NET variables storing the transformed SDOF
11 'displacement and force to MATLAB array variables
12 uMW = CType(uSDOF, MWNumericArray)
13 fMW = CType(fSDOF, MWNumericArray)
14 'Create instance of MATLAB library .NET class 
15 Dim bilinear As New bilinClass
16 'bilinearization: the MATLAB function name
17 outArray = bilinear.bilinearization(2, uMW, fMW)
18 'assign bilinear function coefficients to array
19 coeffs = outArray(0).ToArray
20 'assign bilinear function breakpoints to array
21 brakPnts = outArray(1).ToArray
22 'Slope of the ascending branch; yield force
23 slope = coeffs(0, 0): Fy_sdof = coeffs(1, 1)
24 'Yield displacement; ultimate displacement
25 Dy_SDOF = brakPnts(0, 1): Dult_SDOF = brakPnts(0, 2)
26 'Compute equivalent SDOF period and display it in TextBox
27 Tsdof = 2 * Math.PI * Math.Sqrt(mSDOF * Dy_SDOF/ Fy_sdof)
28 TextBox.Text = Format(Tsdof, "#.###")
29 End Sub
30 'Subroutine that draws the bilinear fit to the existing Capacity curve
31 Public Sub PlotBilinFit()
32 With pushoverCurve.Series(1).Points
33 .AddXY(0.0, 0.0)
34 .AddXY(Dy_SDOF, Fy_sdof)
35 .AddXY(Dult_SDOF, Fy_sdof)
36 End With
37 End Sub

1 function [coeff, breakPnts] = bilinearization (u, f) 
2 % INPUT args:
3 %   - u: displacement array
4 %   - f: force function of u to be fitted
5 % OUTPUT:
6 %   - coeff: matrix array containing the first-order polynomial coefficients
7 %  of the two linear branches
8 %   - breakPnts: vector array containing the breakpoints of the bilinear fit
9 
10 %   BSFK function settings for elastic-perfectly plastic approximation:
11    nknots = 2;
12 % Enforce point-wise constraints on the fitting curve: 
13    pointConstraints(1) = struct('p', 0, 'x', 0., 'v', 0.);
14    pointConstraints(2) = struct('p', 1, 'x', max(u), 'v', 0.);
15 % Structure to consider point-wise constraints
16    options = struct('animation', 0, 'knotremoval','none','pntcon', pointConstraints);
17 % Invoke actual curve-fitting function (for more info on input args, 
18 % please refer to the dedicated website)
19    pp = BSFK(u, f, 2, nknots, [], options);
20    coeff = pp.coefs;
21    breakPnts = pp.breaks;
22 end
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directions, Build-X offers two options for the vertical distribution of the applied lateral loads 

in each horizontal direction: a uniform pattern, implying a distribution proportional to floor 

masses, and a modal pattern, suggesting lateral forces proportional to the product of floor mass 

and the displacement shape vector of the dominant mode in the considered direction.

Fig. 7. View of the columns reinforcement definition tab in the pre-processing module of the system.

Fig. 8. View of the LRHA results tab in the post-processing module of the software.
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Fig. 9. View of the Capacity Curve tab in the post-processing module of the software.

The analysis proceeds until one of the following scenarios is reached: (a) the structural system 

becomes unstable, indicating collapse; (b) the monitored displacement reaches a user-defined 

threshold magnitude, (c) numerical convergence issues arise. Prior to the application of the 

lateral load pattern, the nonlinear response of the building due to gradually imposed gravity 

loading in a static manner is computed. 

In addition to Standard Pushover Analysis, the option of EC8-compliant Response Spectrum 

Analysis is provided but it is not elaborated herein as it has been traditionally used by the 

engineering community for decades and hence the implementation is deemed well-known.

Overall, the expert structure of Build-X ensures the implementation of the foregoing seismic 

analysis procedures in a reliable and code-compliant way. Without doubt, this very software 

structure introduces several limitations to the user, rendering the range of simulation options 

and parameterization narrower compared to other finite element analysis packages. However, 

no margin for errors pertinent to analysis parameters is left to the user, while the system is 

capable of providing a realistic enough portrayal of the earthquake response of the building, 

employing both force-based and performance-based methods.
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Fig. 10. Plan view of the first storey of the case study building in Build-X.

Fig. 11. 3D finite element model of the case study building as displayed in the graphical environments 
of Build-X (on the left) and SeismoStruct (on the right).

VERIFICATION OF THE SOFTWARE

To assess the fidelity of the building model produced by the developed expert system and to 

illustrate its overall efficiency and assumption validity, an example seismic performance 

assessment application is presented. The objective here is to show whether Build-X, as an 

OpenSees front-end, produces the same analysis results as the standard manual scripting 

approach that one would conventionally use, under the same modelling assumptions. 

Verification is performed against SeismoStruct [32], a widely used code for earthquake 

engineering applications within the research community and by practitioners. SeismoStruct 

was selected for the comparison on the grounds that it features distributed plasticity fiber 
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element models for capturing the nonlinear response of structural systems, similarly to 

OpenSees, hence a comparison under like modeling assumptions is possible. The structure 

under consideration is a two-story RC building exhibiting regularity in plan and elevation. It is 

first subjected to incremental gravity loading; in a second loading step, Standard Pushover 

analysis in both principal plan directions is performed. 

Structural configuration
The building of interest is of rectangular plan, symmetric with respect to the global X axis, and 

has a total floor area of 64.0 m2 (Figure 10). The heights of the first and second story are 4.73 

m and 3.00 m, respectively. It features a dual frame-wall resisting structural system, consisting 

of a single shear wall (2000x250mm) with its stiff axis lying parallel to the global X axis. 

Rectangular cross-sections are used for columns (400x400mm) and beams (250x500mm). The 

concrete class is C20/25 (characteristic unconfined compressive strength ) 220 /ckf N mm

and the reinforcing steel class is B500C (yield strength ). It should be 2500 /yf N mm

mentioned that SeismoStruct’s material library does not contain the Kent and Park concrete 

model, as adopted by default in Build-X; to this end, Mander’s concrete model [33] was used. 

Plastic strain evolution of reinforcing steel is represented by the Menegotto and Pinto model in 

both programs. Strain hardening is assumed zero. Reinforcement details are as follows: 

6Ø20mm bars for the longitudinal reinforcement and Ø8/100mm confinement bars for the 

transverse reinforcement of the confined edges of the wall sections, Ø8/150mm web grid along 

the width edges of the core; 4Ø20mm longitudinal bars and Ø8/100mm confinement bars for 

the columns; 4Ø20mm longitudinal bars for the beams. Concrete cover depth was assumed to 

be 35mm. To ensure maximum possible matching between the parameters of the two models, 

vertical members were assumed to be fixed at their base and vertical loads were introduced to 

the building in the form of uniformly distributed transverse forces on beam members, with a 

magnitude of 30 kN/m. A 3D render of the building model as generated in both programs is 

given in Figure 11. 

Comparison of Standard Pushover analysis results
By performing Standard Pushover analysis in each of the horizontal directions, the nonlinear 

response of the building is obtained in terms of a roof displacement versus base shear force 

curve, as shown in Figure 12. In general, it is observed that a high level of agreement is attained 

as to the predicted response quantities of interest and the overall shape of the curves between 

the two solutions.

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534



27

Regarding the capacity curve for load application in X direction, initial gradients of the two 

solutions, denoting identical initial stiffnesses. The first concrete tensile cracks can be traced 

at approximately the same point of the two curves ( ,  and 0.02BW
crd m 820BW

crV kN

, ). As the building approaches the first yield region, more striking 0.02SS
crd m 833SS

crV kN

differences between the two curves are observed. Yield strength in Build-X exceeds by 7.4% 

the one in SeismoStruct ( compared to ), while yield displacement is found to 1265kN 1178kN

be 19.6% larger ( compared to ). Stiffness degradation is captured almost 0.061m 0.051m

identically in terms of the slope of the post-yield curve branch. The deviation found in ultimate 

strength is of the order of 2.1% ( compared to ). Strength softening is 1336kN 1308kN

successfully captured by both solutions, although SeismoStructs’s solution produces a sudden 

strength drop. The ductility capacity   derived from Build-X is estimated to be  /u yd d  3.56

compared to the value of  obtained by SeismoStruct, indicating a 25% discrepancy.2.83

In the case of Pushover analysis in Y direction, a comparison is clearly easier to derive (Figure 

12, right). The two curves follow an almost identical path until the building enters the plastic 

region. The latter is reflected on the initial stiffness, first crack displacement, yield strength and 

yield displacement values, with deviations that did not exceed 2.44%. Within the plastic region, 

the curve obtained by Build-X maintains an almost zero tangent stiffness, while the one 

obtained by SeismoStruct displays a negative slope, reflecting the strength softening effect. 

Ultimate strength and displacement deviations between the two solutions amount to 2.16% and 

4.16%, respectively. Ductility capacity is calculated to be  for the Build-X solution 7.075 

and for the SeismoStruct solution, a 1.2% difference. It has to be noted that a series 6.99 

of convergence difficulties were encountered during the analysis in SeismoStruct, resulting in 

capacity curves with acute jaggedness. For this reason, tuning of some parameters concerning 

the fiber model was necessary. Specifically, the number of fibers used for the cross-section of 

vertical members was set to 81 and the number of integration sections was set to 4. These 

settings for beam members were 64 and 3, respectively. Additionally, the load pattern was 

applied in 75 steps up to a global drift equal to 10%.
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Fig. 12. Pushover curves of the considered building in global X direction (left) and Y direction (right) 
using the developed (Build-X) and the reference (SeismoStruct) software. 

LIMITATIONS

For the sake of completeness, it is appropriate to state the most notable limitations and 

assumptions inherent to the software’s functionality. 

 The system assumes geometrically prismatic frame elements. This means that a frame 

element with variable cross-section is not admissible.

 Only rectangular and circular cross-sections are available for frame members, on the 

grounds that these constitute the most popular choice by far in RC buildings. The future 

resolution is to enrich the section library with standard steel profiles, in order to expand 

the applicability of the software to structural steel buildings.

 The already mentioned grid orthogonality excludes the creation of obliquely-oriented 

straight members or curved members. Moreover, no structural members may lie outside 

the grid outline. 

 Geometry definition is based on member centerlines. Build-X does not admit beam-

column joint offsets.

 Shear walls are assumed to run uninterrupted from the foundations up to the top level 

of the building. In other words, no discontinuities can be introduced for this member 

type.

 Beam-to-beam connections are not supported.

 The Equivalent Frame Model may underestimate the torsional stiffness of the core walls, 

and parasitic moments due to torsion-induced shear may arise. For this reason, attention 

has to paid to torsionally sensitive buildings having core walls.
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 The user should be aware that Build-X does not provide unlimited potential for arbitrary 

input manipulation (going back and forth within the visual user interface). Most of the 

choices, once cofirmed, are considered final.

CONCLUSIONS AND FUTURE WORK

Capabilities and key features of an expert system designed for the seismic analysis and 

performance evaluation of buildings are presented in this paper. Offering an expert knowledge 

library which addresses modeling of critical building-specific issues designers often neglect or 

are unaware of, Build-X eliminates possible mistakes and ensures robustness in the modeling 

process. Code automations are designed to facilitate various pre- and post-processing tasks, not 

only improving the credibility of the finite element model developed, but also minimizing the 

total elapsed time before analysis results become available. This became particularly evident 

in the verification study: the time required to completely assemble and analyze a fairly simple 

inelastic building model in SeismoStruct was measured over 25 minutes; Build-X was over 8 

times faster (approximately 3 minutes). It is expected that this time reduction will be 

significantly greater when compared to FE software that employ lumped plasticity models, 

whereby users have to engage in the time-consuming task of defining plastic hinge parameters. 

A verification case study against the reference software for a two-story RC building with one 

shear wall  shows that  no algorithmic error exists as per the use of the proposed software in 

preparing, calling and executing the OpenSees engine. Minor deviations between the two 

solutions may be partly attributed to the different constitutive laws used for confined concrete 

by the FE solvers. 

The previous remarks, in conjunction with the fact that Build-X provides a simple and user-

friendly visual interface with continuous guidance, manifest the overall improved efficiency of 

the system. Serving as a unique complementary tool to the GUI-lacking yet powerful OpenSees 

platform, Build-X has the potential to facilitate the design engineer in readily implementing 

seismic analysis and assessment procedures for 3D buildings, ensuring low modeling 

uncertainty levels and operating times. The system may prove an appealing solution especially 

for the stage of the preliminary seismic design, whereby different conceptual model designs 

are cyclically tested in order to choose the one that satisfies certain constraints.

The system architecture is such that easily allows for new feature additions and improvements 

that could elevate its expert character. For instance, an upgrade that is currently under 

consideration is an implementation of a simplified global collapse capacity assessment 

methodology [34] for planar frame structures based on Pushover analysis. Other features 
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currently being designed to complement the dynamic procedure are: (a) selection of appropriate 

frequency-dependent dynamic impedance functions from the literature to account for soil-

foundation flexibility, (b) optimal selection of ground motion sets following spectral-matching 

procedures (this could be instantly accomplished by linking Build-X with ISSARS [35], a 

ground-motion selection tool that improves the reliability of statistical measures of the obtained 

structural response), (c) expansion of the LRHA framework to model nonlinear material 

behaviour where optimal choices of cyclic nonlinear material laws will be supported.

The setup files of the software are free to download from https://www.buildx4opensees.eu/
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