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Histopathologic evaluations of tissue sections are key to diagnosing and

managing ovarian cancer. Pathologists empirically assess and integrate visual

information, such as cellular density, nuclear atypia, mitotic figures,

architectural growth patterns, and higher-order patterns, to determine the

tumor type and grade, which guides oncologists in selecting appropriate

treatment options. Latent data embedded in pathology slides can be

extracted using computational imaging. Computers can analyze digital slide

images to simultaneously quantify thousands of features, some of which are

visible with a manual microscope, such as nuclear size and shape, while others,

such as entropy, eccentricity, and fractal dimensions, are quantitatively beyond

the grasp of the humanmind. Applications of artificial intelligence and machine

learning tools to interpret digital image data provide new opportunities to

explore and quantify the spatial organization of tissues, cells, and subcellular

structures. In comparison to genomic, epigenomic, transcriptomic, and

proteomic patterns, morphologic and spatial patterns are expected to be

more informative as quantitative biomarkers of complex and dynamic tumor

biology. As computational pathology is not limited to visual data, nuanced

subvisual alterations that occur in the seemingly “normal” pre-cancer

microenvironment could facilitate research in early cancer detection and

prevention. Currently, efforts to maximize the utility of computational

pathology are focused on integrating image data with other -omics

platforms that lack spatial information, thereby providing a new way to relate

the molecular, spatial, and microenvironmental characteristics of cancer.

Despite a dire need for improvements in ovarian cancer prevention, early

detection, and treatment, the ovarian cancer field has lagged behind other

cancers in the application of computational pathology. The intent of this review

is to encourage ovarian cancer research teams to apply existing and/or develop

additional tools in computational pathology for ovarian cancer and actively

contribute to advancing this important field.
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Computational imaging as a tool
to study cancer from a
novel perspective

Opinions about the role of computational imaging in the

future of pathology range from the belief that computers will

entirely replace pathologists to the conviction that computers

will never achieve the competency of a well-trained pathologist.

Similar to advanced chess-playing software, which is now

practically unbeatable by humans, it is likely that computers

will be faster and more accurate than pathologists in performing

specific tasks, but the main purpose of computational pathology

is not to outperform pathologists in routine analyses but to

provide them with a completely new and complementary set of

tools, some of which are highlighted below:
Large-scale searchable
integrative quantitation

Ovarian cancer is the fifth most deadly cancer in women,

accounting for more than 200,000 deaths per year worldwide (1).

Pathologic diagnosis is primarily confirmed by histopathologic

evaluation and interpretation of H&E stained sections of tumor

obtained during surgical debulking and/or biopsies obtained

during treatment. Years of training with meticulous attention to

histopathologic details in numerous examples of normal, altered

but benign, and cancerous tissues enable pathologists to extract

and empirically integrate an array of visual information from

H&E slides into discrete features, such as tumor type, grade,

mitotic count, and lymphovascular invasion. Using these

features and additional pathological parameters allows the

pathologist to categorize each tumor within a universally

accepted classification, such as the World Health Organization

(WHO) classification of tumors, which ultimately guides

clinicians in patient management. Whereas each pathologist is

variably limited by a composite of experience, memory, ability to

recall visual detail, and case-correlated clinical outcome

information locally available, computer algorithms take

advantage of a searchable database with quantitative image

features linked to clinical outcomes from thousands of

patients. By applying computational image analyses, a new

patient’s tumor can be compared to tumors in the database to

find similar tumor phenotypes and help predict the most likely

clinical outcome for the new patient.
Subvisual features

The invention of microscopes enabled the visualization of

subcellular details, including nuclear enlargement, atypia,

nucleolar prominence, hyperchromatism, and mitotic activity,
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which are usually important in establishing cancer diagnoses.

However, a computer can extract and quantify hundreds, if not

thousands, of additional visual and subvisual features (Figure 1),

which can be configured into an algorithm to predict specific

tumor behavior (i.e. likelihood of sensitivity to immunotherapy)

or assess the efficacy of chemotherapy in tumor biopsies

obtained at different time points during treatment. Extracting

and analyzing information that is beyond human visual

perception might also help identify new tissue, cellular, or

subcellular structures, features, and/or spatial relationships

that are difficult to characterize in H&E slides, such as liquid

flow and vacuolarity, and intratumoral areas with increased

tension, pH, metabolic activity, and/or genotoxic stress.
Complex spatial information

In most solid malignancies, including ovarian cancer, cancer

cells exist within a complex microenvironment that supports

tumor growth. In general, the presence of immune cells is

associated with better prognosis while the presence of cancer-

associated fibroblasts (CAFs) is associated with worse prognosis.

In addition to phenotypic diversity, it is becoming apparent that

spatial relationships between cancer cells, immune cells, and

CAFs play key roles in tumor aggressiveness and response to

therapy. However, our knowledge and understanding about the

composition of, and the spatial organization within, the tumor

microenvironment is still in its infancy. Higher-order spatial

patterns, such as cell-cell interactions, tissue interfaces, collagen

alignment, and extent of tumor heterogeneity (Figure 2),

are important readouts of the complexities of tumor

pathophysiology and response to treatment yet remain largely

unexplored. While the quantitation of individual cell types and

the algorithms that are currently applied to summarize the

extent and intensity of tumor staining in a biomarker panel

are sufficient for patient stratification into broad groups, i.e.

responders and non-responders, comprehensive spatial and

morphometric readouts will be necessary to effectively tailor

medical treatment to the individual characteristics of each

patient (2, 3).
Unbiased discovery

Knowing where and what to look for when examining a

specimen or a histologic slide is crucial. Information that is not

considered clinically relevant is more likely to be only cursorily

examined or implicitly overlooked. For example, precursor lesions

in the fallopian tube became obvious to pathologists only at the

beginning of the 21st century after decades of searching for these

lesions in the ovary, which at the time seemed to be the most

logical place for ovarian cancer initiation. Computers can record

information extracted from hundreds of scanned slide images in a
frontiersin.org
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matter of hours. Using unbiased systematic processing of the

recorded data, new and/or non-intuitive patterns can emerge (4).

For example, although precursor lesions, such as serous tubal

intraepithelial carcinoma (STIC) are identifiable in serially

sectioned fallopian tubes processed with standard histopathology

methods (5), the morphologic events that precede STIC formation

are still unknown. Indeed, it is likely that STIC lesions are

preceded by subtle morphologic changes that are either not

visible to the human eye or are too nuanced to detect without

prior knowledge of where and what to look for. A recent analysis

of global stromal features in fallopian tubes from postmenopausal

women showed that fallopian tubes with STIC lesions exhibit

subvisual global changes in the stroma that might precede STIC

formation and/or provide a permissible microenvironment for the

neoplastic transformation of tubal epithelial cells (6). The ability to

detect and understand what constitutes a “permissible”

microenvironment for cancerous transformation provides new

opportunities for the early detection of cancer and for the

identification of rate-limiting events in the early stages of

cancer development.
Artificial intelligence, machine
learning, and neural networks

Artificial Intelligence (AI) comprises a set of algorithms that

mimic human intelligence, enabling machines to perform

complex tasks, such as cognitive perception, decision-making,
Frontiers in Oncology 03
and communication. Machine learning is a subcategory of AI in

which a machine is initially provided with large amounts of

training data needed to build models to accurately analyze and

interpret new data (7, 8). Machine learning models can

automatically learn, improve their performance, and solve

problems. Support vector machines, clustering algorithms, k-

nearest neighbor classifiers, and logistic regression models (7, 8)

are examples of commonly used models. However, because they

can learn only a handful of features, they are being replaced by

models that use deep learning. Deep learning is a type of

machine learning that uses a neural network consisting of

three or more functional layers, which include an input layer,

multiple hidden layers, and an output layer (9, 10). The hidden

layers promote learning and refinement of information “seen” by

the input layers to increase the accuracy of predictions of the

model’s output. The layers are connected to each other, and the

strengths of these connections (termed “weights”) are learned

from the training data.

A convolutional neural network (CNN) is a type of a deep

learning model used to build advanced decision-making

workflows in digital image analysis, ranging from image

processing, classification and segmentation of tissue images to

the prediction of patient outcomes. CNN often employs more

than three convolutional sets of learnable filters (kernels) to

extract features from the images. Kernel filters provide low, high

and selective filtering (smoothing and sharpening, respectively).

The filters distill various basic features such as edges, shapes,

color, intensity and location of objects in the image. By flattening
FIGURE 2

Examples of spatial characteristics within the tumor microenvironment that can be quantified using different types of computational image
software. Created with BioRender.com.
FIGURE 1

Artistic rendering of how a computer may “see” quantifiable nuclear features.
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an image, removing or reducing the dimensions, convolutional

kernels conduct pre-processing steps that enable selection and

organization of the most informative learned features and

recognition of these features in previously unseen images. In

deeper layers of the CNN, the features are transformed into

feature maps that summarize the presence of detected features in

the input image (11). Another model that could prove useful in

pathology is the fully convolutional network (FCN),

characterized by a hierarchy of convolutional layers that are

not fully connected. Unlike CNN, which learns from repetitive

features that occur throughout the entire image, FCN learns

from every pixel thereby allowing detection of objects or features

that might be only sporadically present in an entire image (12),

for example cancer stem cells which comprise a minute fraction

of the tumor. CNN and FCN models are well suited for tumor/

object detection, classification, and segmentation tasks (13–16).

A recurrent neural network (RNN) model is characterized by

dynamic behavior, meaning that it can memorize inputs over

different time points or time intervals and learn from them in a

sequential manner. RNN could be useful to analyze serial

biopsies from a patient who is under surveillance for disease

development, progression, or emergence of therapy resistance

(17). Machine learning can be applied in a supervised or

unsupervised manner. Supervised machine learning uses

labeled data sets to train algorithms that classify data or

predict outcomes. As input data are fed into the model, the

significance of the individual data is adjusted until the model has

been appropriately fitted to infer a function that maps input

images to a designated outcome label or an object. In contrast,

unsupervised machine learning uses unlabeled images to infer a

function and detect patterns in the data, clustering them by any

distinguishing characteristic(s). Both supervised and

unsupervised learning can be useful to reveal new non-

intuitive patterns that correlate with specific clinical outcomes.
Computational pathology as a
window into the molecular
composition of cancer

Oncologists in consultation with pathologists increasingly rely

on molecular assays to guide patient-tailored cancer therapy. Such

assays can be costly and time-consuming in comparison to routine

H&E slides, which can be digitized and analyzed on site. If the

application of AI to H&E stained slides could provide molecular

information, i.e. predict mutation status or expression levels of

actionable cancer drivers in a patient’s tumor, several of the

currently used technologies, such as immunohistochemistry, in

situ hybridization, and next generation sequencing, might become

superfluous. Recent efforts to integrate digitized H&E image data

with molecular data indicate that determining molecular

information from digitized H&E slides is not only feasible (18–
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21) but might achieve greater accuracy than other techniques that

are subject to human error-prone steps, such as specialized

specimen preparation and complex laboratory tasks.

Since tissue and cellular morphologies are known to reflect their

physiological and pathological conditions, it would be reasonable to

expect that higher-order features extracted from histopathology

slides are associated with distinct molecular profiles, such as

specific gene and protein expression, metabolism, and sensitivity to

specific drugs. For example, a higher-order chromatin structure was

shown to be the main determinant of genomic instability and

mutation frequency in cancer cells (22–24) as well as a strong

prognostic indicator in a pan-cancer study (25). Relying only on

tumor histomorphology inH&E slides, recent reports indicate that it

was possible to predict microsatellite instability in gastrointestinal

cancers (26–28), determine molecular expression of ER, PR, and

HER2 in breast cancer (29), and detect mutations in prognostically

and therapeutically relevant driver genes in different cancer types,

including BRAF inmelanoma (30), APC, KRAS, PIK3CA, SMAD4,

and TP53 in colorectal cancer (31), EGFR, KRAS, TP53, STK11,

FAT1, and SETBP1 in lung cancer (32), TP53, CTNNB, FMN2, and

ZFX4 in hepatocellular carcinoma (33), FGFR3 in bladder cancer

(34), and IDH1 in glioma (35).
Biomarker discovery

With an increasing number of available cancer therapies, it is

crucial to develop companion diagnostic tests that identify and

stratify subpopulations of patients by their likelihood to benefit

from specific therapies. For example, in ovarian cancer,

immunotherapy can be associated with serious side effects but

only shows efficacy in about 10% of ovarian cancer patients (36).

Another example is the need to identify patients who could

benefit from PARP inhibitors. In the absence of better

biomarkers, detection of a gene mutation (i.e. BRCA1

mutation) or elevated protein expression (i.e. PD-1 and PD-

L1) of the intended therapeutic target are frequently used as

proxies for treatment response. However, most of the current

treatment response biomarkers perform poorly. While it is

logical to expect that BRCA mutation carriers would be more

sensitive to PARP inhibitors, clinical trials have shown that

many non-carriers are responsive to PARP inhibitors although

the rationale for this response is still unclear (37). Similarly,

immunohistochemical detection of tumor-infiltrating

lymphocytes and PD-L1 is a poor proxy for sensitivity to

immunotherapy in most cancer types, including ovarian

cancer (38). In fact, microsatellite instability, a less specific

biomarker, seems to be a better predictor of sensitivity to

immunotherapy in various solid cancers (39), possibly because

microsatellite instability encompasses multiple proteins and

pathways that are involved in the immune response. Using the

same reasoning, it is likely that morphometric tumor features

that reflect complex pathophysiological states will prove to be
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more clinically useful biomarkers even if they are initially non-

intuitive or currently non-explainable.

Finding a biomarker in an unexpected place is exemplified in the

tumormicroenvironment.While cancer research hasmostly focused

on cancer cells, the unbiased application of deep imaging to digitized

H&E slides combined with software that identifies areas of the image

that influence algorithm-based classification has frequently revealed

stromal features as better biomarkers of clinical outcomes than

features of cancer cells (40). In ovarian cancer, a high ratio of stromal

CAFs to cancer cells is an independent biomarker of poor survival

and chemotherapy resistance (41–44). Indeed, stromal features were

identified as the most effective biomarkers in colon cancer (45–47),

mesothelioma (48), breast cancer (49, 50), lung adenocarcinoma (51)

and early-stage non-small cell lung cancer (52). The discovery of

stromal features as the most relevant predictors of clinical outcomes

is not surprising as multiple molecular studies of expression profiles

and proteomic signatures have also shown that an increased stroma/

cancer ratio and increased expression of gene signatures associated

with stromal remodeling were the strongest predictors of clinical

outcomes (53–62). Studies in several cancer types have also shown

that the signature of TGFb-mediated extracellular matrix

remodeling is the best predictor of therapy failure (63). The tumor

stroma could contribute to poor survival and therapeutic resistance

through multiple mechanisms, including promotion of tumor

growth, angiogenesis, invasion and metastasis, provision of

protective niches for cancer stem cells, creation of an

immunosuppressive microenvironment that excludes immune cells

from proximity to cancer cells, and/or generation of physical barriers

that block access of chemotherapies and immunotherapies to cancer

cells (64–68). Thus, it is unlikely that a single molecular pathway will

be sufficient as a biomarker of the complex biology that dictates

clinical outcomes. A recent computational image analysis of H&E

slides of non-small cell lung and gynecologic cancers has shown that

the spatial architecture and the interaction of cancer cells and tumor-

infiltrating lymphocytes can predict clinical benefit in patients

receiving immune checkpoint inhibitors. Importantly, the

computational image classifier was associated with clinical

outcome independent of clinical factors and PD-L1 expression

levels (69). In addition to identifying new biomarkers by

highlighting specific structures and regions, computational tissue

imaging could assist with the identification of new therapeutic

targets. For example, targeting CAFs with various TGFb inhibitors

was effective in improving immunotherapeutic efficacy in several

preclinical cancer models (66–68).
Future implementation of
computational pathology in
clinical practice

Potential applications of computational pathology in cancer

include diagnosis, phenotyping, subtype classification, early
Frontiers in Oncology 05
detection, prognostication, assessment of sensitivity to

chemotherapy and immunotherapy, and identification of

suitable targeted therapies (20). For example, open-source

software, QuPath (70), was capable of classifying serous

borderline ovarian tumors and high-grade serous ovarian

cancer with >90% accuracy by examining only a small number

of tiles extracted from whole H&E slide images (71). While this

approach does not reach the accuracy achieved by pathologists

who examine multiple sections from different areas of each

tumor and have access to surgical records and other clinical

information, this example suggests that improvements in the

software recognition pattern and computational capacity to

analyze pathology slides could achieve clinical-grade tumor

classification (72).

Several examples report the utility of computational imaging

to automate cancer diagnoses without compromising accuracy.

For example, a CNN trained to classify images as malignant

melanoma or benign nevi demonstrated superior performance

compared to manual scoring by histopathologists (73, 74).

Another study that assessed the ability of deep learning

algorithms to accurately detect breast cancer metastases in

H&E slides of lymph node sections reported that the

algorithms were superior in detecting micrometastases and

equivalent to the best performing pathologists when under

time constraints in detecting macrometastases (75). Similarly,

an AI system has reached a clinically acceptable level of cancer

detection accuracy in prostate needle biopsies (76). A study of

deep CNN in Gleason scoring of prostatectomy specimens

reported that the deep learning-based Gleason classification

achieved higher sensitivity and specificity than 9 out of 10

pathologists (77). Computational analyses of H&E images have

been applied for the prediction of patient survival and

recurrence. Deep learning-based algorithms have also been

reported to predict prostate cancer recurrence comparably to a

genomic companion diagnostic test (78). Other studies utilizing

deep learning-based classification involve determining histologic

subtype in ovarian cancer (79), predicting platinum resistance in

ovarian cancer (41, 80), predicting survival outcome in patients

with mesothelioma (48), predicting metastatic recurrence and

death in patients with primary melanoma (81) and colon cancer

(46), predicting lung cancer recurrence after surgical resection to

identify patients who should receive additional adjuvant therapy

(52, 82), and predicting response to ipilimumab immunotherapy

in patients with malignant melanoma (83). A computational

quantitative characterization of the architecture of tumor-

infiltrating lymphocytes and their interplay with cancer

cells from H&E slides of three different gynecologic cancer

types (ovarian, cervical, and endometrial) and across three

different treatment approaches (platinum, radiation and

immunotherapy) showed that the geospatial profile was

prognostic of disease progression and survival irrespective of

the treatment modality (84). This computationally-derived

profile even outperformed the stage variable, which is the
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current standard for gynecologic oncology (84). Upon closer

inspection, features related to the increased density of

lymphocytes in the epithelium and invasive tumor front were

associated with better survival compared with features related to

the increased density of lymphocytes in the stromal

compartment (84). Although these patterns can be observed

by conventional pathology examination, the value of the

computational geospatial profile is in the inherently

quantitative output rather than the descriptive output from

conventional pathology.

Computational pathology has already become an integral

component of cancer research and is increasingly being used in

anatomic pathology to automate tasks, reduce subjectivity, and

improve accuracy and reproducibility (17, 85, 86). The

development of high-resolution whole slide image scanners,

which are specialized microscopes fitted with high resolution

cameras, high magnification objectives, and software for the

identification and automated correction of out-of-focus points,

constitutes a major advance in computational pathology. Two of

these high-quality scanners, the Leica Aperio AT2 DX System

and the Philips IntelliSite Pathology Solution, now have FDA

approval for clinical review and expert interpretation of

pathology slides in routine diagnoses (87). To facilitate the

adoption and implementation of this technology into

pathology workflows, the Digital Pathology Association has

published several practical guides to whole slide imaging (88–

91). Digitization of pathology slides enables simultaneous review

of slides by multiple pathologists at different institutions and the

creation and growth of centralized cloud-based image

repositories and databases that are accessible for remote high-

throughput studies and/or the development of multiple freely-

available machine learning-based tools that can recognize and

quantify positive immunostaining or basic structures, such as

epithelial-lined ducts, blood vessels, and mitotic figures in H&E

slides. Proof-of-concept studies show that automated analyses of

simple morphologic patterns can assist pathologists and

researchers, allowing them to focus on more complex tasks

(2, 92).

Academic pathology departments are increasingly interested in

adopting AI in routine practice to optimize operations, reduce costs,

and improve patient care. A survey of physician perspectives on the

integration of AI into diagnostic pathology revealed that 75% of

pathologists across more than fifty countries are interested in using

AI as a diagnostic tool in cancer care (93). With the continuous

increase in the aged population and the growing number of

available tests for persionalized medicine, pathologists are

overburdened by tasks, such as counting mitotic figures or

scoring Ki67 staining, that could be easily performed by

machines. Hence, automated computational imaging platforms

for the detection and quantitation of stained markers in defined

cell subpopulations are the first candidates to be integrated into

pathology workflows as these analyses could provide accurate,

unbiased, reproducible, and standardized results that can be
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viewed and verified (72, 89, 94–96). In contrast, results of

artificial neural network analyses that cannot be verified visually

are more likely to be met with mistrust by the pathology

community because the pathologist needs to be confident in the

result before signing out a report (97). This problem might be

solved by the further development of tools that introduce

transparency for non-linear machine learning methods, such as

gradient-weighted class activation mapping (grad-CAM) that

overlays images and heatmaps to better visualize the cell type or

region in which the informative features were expressed (98).

Although research results utilizing computational imaging in

pathology are promising, significant improvements need to be

made to achieve the safety and reliability required for

endorsement by medical specialty societies, legal approvals, and

implementation of this technology into daily clinical pathological

diagnostics (99–101). One of the first steps will involve the

standardization of slide scanners, display devices, image formats,

platforms for image processing and analysis as well as the

standardization of the interfaces with clinical information systems

and reimbursement mechanisms. Among the technical challenges

that must be overcome are normalization methods for histological

data preparation at different institutions. This is a pressing issue

given that histologic slides are stained either manually or with auto-

stainers using site-specific protocols and then digitized on scanners

from various manufacturers. Tissue handling and processing can

also introduce artefacts, such as air bubbles, fingerprints, excessive

glue, blurry/out of focus tissue image, unstained or overstained

tissue, and folded or cauterized tissue and digitization (102). While

the human eye might not be sensitive to slight differences in tissue

fixation, sectioning, staining, and coverslip mounting, all of these

factors indiscriminately impact machine learning, and each can

have drastic implications on the final results (102). For these

reasons, the computational pathology community strongly

promotes rigorous algorithm development and testing schemes.

First, innovative methods must be used to address pixel data

normalization, color standardization, and recognition of the areas

on the slide that are out of focus, blurred or contain folded or

damaged tissue (103–109). Second, algorithm generalizability on

unseen digitized specimens collected at different institutions or

deposited in public repositories, such as The Cancer Genome Atlas

(TCGA) (110) and The Cancer Imaging Archive (TCIA) (111), will

need to be tested and standardized (7, 112, 113).

Many commercial and freely available viewers and image

analysis software packages support different whole slide image

formats for Windows, Linux, and MacOS. Commercial slide

viewers include ImageScope (Aperio/Leica), CaseViewer

(3DHistech), and ObjectiveView. The development of web-

based viewing interfaces and custom computational pathology

pipelines is supported by OpenSlide and SlideIO software

libraries. For users with little to no programming skills, the

most popular free software packages for general tissue image

analysis include ImageJ (114), Fiji (115), Icy (116), Orbit (117),

ilastik (118), Cell Profiler (119), QuPath (70), SlicerScope (120),
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and PathML (121). These platforms have been embraced in the

research arena because they can be easily adapted to different

types of image analyses by introducing new codes or

incorporating plugins from other programs. They are also

flexible in processing different types of image files.

Additionally, a plethora of fit-for-purpose packages with

custom-made computational pathology pipelines can be found

on GitHub (https://github.com/). Commercial digital pathology

solutions, such as PerkinElmer (USA), Tissue Gnostics

(Austria), Halo (United States), Visophram (Denmark) and

Definiens (Germany), are often preferred by pathology

departments because these platforms offer built-in databases of

analytical engines and available technical support. Recognizing

the importance of standardization in clinical practice, the freely-

accessible Pathology Analytic Imaging Standards (PAIS) was

created to support the standardization of image analysis

algorithms and image features (122, 123). Resources of web-

based interfaces and online tools, such as The Cancer Digital

Slide Archive (CDSA, http://cancer.digitalslidearchive.net/), for

visualization and analysis of pathology image data are also

becoming more readily available (124).
Conclusion

Computational image analysis holds great promise in

advancing ovarian cancer research, including a better

understanding of the events that provide a permissible

microenvironment for early cancerous transformation in the

fallopian tube, the role of the stroma in therapeutic resistance,

and biomarkers for the selection of patients most likely to benefit

from different therapeutic approaches. Although computational

pathology in the ovarian cancer research field is still too

rudimentary to use in a clinical setting, we anticipate that it will

become one of the main tools for cancer research and precision

medicine in the next decade, surpassing current methods for the

selection of patient-tailored therapy, such as immunostaining,

mutation sequencing, and expression profiling. Among the key

factors that will propel computational pathology to the forefront of

medical research are the accessibility of histopathology slides, the
Frontiers in Oncology 07
low-cost of image analysis and storage, seamless integration with

other computational imaging platforms, and the potential for rapid,

accurate, and reliable prediction of patient outcomes.
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