25 research outputs found

    High resolution spectroscopy of photospheric bright points

    Get PDF
    Photospheric bright points are proxies for small-scale magnetic flux concentrations.These magnetic elements are thought to be the building blocks of the solar magnetic field and are important to understand many physical processes on the Sun, e.g. the variability of the solar irradiance.Because of their small size (100-200 km in diameter) the observations of photospheric bright points put special requirements on the seeing conditions, instrumental setup and post-processing techniques ...thesi

    Opposite magnetic polarity of two photospheric lines in single spectrum of the quiet Sun

    Full text link
    We study the structure of the photospheric magnetic field of the quiet Sun by investigating weak spectro-polarimetric signals. We took a sequence of Stokes spectra of the Fe I 630.15 nm and 630.25 nm lines in a region of quiet Sun near the disk center, using the POLIS spectro-polarimeter at the German VTT on Tenerife. The line cores of these two lines form at different heights in the atmosphere. The 3σ\sigma noise level of the data is about 1.8 ×10−3Ic\times 10^{-3} I_{c}. We present co-temporal and co-spatial Stokes-VV profiles of the Fe I 630 nm line pair, where the two lines show opposite polarities in a single spectrum. We compute synthetic line profiles and reproduce these spectra with a two-component model atmosphere: a non-magnetic component and a magnetic component. The magnetic component consists of two magnetic layers with opposite polarity: the upper one moves upwards while the lower one moves downward. In-between, there is a region of enhanced temperature. The Stokes-VV line pair of opposite polarity in a single spectrum can be understood as a magnetic reconnection event in the solar photosphere. We demonstrate that such a scenario is realistic, but the solution may not be unique.Comment: 4 pages, 5 figures, accepted in Astronomy & Astrophysics Letter

    Twisting Flux Tubes as a cause of Micro-Flaring Activity

    Full text link
    High-cadence optical observations of an H-alpha blue-wing bright point near solar AR NOAA 10794 are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system, the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity-related oscillatory signatures, and periodicities ranging from 15 to 370 s are found with significance levels exceeding 95%. During two separate microflaring events, oscillation sites surrounding the bright point are observed to twist. We relate the twisting of the oscillation sites to the twisting of physical flux tubes, thus giving rise to reconnection phenomena. We derive an average twist velocity of 8.1 km/s and detect a peak in the emitted flux between twist angles of 180 and 230 degrees.Comment: 8 pages, 10 figure

    Stray-light contamination and spatial deconvolution of slit-spectrograph observations

    Full text link
    Stray light caused by scattering on optical surfaces and in the Earth's atmosphere degrades the spatial resolution of observations. We study the contribution of stray light to the two channels of POLIS. We test the performance of different methods of stray-light correction and spatial deconvolution to improve the spatial resolution post-facto. We model the stray light as having two components: a spectrally dispersed component and a component of parasitic light caused by scattering inside the spectrograph. We use several measurements to estimate the two contributions: observations with a (partly) blocked FOV, a convolution of the FTS spectral atlas, imaging in the pupil plane, umbral profiles, and spurious polarization signal in telluric lines. The measurements allow us to estimate the spatial PSF of POLIS and the main spectrograph of the German VTT. We use the PSF for a deconvolution of both spectropolarimetric data and investigate the effect on the spectra. The parasitic contribution can be directly and accurately determined for POLIS, amounting to about 5%. We estimate a lower limit of about 10% across the full FOV for the dispersed stray light. In quiet Sun regions, the stray-light level from the close surroundings (d< 2") of a given spatial point is about 20%. The stray light reduces to below 2% at a distance of 20" from a lit area for both POLIS and the main spectrograph. A two-component model of the stray-light contributions seems to be sufficient for a basic correction of observed spectra. The instrumental PSF obtained can be used to model the off-limb stray light, to determine the stray-light contamination accurately for observation targets with large spatial intensity gradients such as sunspots, and also allows one to improve the spatial resolution of observations post-facto.Comment: 14 pages, 16 figures, accepted by A&A. Version V2 revised for language editin

    Two-dimensional solar spectropolarimetry with the KIS/IAA Visible Imaging Polarimeter

    Full text link
    Spectropolarimetry at high spatial and spectral resolution is a basic tool to characterize the magnetic properties of the solar atmosphere. We introduce the KIS/IAA Visible Imaging Polarimeter (VIP), a new post-focus instrument that upgrades the TESOS spectrometer at the German VTT into a full vector polarimeter. VIP is a collaboration between the KIS and the IAA. We describe the optical setup of VIP, the data acquisition procedure, and the calibration of the spectropolarimetric measurements. We show examples of data taken between 2005 and 2008 to illustrate the potential of the instrument. VIP is capable of measuring the four Stokes profiles of spectral lines in the range from 420 to 700 nm with a spatial resolution better than 0.5". Lines can be sampled at 40 wavelength positions in 60 s, achieving a noise level of about 2 x 10E-3 with exposure times of 300 ms and pixel sizes of 0.17" x 0.17" (2 x 2 binning). The polarization modulation is stable over periods of a few days, ensuring high polarimetric accuracy. The excellent spectral resolution of TESOS allows the use of sophisticated data analysis techniques such as Stokes inversions. One of the first scientific results of VIP presented here is that the ribbon-like magnetic structures of the network are associated with a distinct pattern of net circular polarization away from disk center. VIP performs spectropolarimetric measurements of solar magnetic fields at a spatial resolution that is only slightly worse than that of the Hinode spectropolarimeter, while providing a 2D field field of view and the possibility to observe up to four spectral regions sequentially with high cadence. VIP can be used as a stand-alone instrument or in combination with other spectropolarimeters and imaging systems of the VTT for extended wavelength coverage.Comment: 10 pages, 8 figures, accepted by Astronomy and Astrophysics v2: figures updated with improved qualit

    Modeling flexibility in energy systems : comparison of power sector models based on simplified test cases

    Get PDF
    Model-based scenario analyses of future energy systems often come to deviating results and conclusions when different models are used. This may be caused by heterogeneous input data and by inherent differences in model formulations. The representation of technologies for the conversion, storage, use, and transport of energy is usually stylized in comprehensive system models in order to limit the size of the mathematical problem, and may substantially differ between models. This paper presents a systematic comparison of nine power sector models with sector coupling. We analyze the impact of differences in the representation of technologies, optimization approaches, and further model features on model outcomes. The comparison uses fully harmonized input data and highly simplified system configurations to isolate and quantify model-specific effects. We identify structural differences in terms of the optimization approach between the models. Furthermore, we find substantial differences in technology modeling primarily for battery electric vehicles, reservoir hydro power, power transmission, and demand response. These depend largely on the specific focus of the models. In model analyses where these technologies are a relevant factor, it is therefore important to be aware of potential effects of the chosen modeling approach. For the detailed analysis of the effect of individual differences in technology modeling and model features, the chosen approach of highly simplified test cases is suitable, as it allows to isolate the effects of model-specific differences on results. However, it strongly limits the model's degrees of freedom, which reduces its suitability for the evaluation of fundamentally different modeling approaches

    Model-related outcome differences in power system models with sector coupling - quantification and drivers

    Get PDF
    This paper presents the results of a multi-model comparison to determine outcome deviations resulting from differences in power system models. We apply eight temporally and spatially resolved models to 16 stylized test cases. These test cases differ in their renewable energy supply share, technology scope, and optimization scope. We focus on technologies for balancing the variability of power generation, such as controllable power plants, energy storage, power transmission, and flexibility related to sector coupling. We use harmonized input data in all models to separate model-related from data-related outcome deviations. We find that our approach allows for isolating and quantifying model-related outcome deviations and robust effects concerning system operation and investment decisions. Furthermore, we can attribute these deviations to the identified model differences. Our results show that trends in the use of individual flexibility options are robust across most models. Moreover, our analysis reveals that differences in the general modeling approach and the modeling of specific technologies lead to comparatively small deviations. In contrast, a heterogeneous model scope can cause substantially larger deviations. Due to a large number of models and scenarios, our analysis can provide important information on which investment and operation decisions are robust to the model choice, and which modeling approaches have an exceptionally high impact on results. Our findings may guide both modelers and decision-makers in properly evaluating the results of similarly designed power system models

    Verbundvorhaben FlexMex: Modellexperiment zur zeitlich und rĂ€umlich hoch aufgelösten Untersuchung des zukĂŒnftigen Lastausgleichs im Stromsystem

    Get PDF
    Das Projekt FlexMex konzentrierte sich auf einen Modellvergleich zur Untersuchung der Nutzung von FlexibilitĂ€tsoptionen zum Ausgleich der Stromerzeugung aus variablen erneuerbaren Energien. Die zentrale Frage war, wie unterschiedliche Optimierungs- und Technologiemodellie-rungsansĂ€tze den Anlageneinsatz in stĂŒndlich aufgelösten Stromsektormodellen beeinflussen. DarĂŒber hinaus wurde der Einfluss unterschied-licher ModellumfĂ€nge auf den Einsatz von FlexibilitĂ€tsoptionen untersucht. Um datenbedingte von modellbedingten Unterschieden in den Ergebnissen konsequent zu trennen, wurden die Eingangsdaten der neun beteiligten Modelle vollstĂ€ndig harmonisiert. Die Anwendung der Modelle wurde dann in zwei Hauptexperimente unterteilt. Im ersten Experiment wurden auf der Grundlage einer umfassenden qualitativen Analyse der Modelle und ihrer Unterschiede einzelne FlexibilitĂ€tsoptionen untersucht. Anhand stark reduzierter TestfĂ€lle konnten modellspe-zifische Effekte isoliert und quantifiziert werden. ErgĂ€nzende Analysen befassten sich mit dem modellendogenen Ausbau von Stromspeichern, Stromnetzen und regelbaren Kraftwerken. Aufbauend auf den technologiespezifischen Analysen wurden im zweiten Modellexperiment komplexere Szenarien betrachtet. Dort wurden sechzehn stilisierte Szenarien betrachtet, die sich in Versorgungsanteil erneuerbarer Ener-gien, Technologieumfang und Optimierungsumfang unterscheiden. Trotz der hohen Anzahl der Modelle und der interagierenden Modellun-terschiede können die Ergebnisabweichungen auf die Modelleigenschaften zurĂŒckgefĂŒhrt werden. Das Experiment zeigt, dass Unterschiede im Modellierungsansatz und der Technologieabbildung zu vergleichsweise geringen Abweichungen fĂŒhren, wĂ€hrend ein heterogener Modell-umfang einen deutlich grĂ¶ĂŸeren Einfluss haben kann. Zusammenfassend können die Ergebnisse des FlexMex-Projekts ein besseres VerstĂ€nd-nis fĂŒr die Wirkung unterschiedlicher ModellierungsansĂ€tze liefern und damit zur Interpretation von Modellergebnissen beitragen
    corecore