research

Opposite magnetic polarity of two photospheric lines in single spectrum of the quiet Sun

Abstract

We study the structure of the photospheric magnetic field of the quiet Sun by investigating weak spectro-polarimetric signals. We took a sequence of Stokes spectra of the Fe I 630.15 nm and 630.25 nm lines in a region of quiet Sun near the disk center, using the POLIS spectro-polarimeter at the German VTT on Tenerife. The line cores of these two lines form at different heights in the atmosphere. The 3σ\sigma noise level of the data is about 1.8 ×103Ic\times 10^{-3} I_{c}. We present co-temporal and co-spatial Stokes-VV profiles of the Fe I 630 nm line pair, where the two lines show opposite polarities in a single spectrum. We compute synthetic line profiles and reproduce these spectra with a two-component model atmosphere: a non-magnetic component and a magnetic component. The magnetic component consists of two magnetic layers with opposite polarity: the upper one moves upwards while the lower one moves downward. In-between, there is a region of enhanced temperature. The Stokes-VV line pair of opposite polarity in a single spectrum can be understood as a magnetic reconnection event in the solar photosphere. We demonstrate that such a scenario is realistic, but the solution may not be unique.Comment: 4 pages, 5 figures, accepted in Astronomy & Astrophysics Letter

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019