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----+---The epitaxilsi growth of gal i ium arsenide an gal i ium arsenide I 
are  made ui-i i izing ib ::ci3se-spaced*f stlurceseed ensembie in a 
ciosed system. 
@ lot, and $ 1 9  as wel I as the pofycrystal llne samples, are used t:, 

low index orientations. Stacking faul ts ,  dislocations, and f w l n  

boundaries are observed and thelr configuraticms a te  sPudied, 

Combinations of the  low index orientations of (1003, 
i 

de+ermlne the re!a.f.i.;~ ta-bes =f 4.k- - * * - 1 ~ % + 8 n -  rnrl --&*.Ah n- j-h 
t S I C  I * & & +  I ' C i U  I I W l t  U L I "  3. u v i  I 11 W E E  

C7-k . .  sf J$- ,uA.-%I- 
Lulf ' I  e a t r  S tdwi ie  i~ f k  I 3 k - i  ciySte(tGgitph;C ~ I t i i -  

taiions are observed and the  configuraPIons c ~ f  t he  growth we csw 

pared wi th  the etch p i t s .  The ra tes  of  growth cm The tow index 

p 1 anes determined by the "c I ose-spaced" ep I t s x  i a 1 growth , can pro- 

bably be expiained by the "atomistic" mdei of the growth of facets 
proposed by Faust and John 

be useful transporting agents of gal I !ism arsenide. 
behavior of t h e  a m n l u m  hallde (i .e. NH4Cf) - gallium arsenide 
system i s  studied to prmide a firm foundation for a basic under- 
standing of t h e  system. The composition of t h e  gas phase in 

equil ibrlurn wi th  soiid GaAs is caicufated for various Pemperaturss: 

( 1 )  

Ammonium ha1 Ides such as NH4CI , NH41, end NH4Br are shown to 
The equf I lbriom 

pressures, and component rat ios .  Tho ptincipte species under 
equilibrium conditionc are H2, !V2, G&i3, & I ,  As4, NH4CIj GaCi ,  

NE3, and AsC13. 

t i .  THERMOelYNAMIC EQUILIBRIUM BEHAVIOR OF THE SYSTEM v- 

An examination o f  thermdynamic data was made to aid in 
identifying t h e  reacting species i n  the system and to determine 
the principle chemical equi I ib r  i a  6nQolved for temperatures ranging 
fram 700 to 1200%. 

and total pressures, t h e  conditions were assumed $0 be near t h e r m  

dynamic equi I ibrlum. 
ing species: + t g ) J  C12(g2p 

tn order ta de4-ermlne part ia l ,  comp~nent, 

Caiculations wers made relative to the fol low- 

(91, N2(g), NH3(9), NH4Cl (g), GaCl ($I), 



GeC13(g)r As4(g), AsC13(g), and GaAs(s1. 
entropies fsr the vsrious species w e  f rm Kubzscheuski and Evans 

14) (7 )  Kef ley'3), McBrfde , Stul I and Sinke(5), S ? & J ! ~ ' ~ ) ,  BIchovsky 
Latimer(8', ana Gab~r'~). 
i n  this temperature range. 

The system a t  equl I Ibr ium may be represented by the basic 
chemical reactions of  Table I. Other reactiuns can be derived from 

them. Applying the law o f  mass aci-ion, the equi i ibr ium equations 

w i t h  the equl l fbr ium constan?, K, are also given. 

The @qui i T brlum constants are determined f r o m  the da-la of 

Data on enthalpies and 
(2) 

, 
Other species were assumed negl igible 

T a b i e s m  and Ip through t h e  equation 19K = i (AS, - A% 1, where 
I \  I I 

At-:? and b S  den&@ the enthalpies znd entrcrpies of f cnna i - l an  

respectively. fn Table Pf-he free energies of Scmnation are lis->ed 

for the reactions. [X i ]  deno*es t h e  par+ial pressure of species Xi.  

The cmservat ian equations of coinpanents B@ Ct snd(N2G whwe 

the &axes represent total quantit ies, are given in  Table n. 
can be seen tha t  the baxed quanOities m u s t  be canstant i n  t h e  !-e- 

action given i n  equations ( 1 )  thrmgh ( 6 ) .  

T 

It 

Equation t8 o f  Table a i s  obtained frm -the re la t ionship 3-t 

the staichiametry between gal I ium and Z S ~ R ~ C  i n  GaAs. As gal lium 
appears x disappears 5 3  must arsenic. 
sents excess arsenic. This i s  als:, t h e  consetvatim equat im L3r 

gal I ium. 

In t h i s  ease i - b e  < > rcpre- 

- 
The equations ( 7 )  fhrough (16) with the various i n i t i a l  can- 

d l t ions  and the calcula-ted equi l ibr ium constanis, were salved to  

obtain partial pressures of the species with respect t o  tempera- 

tures ranging from 70O3 t o  1200% (wi th a Burrough computer), The 

I n i t i a l  m d i t i o n s  considered here are given i n  grams introduced 

in to  the closed system (20 cm3' i n  velum). 

computed t o  be I n  the range of f r o m  m e  *o five atmspheres, and 

i n  this range i t  i s  reasonabie t=, apprwimate c s i i ~ g  Gibbs free 

energy and He tmhaltz free energy lntei-changeab l y .  Pence +he  cat- 

cu1a-l-ion presented here may be used for $-he cases whwe the con- 

straints are e i ther  the -i-enpera-i-ure and volum or Phe Temperature 

and pressure. The in i - t ia l  conditions ate adjusted appropriately 
for each case. Figures I ,  2, and 3 show the p a r t i a l  pressure of 

The t o t a l  pressure i s  
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each saecies w i t h  respect % teripcriiture w i f h  the I n i t i a l  c3n- 
= 2 mg,<As>= 0 ;  = 5 r?g,<.A9= G; 2nd of 

The C i 2 ( 9 I  species i s  c3-t  shsxn i n  

the figure as it i s  negligible compared 4-2 tka a-i-ber s~scles fsr 

the f e m p e r a b r e  ranges cansidered. 
pressures as 3 function of the initial cmdii-Ims3<AQ End ShowS 

C C X R ~ S W R ~  ra t  i 0, H , ~ i t h \ e )  of  5 mg a t  %3'K. In  Figure 5 the 
partial  pressures of species are shown a s  a funct im af the cwn- 
ponenP r a t  i 3, p g ,  and 3f the i n i t i a t  condit ion,INH4Cij  , w i i h  zero 
excess arsenic and a temperature  o f  963 K. 

Figure 4 S ~ ~ V S  the partial 

f@$ F.-------.l 

3 In Figure 6, The c3w m, {Gd i s  shown as B function o i  iemprature a t  var isus pneni- rtrtio, - 
and ti3 excess rjrsenlc, while in Figure 7, i*i- i s  shorn for 

of 5 mg and var !ous<RsZ The appl icaPion of -the preceeding 
equilibrium daPa 3n -the amnlurn chloride - gal iium arsenide 
sys4-em my be demns-fra-ted by *he use 0.f Lever f s  ( l J S L 2 )  mdel 

developed for shady-state di f fusiarpl imited k a n s p w t  of solids 
In  the presence sf several chemical equillbria, 
using the values a t  the equilibrium cannot, as a general rule, 
p r e d i c t  exactly what happens i n  the vapw growt-h expetimen.S as 

k i n e t i c  f ac to rs  are often of great impwtance. 

infarmation enabies one ta  obfain s3m idea of the devia?ions t o  

be expected End of the kinetic dr iving fwces. 

Caiculatiws 

The equilibrium 

f I 1 . EXPER I MENTAL F'ROCEDtfRE 

A closed iube sys-tem i s  chosen for i-fs simplici-fy of use in  

conjunction wifh the a m n f u m  hetides (NH4CI, NH41, and RH4Er), 

polishing as  wet i as chemical p ~ l  ishing techniques. Fw f'06). 

surface was prepared by etching i n  H2S04 (98$) : H202 
:: 8 : I : I .  The wafer was fastened i o  8 f l a t  quartz plate, and 

rc-2ated on another pi aqe w i f h  i R 3 rcl-a-i-lng beaker. 
ishing an etch 

employed. 
cloth  using f i r s t  2 premixed solution of t i n &  A : H20 

:: IO : 4 : I end then a solution of Linde E3 : H20 : H202 :: 

10 : 5 : 1 by vrrlume. The m i u r n  halides used I n  the system 

GaAs seed and source wafers are polished using a mchanical 

10) , and (I i I] B crystal wienta"rins, the chemical 6y pol ished 
:H20 

For {i i i] P, poi- 

of 4-6 percent sodium hypochloride a t  75% was 

It was mchanically polished m a ro ta t ing  pelion 

: H202 



we r s f f n e d  In u muftipie chasabet vclcuuna distillation %be to 
remve the residues and the v o l a t i l e  lacpurtttes. 

The prepared SaRIpIes y8re loaded into  8 clean quartz sys-km 

as shown fn Flgure 8 tesgmtber wl* the amoftftaa half& and other 

caqmmnts designed tP prwide vsriorrs growth condltlorrs,  The 

ampule tsas evscuated to abut I d 7  torr, sealed off and ptacud 
fa the furnace which had tb ?mpersture proflie, maswed w i t h -  

out #e aapots, as shewn in  Ftgurs 9. The separation distance 

and ttrs spacer was a quarh ring. The tu0 ?henmawpies show 
In Ffgure 8 measwe the average growth tempetahae, Tav, during 
-be gf-&h tun. 

b e h e e n  ?he seed and WW wafers ranged from 6.25 f9 i .O x n  

IV .  RESULTS 

The fetes of the growth am found to k dependent on several 

paranuters Involved in the syshm, such as the separation d l s b n c e  
of the seed and source mfers, d, the teapsrahae difference, 
AT 

the fmperature at the seed, the average growth temperature, 

t , and )he i n i t i a l  conditiars, which lnctude the 
arnount of impurities, the amwrlum halides, the mnstolchicmttr ic  

excess ersenic initially Introduced, fhe crystaiiogrsphIc orien- 

tations of the seed and swrce, and the surface corrditfons. The 

results presented hsreaftsr refer only to the 'klo~e-spaced~' epi -  
taxial growth with the eumDnlum chlaride as the t ranspwt ing 

agent, unless atherrise designated. 
under opetatlng corrditfons s t  
peralwes taken a t  the slde. 

using M ammiurn chloride carrier, are shewn in FIgwe 10. 

pho-bmfcrogaph of the avergrowth on the pOlycrySt81 I Ine substrate, 

as shown in Figure IOtA) ,  cesgmbles the substrate In f t s  ctystalio- 
graphic orient'attuns, Flgute tO(B)  i s  the phaTmicrograph of the 
epitaxial avergrowth 011 the {I f 8 B substrate. Law photographs of 

the sample shown fn Flgure IOtB) were talren to display the evidence 

of the epitaxy. The Laue photograph of the substrate indicated 

TI - T2 whsre Tt  1s t i w  temperature at the source and f2 i s  

T8v 2 

TI and T2 were not measured 
SMITCB and s e d  but w e  teen= 

Epitaxial overgrauth of gallium arsenide on gallium arsenide, 

The 



chloride con9roIS the etching rate of )he source and the &pasiffon 
rate of fhe seed. The e-khlng rate end )he deposition rate of i#na 
sarnples are shcnn, In Figure f i  and 12 as a functlm of sfwp initially 
introduced a m n P  of .the ammonium chloride. The source wafers in 

Figure I I  wem She ptype, z fnc-bped potycrystaltine gallium 
arsenide. and the seed wafers were ?k n-type,. Te-dapdt (1 i $ E3 single 
crystal gat l ium ~ s e n i d e .  
were chemically polished. 
tance, d, the tsarperature difference, AT, and tfm average tempera- 

lure, Tw, were kept constant for the serles of runs. 

arlsentc was used. The source wakrs in Ftgwe t2 uere the n-type, 
Tedoped, [I Id slngle crystel gal I f u n  ksenide, and the seed wafers 

were the p-type, r i n c - ~ d ,  fiIo]slngle crystal gai ilum arsenta. 
O t k r  parame4?wS such a S 4 Q  b, ATp Tw, and +he surface cm- 
dltiorrs were kept oarstant fer the series, 

01) the s e e d  In  genes81 decreases r lM the fncreaslng i n i t i a l  
mount of the anwrfurn chiwide. 

The surfaces of M source and We segd 
Such parerae%srs as the separatim dis-  

No excess 

The deposition raFe 

The etchlrrg rate of The source 

f O i ! a S  CfO%iy the trend of 1.he &pioSisiOn fate, 

The nm-stoichIonraT-ric excess arsenic initial i y  Introduced in 

The system also affecQs the rates of deposition and etching of the 

sample. In Figwe 13 the rates of &pesttior, end stchlng of the 
source are shown to be dependen* on th9 excess arsenic initial ty 

i nttoduced . 
Exper f mnta I Stud les of Growth Character  i sties 

on (I IO) seeds a t  IOo5 r / c m  sec, and nlrrer-I I ~ Q  F W h  at l,35 
2 x id5 gr/cm sec. Distxatlons v i s l b l y  aifer the growth. O t h e r  

fa+trJrs may b v e  been more importan? In ttre Qtowth characteristic 
than the growth rai-e, whlch was nat readily contralled. 

surface patterns of the spl t8xla l  ov8rgroWth On ~ ~ ] s u b S f T a b S  
are s b m  in Figure 14. Flgute 14a and 14b exhiblt the s m d h  

Studies of the gtorrc)h surfaces showed orange-peel pVpe growth 
2 

Typical 
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surface growth vi# the disiocaPOon 9tr;iplth patCsrns. The d f s t w  

eat ion growth pattern 391 fr  mi' sur face t e s z d  t es WE c i rcu I at cone. 

ffgure I4c i s  a typical phokmicrograph of such a circuiar cone 
with apparent singulwl-ty of fts apex. When two cr m e  circular 
cones emerge frqeiher rendering m e  than arm e p ,  ttrs w f i g u r -  
&Ion sf the cone th-uchtts appears as having a chatacfetistlc 
spiral pattern on b p  as shown in Figure t4d and 14e. S m f h  

epltaxia! wwgrMtth on @ t l { A  seed surface and ?he etched pattern 
of ttre $ I ~ ) A  sowee surface are s t w n  ~n ~tgrrte 153. A ~ p i c a l  
pattern of t h e  epl'raxiat growM on [I l l )B s e e d  surface, and an 
etched paPtern of fhe f i l l 3  B s 3 u r c e  surface are s b m  in F !lure 

seed surface errd of e-fch pits on the saw68 urrQcc3 are s b w n  

in Figures i k ,  f5d, 158, and 15f. Tha Wtrahedra! pyramld wlth 

one apex Is shown In Figute 1%. 

in Figures 15d and 1% wfth twergIng of 9wr, w Rwe apexes in a 
pyrmid. The e t c h  plS patlern sham In Ffgws 15f resembles 
that of the teRsbdra1 p b m i d  pro'Rusion. The characteristic 
spiral etch p l t o b s e w e d  here contains severel apexes wlfhin 
itself. The chatacteristtc growth p a t b r n s  a t  the dislocations 
observed exhlbit unique ldentlficafions Po the crystaiiogfaphic 
wienta t im of thr, subsirah. 

1%- The ?6*8bdf84 p y r a i i d  p d " k t n S  O f  WoftidSionS *ha 

Spiral patterns are observed 

I t  i s  p w s i b l e  Q.0 obtain very high deposlticm re3es i 4  

the cryst8Ilographic petfectim af the, epltaxfaily grown layer Is 
dlsrsgarded. F w  example, when the f a h  of  ?'he lmplnglng flux 
OR ib surface of ths s e s d  i s  far greater than the rate a t  which 
She atoms c8n add on pgrfucfly, Oho deposI*d maters1 w i i i  

probabty f w m  S m i n g  fauCtS 8s thes8 do m? have a very high  
energy, and th is  acconPdahs the Weaiet flux. 
depositfon rate my be very high -&red w i t h  the rate for 

"perfecV' epltaxlal gr=nrf.h. 

fau14-s observed ori f f  Q 1% B s e e d  surface. 
stacking faults cm be 83 great that the  ~rot rn layer cBn probably 
n3 longer be cshgcrized 6s a single crysTaC 

The resultant 

FfgUr8 168 exhibits the stacking 

The dsnsfty of the 

The rate of +he ttperfecV epltaxfsi gr0Wt.h d i f fe rs  for the 
crystallagraphlc orientation of the substrafe on whfch the epl- 
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t w i a i  wetgrowth 1s eWempted. 

she "perfecv' epi4axisl grorath (stacking Qaul4-s not readi i y  observedl 
IlS?ed in Table a s r z O w s  -that the r a b s  on She low index w f e n -  
tation appears * tm fi 10) 7 fi0a3 > 11 1 GB > 31 t @A.  tn crrcter -to 

determine whePher ftre relation f i O O j > $  I ISB was p d ,  expwirtienfs 
c. . . -67 . wre canciucied using ti t seed and iiw>wwce, ami vies 'v'ersa. 

I t  Is atsumd that# i f  +he impinging flux a t  fhe growth surface 
=Id exceed the maximurn rate of the nperfectdt epltaxlal growth 
sf the st'rfece, *ire tadid k sf=&.!ng fau!+s fm.eA= F I ~ u r e ,  

17a shaws the case of t h e ~ l l l ~ B  seed and the $06~s3ufc%, which 

suppi  i e d  tts impinging flux 

The compwison af ttw rates of 

the ti I I]B seed, obviously ex- 

b n c e ,  the hlgh  derisi4-y o f  sbcking faults are farmd on the 

seed and the 9 1138 source renders +he resu It shorn in Figure 17, 

The etching rate of the i l i 3  E swfce apparmtly was less than 

ttte ~~per fec~*  e p t a t a l  grorrth rate 3f -the (106)seed. T ~ S  result 
strows stbcking fmtt-fres nucteaticm and gorpth. From She above 
observations, it i s  concluded that  the  "perfecP epitaxial 
growth rate of the~looforientation Is greater than that of 

3 I g B v  A cor01 Iery lnvolves a g t M h  imaging edfect which occurs 

by hsvlng the sepsratim spacing between the s a d  and the source 

wafers very smalf, and havIng the s s m x  8 bicrysfal wrPh 

very different e t c h  rates. 
seed and the UIurcB wlenfation for one partion has a 

almost any &her or1enta)lon for the o t h e r  PUrtfon a very much 

greater growth takes place where the  etching le fastst. 

result also fndlcaters t h a t  the lal'eral disperrsfm of the mle- 
cules -transported beheen t h e  seed and the source Is very smali. 

The structural patferns of the e w l y  stage of the growth on 
the low index u y s t a l  tographic ar ienOations indicate def 1 ni4-e 

cotreiat;iai betweeit the grok+i p & - k i - ~  and 9 k  substrate cr Ien- 

tation. Is lands of often ttuncafed tr iangular based struci-ufes 

are shown in Figure 18. The islands grown on the {I I I f A  surface 
resemble tetrahedral pyramids. 

aac;:n\5 tha "perfact" ep:taxl;! srs:"dtk ra* sf tk)! !fc Se?rc_ 

113B s e e d  surface, The oppsiie etrangemnt 5 5  fhe (1003 

When ?he Imagegrowth Is on t h e  [loof 
I If A and 

This 

On the 11 1 l]B surface the struc-k- 

ural pattern has truncated triangular base and 

apex. I f  the g r M h  structure of a twinned i s  

truncated pyrami da I 

and wrges to the 
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island with the 44perfect4e epitaxial growf.bl, t:-ere w i  I1  be a h i 3  

boundary between th iw3 isiands as showtt In f Sglre 18c. 

The is land strucfures an $loof surface are * -cc i r r n ~ ~ l a r  based ana 

-truncated r m f - t o p  as sbwn i n  Figure 19, Frequently 9he $-runca-ted 
rectangular base was observed as S ~ W R  in Figure 19a. when the 

island structures grow large enough, t h e  dlsiocation growth 

pal-"erns becam? apparent on the surface of ttre overgrowth. 
ear l y  stage of epitaxial growth rn ablqsurface  is s b n  i n  

F i gure 20. I ne siruciures resemb re rectangui w based "root-top" 

and the base i s  often truncated at 4he corners. 

A typical axampte of the epiTaxial overgrowfh m ( f i i j B  seed 

I - _ -  - 

An 

-. 

using ammrtium iodide as the transparting material i s  shawn i n  

Figure 21. 

ep i tax ia l  growth were not made using amnrmiurn bromide, it was 

passible t o  obtain rough growths w i t h  the high denslty of slac:-;1: 

iieulPs in t rvo t r i a l  runs. 
i n.2-*- [ G ,  face Studies 

Although exSensivs efforts to obtain a "perfect'' 

The in-kerface between the  subska$e and the epitaxial grown 

iayet were examined by photomlcrographfc abscarvations of 9he crass- 

sectional surface, which was cleaved and etched In the Schef I etch 
(!-NO3 : Hzo :: I : 2) fs  90 seconds. 

and a r r t ype  source or vice versa are used p n  junction resu i ts ,  

I f  the e f fec t  of d i f fus ion  i s  n e g l i g i b l e  during the growth p r x e s s  

and n3 substrate etching takes place, The p n  j u n c t i m  should 

coincide with the interface. The interfaces and/or the p n  
junctions pmduced by revera I techniques, 

ep i tax ia l  growth, ncfose-spaced" ep i tax ia l  growth, impurity 

diffusion, solut ion growth techniques, are compared. 

faces were examined in crass-sectim obtaihed by '(!l($cleav ng, 
The a m  sample was grown by the h w  i zontal vapor transport 
technique in  a closed-sysfem having the large-separation (U: 8 Cm.) 

beiween ?he s3urc8 ana the  seed. NH 2 i  was P b  bansport ayenP. 

P . 4 - y ~  layers were grown on the cherrticaliy p l i s h e d  n-*pe 
surface. 

The interfaces and hence The p n  junt-?ions arere i r regular  and 

non-planar. An extensive e f f o r t  was made tu produce 23 f lat  and 

When 8 p b p e  SubSkate 

large-separation" 

The inPer- 

4 

b t h  il I I? B and :I 1 $ A  surfaces were used as substrate.  
I 
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abrupt p-n junction with the "close-spaced" epi tax ia l  growth tech- 

nique. 
ions produced by the 'kIose-spacedit technique are s b w n  in Figure 

22, which shows the cleaved and etched 6 I3cross-section of the 

sampie whicb uas prclduced by growing ptype  layer an the n-type 

substrate. 
and sane elemental zlnc was also introduced ta dope tbe epitaxially 
grown layer. 
e f f e c t  of zinc diffusion Is observed when Zn I s  in The saurce. 

The epitaxially grown layer in Figure 22c was Te-doped (n-type) and 

$he subsfra+e i s  zinc-doped ;p=-?ypele No v i s t b l e  diffusion effec? 

i s  observed far t h i s  sample: the In%rface m i n c i d e s  with +he 

p n  junction. A l l  of the junctions were flat and n3 interfacial 
irregularities are observed. 

S s m  typical examples of +he inbrfaces and/or -the p n  Juncf- 

fke t ranspwting agent was the ammiurn iodide (NH41) 

The (1 I rf B substrate was chemical i y  pol ished. The 

The usefullness gf the ammwrium halides as transporting agents 

i n  ep i tax ia l  v a p r  growth techniques i s  d e m s t r a t e d  i n  S e c t i w  I V .  

It i s  important nat t o  exceed the maximum r s b  of the "perfect" 

epi tax ia l  growth. Excessive density of t h e  stacking faults i s  a 

frequent r e s u i t  of the rapid rate of grarrih. 
growth of facets predicted from the "shrnistic" mdel p r o p s e d  by 

Faust and John'" are in good agreement with our rate-limited 
ex per i menta I resu I ts wh i c h are fl I 03 > O$> 
tFisland" structures af epl-taxial growth with the definite crystal- 

l o g r a p h i c  facets construc%d by the "atamistic" stack in9 arrange 

mnts resembles our experimental observatims. 

The rates of the 

I 13 S>r  I I I3 A . The 

S i m i  lar  observations af the def i n i i e  crystal lographic facets 

were produced by We d isso lu t im and r e d e p s i t i m  of  semiconducbrs 
in m l t e n  metals and repwted by Faus?, Sagar, and John . ( 1 )  
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Figure  16. Photomicrographs of. s t a c k i n g  faults CP, { X l l ) B  iced 
surface.  
2.36 x ,,-Sa;r cm-2 sec-1. 
density at R = 10.98 x 10- gr cm-5sec-1. I3 

Low stacking fault density a t  RG = 
(b) Hi r h  s tacking  f a u L t  

I 
I 
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Seed { l o o )  w i t h  Source (111)B 

F i g u r e  17. Photomicrographs of s t a c k i n g  f a u l t  ohserva? . io  s. (a! 
I111)B seed and {loo) s o u r c e  R = 10.2 x 10- z gr ~ n - ~ s e c - ~ .  
(b) , j l O O )  seed and <111)B sourge  H = 3.7 x cm-2 

I sec-  . tl3 
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U 5OP , 5 w  j 

Figure  18. Photomicrcgr'a;:hs o f  t h e  "i s l m d  *' structure cn 
(a) { l i i ) A  seed 
( b )  C111)B seed 
( c )  Twinned "is lands" on C111)B seed 



2: I i t , u l L  pPi,-rm 13. f h c t ~ ~ i ~ r o g r ~ p h s  cf t h e  " i s i a f i d "  s t ~ i i c t ~ r e  ?ti { ' i O O )  
seed. (a) Truncated corner of t h e  rectangular base. 
( b )  and ( c )  Rectangular based and t r u n c a t e d  roo f - top .  
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a 

?ig.;-e 20. Photomicrographs of the  " i s l and"  s t r u c t u r e  
on 3110) seed. Rectangular based (o f t en )  
w i t h  t n m c a t e d  corners) "roof-top". 

F i g u r e  21. Photomicrograph of' t h e  e p i t a x i a l  overgrowth 
on (111)B seed u s i n g  NHbI .  
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