25 research outputs found

    Aspects of structural health and condition monitoring of offshore wind turbines

    Get PDF
    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector

    A review of ground-based radar as a noncontact sensor for structural health monitoring of in-field wind turbines blades

    Get PDF
    Ground-based radar (GBR) are increasingly being used either as a vibration-based or as guided-wave-based structural health monitoring (SHM) sensors for monitoring of wind turbines blades. Despite various studies mentioning the use of radar as transducer for SHM, a singular exclusive review of GBR in blade monitoring may have been lacking. Various studies undertaken for SHM of blades using GBR have largely been laboratory-based or with actual wind turbines in parked positions or focussed on the extraction of only specific condition parameters like frequency or deflection with no validation with actual expected operating data. The present study provides quantitative data that relates in-field monitoring of wind turbines by GBR with actual design operating data. As such it helps the monitoring of blades during design, testing, and operation. Further, it supports the determination of fatigue damage for in-field wind turbine blades especially those made of composite materials by way of condition parameters residuals and deflection. A review of the two GBR-SHM approaches is thus undertaken. Additionally, a case study demonstrating its practical use as a vibration-based noncontact SHM sensors is also provided. The study contributes to the monitoring of blades during design, testing, and operation. Further, it supports the determination of damage detection for in-field wind turbine blades within a 3-tier SHM framework especially those made of composite materials by way of condition parameter residuals of extracted modal frequencies and deflection. © 2018 John Wiley & Sons, Ltd

    Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    No full text
    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications

    Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing

    No full text
    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications
    corecore