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Wind power has expanded significantly over the past
years, although reliability of wind turbine systems,
especially of offshore wind turbines, has been many
times unsatisfactory in the past. Wind turbine failures
are equivalent to crucial financial losses. Therefore,
creating and applying strategies that improve the
reliability of their components is important for a
successful implementation of such systems. Structural
health monitoring (SHM) addresses these problems
through the monitoring of parameters indicative
of the state of the structure examined. Condition
monitoring (CM), on the other hand, can be seen
as a specialized area of the SHM community that
aims at damage detection of, particularly, rotating
machinery. The paper is divided into two parts: in
the first part, advanced signal processing and machine
learning methods are discussed for SHM and CM on
wind turbine gearbox and blade damage detection
examples. In the second part, an initial exploration
of supervisor control and data acquisition systems
data of an offshore wind farm is presented, and
data-driven approaches are proposed for detecting
abnormal behaviour of wind turbines. It is shown that
the advanced signal processing methods discussed are
effective and that it is important to adopt these SHM
strategies in the wind energy sector.

2015 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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1. Introduction
Offshore wind farms are remotely located and operate under challenging conditions, much worse
than the onshore wind farms. Early failure of their components has been frequently observed
in the past. This fact could inhibit their establishment as an attractive alternative option for
power generation. It is for this reason that the development of a reliable structural health
monitoring (SHM) and condition monitoring (CM) strategy is particularly necessary and why
current research is focusing on this aim.

In order to perform a health monitoring strategy, one of the initial steps is to acquire the
appropriate data for the purpose of damage detection. For an online approach, which is probably
more appropriate when dealing with remote structures, vibration-based monitoring has been
proven to be a suitable choice. It can be effective with possibly small computational costs
when using suitable methods. There have been several successful SHM and CM vibration-
based analysis applications in the past. Generally, one could adopt data-based approaches or
physics-based approaches, both having certain advantages and drawbacks [1]. Concerning the
data-based methods that will be discussed here, the major issue seems to be that for some
SHM and CM scenarios only advanced signal processing techniques would be able to deliver
the desirable results. This is because of the fact that in the real world most of the times the
features obtained from the monitored signals are, in general, also sensitive to changes caused by
environmental and operational conditions [2]. In the case of offshore wind turbines, turbulence—
a term that describes the stochastic scale-invariant changes in the flow properties of the air—and,
most importantly, the effects of the operational wind turbine control system could influence the
vibration signals obtained. So any technique adopted, in order for it to be effective, should be
able to take into account these challenging characteristics of the signals and separate them from
any available damage sensitive feature. Such techniques are discussed in §2 of this paper where
some application examples are also demonstrated. These applications are focused mainly on wind
turbine gearbox and blade damage detection, because it has been observed that these components
have the most frequent failures and can cause the highest downtime in a wind turbine. Still, there
is no limitation in the application of the methods to different components.

The paper also deals with the manipulation of a different kind of data coming from wind
turbines: data obtained by the supervisor control and data acquisition system (SCADA) systems
installed in many wind farms nowadays. They contain measurements of various variables,
such as wind speed, bearing and oil temperatures, voltage and the power produced, among
others. The recordings of these systems are constant and available for every wind turbine in
a farm, so they could be potentially used to monitor wind farms. Therefore, exploitation of
these measurements that could lead to an effective online SHM plan seems to be an attractive
opportunity. In addition, because of the availability of such data for every individual wind
turbine, one could explore novel approaches in the SHM field by treating the whole farm
as a population. Exploring the potential of a population-based approach to damage detection
in this case could refer to adopting strategies that can determine the condition of a wind
turbine according to the measurements obtained from other wind turbines in the farm. In the
corresponding section of the paper, the authors present some results that seem to be promising for
further exploration of whether good predictions for individual wind turbines can be performed
according to the wind turbine power curves constructed for each wind turbine, using some
advanced machine learning.

Briefly, the aim of this paper is to highlight some of the most appropriate latest technologies to
be applied for the SHM and CM of wind turbine systems.

2. Condition monitoring and structural health monitoring approaches
for wind turbines

In the Introduction, a major problem when trying to perform online SHM and CM for data-based
methods was mentioned: the influence of the varying conditions under which the wind turbines
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operate. This means simply that one should account for the non-stationarity that is not related
to damage of the signals analysed, but this is definitely not a simple task. Vibration data coming
from wind turbine blades and gearboxes while in operation should be influenced by the varying
load and environmental conditions. Despite the fact that there has been significant research of
damage detection methods for such components, most of the studies are mainly performed in the
laboratory environment [3]. Basic signal processing techniques in this case might prove sufficient
to solve the damage detection problem, although, in general, this would not be true in real-world
damage detection scenarios.

Some of the most simple time-domain methods that have been used for condition monitoring are
time-invariant analysis methods, based on the estimation of statistical parameters. This is a group
of methods that uses univariate features. The principle of these methods is often to simply use
the overall vibration level to describe the general condition of the machine. Estimates used in this
case are peak amplitude, peak-to-peak value, root mean square value of the signal, crest factor
and statistical moments such as variance, skewness and kurtosis [4,5]. More advanced techniques
use multivariate statistics for damage detection or damage prognosis, and therefore do not belong
to the category of time-domain methods [6–8].

Another technique, applied specifically to gear vibration signals, is based on the envelope
estimation of the signals analysed. In these studies, amplitude and phase demodulation
techniques are used to detect fatigue cracks in gears from the estimated envelope and
instantaneous phase [9,10]. Most commonly in this case, the Hilbert transform (HT) is used in
order to extract the instantaneous amplitude and phase of the vibration signal from the analytic
signal (phase unwrapping). In addition, for the diagnostics of rolling element bearings, it has been
shown that the analysis of the envelope signals is recommended, because the analysis of the raw
signals does not always give enough information [11].

The ideas of time-series analysis have also been applied in condition monitoring. Useful
features, in this case, can be generated if one identifies a good time-series model for the CM
system examined when it is undamaged. High variance of the error signal (residual) between
the model outputs and measured outputs shows that the system is damaged, because the model
failed to make good predictions [12]. This approach is sometimes known as the time domain
averaging method [13].

Other classic signal processing approaches can be grouped into what is known as transformed
domain methods. These consist of the application of the Fourier analysis or cepstrum analysis
in order to estimate the spectrum or cepstrum of the signals. The spectrum/cepstrum of the
damaged gearbox is compared with its spectrum/cepstrum under the normal (undamaged)
condition, and appropriate filtering can also be applied in order to isolate frequency bands
believed to be associated with specific kinds of faults. Envelope analysis can also be performed
in the transformed domain, in order to enhance the features examined. An example of the
application of these methods is given in references [14,15]. Alternatively, the use of parametric
models, such as the autoregressive (AR) or the autoregressive with exogenous inputs (ARX)
models that can be used to estimate frequency domain features using the harmonic probing
algorithm [16] can also be applied [17].

All the above methods, which most of the time use Fourier analysis, are considered to be classic
signal processing techniques. But, because the Fourier transform (FT) does not explicitly reflect a
signal’s time-varying nature because it requires integration all over time and usually the vibration
signals being analysed change over time, the FT and as a consequence the classic frequency
domain approach for signal processing of non-stationary signals is generally inadequate. Because
of this issue, most of the previously described methods might probably fail to detect damage if
used on online measurements coming from a wind turbine. An alternative category of methods
that could be used in this case are the time-frequency or time-scale analysis methods. These methods
are more appropriate for damage detection in real-life scenarios because they can demonstrate
the time-varying nature of the signals analysed. The simplest time-frequency method is the short-
time Fourier transform (STFT). Comparing the signal being analysed with elementary functions
that are localized in the time and frequency domains is the basic idea behind the method. The
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wavelet transform (WT) is another well-known time-scale method, having the same concept as
the STFT. The major difference between the two methods is in the different basis/elementary
functions chosen during the process that lead to different signal representations. Because
of that, wavelets give better localization properties at high frequencies and are useful for
detecting local events in the signals. Wavelet analysis is probably the most popular technique;
a review of condition monitoring applications is found in reference [18]. In terms of an online
implementation, the application of time-scale methods is less costly than a fast Fourier transform
(FFT). In fact, the discrete wavelet transform can be carried out in O(N) operations compared with
O(N logN) for the FFT. Some examples of WT applications in condition monitoring are given
in [19–23].

Other common time-frequency methods are Cohen class time-frequency distributions such as
the Wigner–Ville (WVD) and the Choi–Williams (CWD) distributions. The energy distribution
in the joint time-frequency domain, such as the WVD, is very complicated as the underlying
transforms are nonlinear. Condition monitoring applications of the WVD can be found in
references [24–27].

Relatively recently, the empirical mode decomposition (EMD) method has also been proposed
[28] as a filter bank method that can be applied for time-frequency analysis in combination with
an AM–FM demodulation method such as the HT. This technique decomposes the signal into
a number of meaningful signal components, representing simple oscillatory modes matched
to the specific data. This is one of the basic advantages of the EMD when compared with
other time-frequency methods. It has been applied since then in various condition monitoring
applications [29–32].

At this point, an example of a time-frequency analysis of real wind turbine gearbox datasets
is presented briefly. Owing to the limited space, only the major steps will be explained, but more
details concerning this application can be found in [33]. The experimental gearbox vibration data
analysed in this study come from an NEG Micon NM 1000/60 wind turbine in Germany. The
measurements were taken by members of the company EC Grupa, a Polish engineering company
that maintains the wind turbine system from which the gearbox vibration datasets were obtained.

The gearbox examined in this case consists of three gear stages: one planetary gear stage and
two spur gear stages. The measurements come from a single accelerometer and were captured at
a sampling frequency of 25 000 Hz. Acceleration signals from this gearbox were obtained at three
different dates: 31 October 2009, 11 February 2010 and 4 April 2010. The gearbox was already
known to have damage described to be at an initial state on 31 October 2009, but this dataset can
still be used as a reference and could be useful in order to explore whether any damage-sensitive
features change according to the development of the damage. The damage was ascribed to a
damaged tooth at the second parallel gear stage.

The EMD method was applied to the datasets, resulting in the creation of several intrinsic
mode functions (IMFs; oscillatory functions/signal components) for each case. Then, using
the HT method, the instantaneous amplitude and instantaneous frequency for each IMF was
obtained, resulting in the time-frequency representation of the three different datasets shown
in figure 1. Knowing that each IMF represents specific frequencies of the signal, and taking into
account the meshing frequencies and their harmonics of the gears, one can expect that damage
sensitive features should appear around the meshing frequencies and/or their harmonics of the
damaged gear stage. The results agree with this concept, because the second IMF of the Hilbert
spectra shown in figure 1 which is related to the previously discussed frequency bands, contains
the desirable features. This is shown better in figure 2: the power diagrams of the second IMF are
drawn individually for each case. One can observe that damage can be seen as an increase in the
power of the specific IMF each time that the damaged gear tooth engages during the gear rotation.

An alternative approach that could be adopted in order to deal with the issue of non-
stationarity when performing damage detection has been proposed in [2,34] for performing SHM
of bridges. Co-integration analysis, a technique taken from econometrics, has been successfully
applied for the purpose of removing environmental and operational trends in the vibration
signals. The mathematics of the process are rather complex, but the main concepts of the method
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Figure 1. The Hilbert spectra of gearbox datasets at three different dates: (a) shows the spectra of 31 October 2009, (b) shows
the spectra of 11 February 2010 and (c) of 4 April 2010. The horizontal axis shows the sample point, and the vertical axis shows
the instantaneous frequency.

are summarized in the following: co-integration is a property of some non-stationary multivariate
time series; an n-dimensional time series is co-integrated if some linear combination of the
component variables is stationary. The combination is called a co-integrating relation, and the
coefficients form a co-integrating vector. The analysis approach is largely based on the Johansen
procedure, which is able to find the co-integrating vector that will result in the most stationary
combination of the variables. Although the technique has not been yet applied on actual wind
turbine data, an initial study describing how the method can be used for condition monitoring of
wind turbine gearboxes was demonstrated in [33]. In this research, the results were promising for
a successful application of the method in the wind turbine CM and SHM field.
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Figure 2. Power of the second IMF of the gearbox datasets. (a) Dataset 31 October 2009. (b) Dataset 11 February 2010. (c) Dataset
4 April 2010.

What has been explained so far mostly summarizes feature extraction approaches, and
mostly gearbox applications have been discussed. In the following, the focus is on blades
applications with a pattern recognition perspective. In addition, the important matter of the
sensor technologies used for blades is also discussed.

Wind turbine blades are susceptible to multiple modes of failure. Moreover, owing to
the varying operating conditions observed in wind turbines and discussed earlier, a damage
detection scheme is rather challenging. Another major issue is the appropriate choice of sensing
technologies of the blades that could be applied in order to achieve a reliable online SHM system.

Some of the related research studies use either passive or active sensing technologies in the
context of wind turbine blade SHM [35]. The difference between the two sensing approaches
is that in passive sensing techniques there is no external/artificial excitation as is the case in
active sensing techniques. In [36,37], an overview of sensor diagnostics for active sensing SHM
systems by using piezoelectric transducers is given. In addition, an investigation of the optimal
demarcation date that is essential for the proper normalization of active sensing data during their
collection is presented.

Despite the fact that many SHM techniques and sensing technologies have been discussed
in the literature for damage detection in blades, there has not been much progress on robust,
online applications of these techniques in the SHM of in-service wind turbine systems. Some of
the methods that have been applied in references [35,38–44] include vibration monitoring-based
methods (accelerometers, piezo or microelectromechanical systems (MEMSs), strain (strain gauge
or fibre optic cables), ultrasonic waves which are popular with composite structures (piezoelectric
transducer), smart paint (piezoelectric or fluorescent particles), acoustic emissions (usually
barrel sensors), impedance techniques (piezoelectric transducer), laser vibrometry (scanning laser
Doppler), impedance tomography (carbon nanotube), thermography (infrared cameras), laser
ultrasound (laser devices), nanosensors (electronic nanoparticles) and buckling health monitoring
(piezoelectric transducer). In addition, wireless systems seem to be a good solution in the case that
structures are remotely placed such as wind turbines. The main disadvantage of wireless sensors
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Figure 3. Wind turbine blade experiment under continuous fatigue loading [3].

for SHM is the high demands for power supply of the sensors. This disadvantage is the reason
for an increased interest in data telemetry with energy harvesting [45,46].

Recently, a series of research studies around an experimental test of a 9 m wind turbine
rotor blade (figure 3) that was dynamically loaded in a fatigue test until reaching catastrophic
failure was conducted. The blade experiment was performed in the National Renewable Energy
Laboratory and National Wind Technology Centre. Because of limited space, the experiment is
not described in this paper. The reader is referred to [3,47,48]. Generally, an active sensing system
(LASER sensing system) was used, and two different sensor arrays were implemented called
the INNER and OUTER sensor arrays; they consisted of six and seven sensors, respectively,
and an actuator was used in each of them. The main motivation of the experiment was
to implement a variety of different sensor techniques and find capable features that, using
advanced machine learning tools, could detect damage at early stages before visual abnormalities
were presented.

The approaches to be discussed fall into the category of pattern recognition that deals with the
problem of deciding whether the features taken either from raw or analysed signals have arisen
from a damaged or undamaged structure. Supervised learning approaches to pattern recognition
include Bayesian classification methods, nearest-neighbour search, artificial neural network
classifiers [49] and more recently support vector machines [50]. Unsupervised learning approaches
have perhaps received less attention [1]; an example can be found in reference [51] where one-
class support vector machines were used. In practice, however, it is not easy to apply supervised
learning techniques owing to the lack of training data required for the models corresponding
to damaged systems, which is why unsupervised learning/novelty detection approaches might
probably be of more use for SHM or CM.

One of the aforementioned studies related to the experiment shown in figure 3 is given
in reference [3], where a group of machine learning techniques for the monitoring of turbine
blades by using vibration data and specifically high-frequency response function measurements
(FRFs) was presented. The algorithms were optimized to an extent that could offer a fast and
satisfactory online monitoring. In order to obtain features which are sensitive to damage, a
dimensionality reduction of the FRF data was performed using probabilistic principal component
analysis. Then, for the purposes of novelty detection (unsupervised learning), a trained five-
layer auto-associative neural network was used to model the normal condition. An additional
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approach adopted in that paper was the use of a radial basis network (RBF) that was implemented
in terms of auto-association. In practice, the advantage of the second approach adopted was
that RBF networks when compared with multi-layer perceptrons do not usually need a full
and challenging nonlinear optimization of all the parameters. Finally, a distance measure
for novelty detection was calculated by feeding the two different network algorithms with
testing data.

Apart from the vibration-based analysis in this case, other kinds of data that were obtained
by this experiment were also analysed for damage detection purposes, although not necessarily
appropriate for online strategies. In [52], there is a further investigation of post-processing of
the data, by using digital image correlation snapshots taken along the length of the blade via a
stitching technique. This allows observations of the shape and curvature of the entire blade and
demonstrates that the technique can be scaled for utility-scale wind turbine blades.

3. An exploration of supervisor control and data acquisition system data of an
offshore windfarm for condition and health monitoring

The use of SCADA data for monitoring has been shown in several studies, such as in [53–56], and
in most cases it aims at the development of a complete and automatic strategy for the monitoring
of the whole turbine or wind farm, although subcomponents (e.g. bearings, generator) may also
be individually assessed. Among the various approaches, power curve monitoring has been
popular and successful. Wind turbines have been designed by manufacturers to have a direct
relationship between wind speed and the power produced, and as they require a minimum speed
to produce the nominal power, but limit the power generated from higher wind speeds, the power
curve usually resembles a sigmoidal function. A critical analysis of the methods for modelling
the power curve can be found in [57], but, in general, researchers have exploited the deviation
from a reference curve to perform SHM on turbines. The use of machine learning approaches
for the estimation of power generation can be seen as far back as in [58,59], with more recent
works appearing as well [60,61]. In [62], a steady-state model of a whole wind farm with neural
networks was shown to have fair results if the data used were pre-processed, whereas in reference
[63], three operational curves, power, rotor and pitch, were used for reference in order to produce
control charts for the monitoring of wind turbines.

In the following, a primary exploration of SCADA data, found in reference [64], is going
to be presented. It can be seen as a first step towards implementing a population-based
approach for SHM in wind farms. The concept behind what we refer to as a population-based
approach is that assuming a homogeneous population, we have the possibility of modelling
one structure and using it for diagnosis on all similar structures. Any damage state data (which
are always rare) becomes relevant to the whole population. The datasets used describe the fully
operational Lillgrund wind farm that is situated in the sea area between Denmark and Sweden,
consisting of 48 wind turbines of rated power of 2.3 MW [65] and is shown in figure 4. The
wind turbines are Siemens SWT-2.3-93, characterized by a rotor diameter of 92.6 m and a hub
height of 65 m, giving a rated power of 2.3 MW. The maximum rated power is reached when
wind speeds take values of 12 m s−1 (rated wind speed). The spacing between the turbines in
the specific wind farm is significantly closer than most conventional farms, and this unique
element is generally expected to affect their performance. This wind farm architecture was done
deliberately for analysing the effects and the interactions of each wind turbine within such
close spacing.

Data mining and machine learning are promising approaches for modelling wind energy
aspects such as power prediction or wind load forecasting. The complete study presented in this
section can be found in [64]. Artificial neural networks and Gaussian processes were used to build
a reference power curve (wind speed versus power produced) for each of the 48 turbines existing
in the farm. Then, each reference model was used to predict the power produced in the rest of
the turbines available, thus creating a confusion matrix of the regression model errors (MSEs) for
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Figure 4. Lillgrund wind farm and the distribution of the wind turbines [65].
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Figure 5. Results of the population-based approach using neural networks on the wind farm SCADA data. (a) Confusionmatrix
with MSE errors created from the neural networks—testing set. (b) Average MSE error showing how well neural networks
trained to predict the power produced in each turbine, predict the produced power in the rest of the turbines.

all combinations. For the neural networks, multi-layer perceptrons were used. In addition, the
reference power curve is a healthy power curve, i.e. built only using data corresponding to time
instances with a status code equal to ‘0’ (‘no error’ in the turbines). The results showed that nearly
all models were very robust with sensibly low MSE errors.

The available data used in this study correspond to a full year of operation. All the SCADA
extracts consist of 10 min averages, with the maximum, mean, minimum and standard deviation
of the 10 min intervals being recorded and available. The actual sampling frequency is less
than 10 min.
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Figure 6. Results of the population-based approach using Gaussian processes on the wind farm SCADA data. (a) Confusion
matrixwithMSE errors created from the Gaussian processes—testing set. (b) AverageMSE error showing howwell each turbine
(power produced) is predicted by the others—Gaussian processes.

In figures 5a and 6a, the confusion matrix created from the neural networks and the Gaussian
processes testing sets is shown. Each axis of the confusion matrix shown corresponds to one up
to 48 turbines, where on the y-axis is the number of the trained turbine and on the x-axis the
number of the tested turbine. In general, an MSE error below 5 is considered a good fit and below
1 excellent. The results appear to be very good with the worst results being for turbines 3 and 4.
These are the turbines that have the highest MSE error. According to Papatheou et al. [64], these
errors are high owing to stops (emergency or manual) of these specific turbines for the majority of
instances when the high error is observed. In terms of the comparison between neural networks
and Gaussian processes, it appears that the results presented in the paper are very similar to
the networks performing with a slightly lower MSE error. It should be noted that the Gaussian
processes were trained with about one-third of the data that the neural networks were provided,
but the testing sets are everywhere the same.

Figures 5b and 6b simply show the average MSE errors contained in the confusion matrices
shown in figures 5a and 6a. The generally very low MSE errors show that the power curves
have the potential of being used as a feature for the monitoring of the whole farm, as they were
shown to be generally robust to the individual differences that the turbines inevitably present
(location, different sensors, different generators, etc.). So, it can be seen how well the power
produced in each turbine is predicted by the rest of the trained curves (corresponding to the rest
of the turbines). Such analysis is a necessary first step in establishing novelty detection between
individual machines.

4. Conclusion
This paper discusses some of the latest advances in the SHM and CM of wind turbines. In
order to achieve an effective damage detection strategy, the use of different kinds of data
is needed, depending on the approach. Data-driven vibration-based analysis methods seem
to be able to provide such solutions, although difficulties exist related to the operational
conditions of wind turbine systems. In this case, the resulting non-stationarity should be taken
into account and it is only more sophisticated signal processing approaches such as time-
frequency analysis, or co-integration that could successfully perform the feature extraction
part of a complete SHM or CM procedure. For certain wind turbine components, such as the
blades, the choice of an applicable and reliable sensing system is of great importance, and
for this reason, some of the existing technologies were presented. Finally, pattern recognition
and machine learning approaches can not only be useful for the feature discrimination part of
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the SHM procedure, but also for the manipulation of SCADA data. The potential behind the
last concept was demonstrated in the previous section of this paper, where it was shown on
actual wind farm data that a population-based approach towards wind turbine SHM might be
a successful choice.
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