56 research outputs found

    Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway

    Get PDF
    Karmeier K, Tabor R, Egelhaaf M, Krapp HG. Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway. Visual neuroscience. 2001;18(1):1-8.The distribution of local preferred directions and motion sensitivities within the receptive fields of so-called tangential neurons in the fly visual system was previously found to match optic flow fields as induced by certain self-motions. The complex receptive-field organization of the tangential neurons and the recent evidence showing that the orderly development of the fly's peripheral visual system depends on visual experience led us to investigate whether or not early visual input is required to establish the functional receptive field properties of such tangential neurons. In electrophysiological investigations of two identified tangential neurons, it turned out that dark-hatched flies which were kept in complete darkness for 2 days develop basically the same receptive-field organization as flies which were raised under seasonal light/dark conditions and were free to move in their cages. We did not find any evidence that the development of the sophisticated receptive-field organization of tangential neurons depends on sensory experience. Instead, the input to the tangential neurons seems to be "hardwired" and the specificity of these cells to optic flow induced during self-motions of the animal may have evolved on a phylogenetical time scale

    Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas

    Get PDF
    This paper describes a search for neurones sensitive to optic flow in the visual system of the shore crab Carcinus maenas using a procedure developed from that of Krapp and Hengstenberg. This involved determining local motion sensitivity and its directional selectivity at many points within the neurone's receptive field and plotting the results on a map. Our results showed that local preferred directions of motion are independent of velocity, stimulus shape and type of motion (circular or linear). Global response maps thus clearly represent real properties of the neurones' receptive fields. Using this method, we have discovered two families of interneurones sensitive to translational optic flow. The first family has its terminal arborisations in the lobula of the optic lobe, the second family in the medulla. The response maps of the lobula neurones (which appear to be monostratified lobular giant neurones) show a clear focus of expansion centred on or just above the horizon, but at significantly different azimuth angles. Response maps such as these, consisting of patterns of movement vectors radiating from a pole, would be expected of neurones responding to self-motion in a particular direction. They would be stimulated when the crab moves towards the pole of the neurone's receptive field. The response maps of the medulla neurones show a focus of contraction, approximately centred on the horizon, but at significantly different azimuth angles. Such neurones would be stimulated when the crab walked away from the pole of the neurone's receptive field. We hypothesise that both the lobula and the medulla interneurones are representatives of arrays of cells, each of which would be optimally activated by self-motion in a different direction. The lobula neurones would be stimulated by the approaching scene and the medulla neurones by the receding scene. Neurones tuned to translational optic flow provide information on the three-dimensional layout of the environment and are thought to play a role in the judgment of heading

    Assessing airway inflammation in clinical practice – experience with spontaneous sputum analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The assessment of airway inflammation for the diagnosis of asthma or COPD is still uncommon in pneumology-specialized general practices. In this respect, the measurement of exhaled nitric oxide (NO), as a fast and simple methodology, is increasingly used. The indirect assessment of airway inflammation, however, does have its limits and therefore there will always be a need for methods enabling a direct evaluation of airway inflammatory cell composition. Sampling of spontaneous sputum is a well-known, simple, economic and non-invasive method to derive a qualitative cytology of airway cells and here we aimed to assess today's value of spontaneous sputum cytology in clinical practice.</p> <p>Methods</p> <p>Three pneumologists provided final diagnoses in 481 patients having sputum cytology and we retrospectively determined posterior versus prior probabilities of inflammatory airway disorders. Moreover, in a prospective part comprising 108 patients, pneumologists rated their confidence in a given diagnosis before and after knowing sputum cytology and rated its impact on the diagnostic process on an analogue scale.</p> <p>Results</p> <p>Among the 481 patients, 45% were diagnosed as having asthma and/or airway hyperresponsiveness. If patients showed sputum eosinophilia, the prevalence of this diagnosis was elevated to 73% (n = 109, p < 0.001). The diagnosis of COPD increased from 40 to 66% in patients with neutrophilia (n = 29, p < 0.01).</p> <p>Thirty-three of the 108 patients were excluded from the prospective part (26 insufficient samples, 7 incomplete questionnaires). In 48/75 cases the confidence into a diagnosis was raised after knowing sputum cytology, and in 15/75 cases the diagnosis was changed as cytology provided new clues.</p> <p>Conclusion</p> <p>Our data suggest that spontaneous sputum cytology is capable of assisting in the diagnosis of inflammatory airway diseases in the outpatient setting. Despite the limitations by the semiquantitative assessment and lower sputum quality, the supportive power and the low economic effort needed can justify the use of this method, particularly if the diagnosis in question is thought to have an allergic background.</p

    Neural Action Fields for Optic Flow Based Navigation: A Simulation Study of the Fly Lobula Plate Network

    Get PDF
    Optic flow based navigation is a fundamental way of visual course control described in many different species including man. In the fly, an essential part of optic flow analysis is performed in the lobula plate, a retinotopic map of motion in the environment. There, the so-called lobula plate tangential cells possess large receptive fields with different preferred directions in different parts of the visual field. Previous studies demonstrated an extensive connectivity between different tangential cells, providing, in principle, the structural basis for their large and complex receptive fields. We present a network simulation of the tangential cells, comprising most of the neurons studied so far (22 on each hemisphere) with all the known connectivity between them. On their dendrite, model neurons receive input from a retinotopic array of Reichardt-type motion detectors. Model neurons exhibit receptive fields much like their natural counterparts, demonstrating that the connectivity between the lobula plate tangential cells indeed can account for their complex receptive field structure. We describe the tuning of a model neuron to particular types of ego-motion (rotation as well as translation around/along a given body axis) by its ‘action field’. As we show for model neurons of the vertical system (VS-cells), each of them displays a different type of action field, i.e., responds maximally when the fly is rotating around a particular body axis. However, the tuning width of the rotational action fields is relatively broad, comparable to the one with dendritic input only. The additional intra-lobula-plate connectivity mainly reduces their translational action field amplitude, i.e., their sensitivity to translational movements along any body axis of the fly

    Localized direction selective responses in the dendrites of visual interneurons of the fly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs.</p> <p>Results</p> <p>Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs.</p> <p>Conclusions</p> <p>Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns.</p

    The Natural Variation of a Neural Code

    Get PDF
    The way information is represented by sequences of action potentials of spiking neurons is determined by the input each neuron receives, but also by its biophysics, and the specifics of the circuit in which it is embedded. Even the “code” of identified neurons can vary considerably from individual to individual. Here we compared the neural codes of the identified H1 neuron in the visual systems of two families of flies, blow flies and flesh flies, and explored the effect of the sensory environment that the flies were exposed to during development on the H1 code. We found that the two families differed considerably in the temporal structure of the code, its content and energetic efficiency, as well as the temporal delay of neural response. The differences in the environmental conditions during the flies' development had no significant effect. Our results may thus reflect an instance of a family-specific design of the neural code. They may also suggest that individual variability in information processing by this specific neuron, in terms of both form and content, is regulated genetically

    A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments

    Get PDF
    Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system’s performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest

    Robustness of the tuning of fly visual interneurons to rotatory optic flow

    Get PDF
    Karmeier K, Krapp HG, Egelhaaf M. Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology. 2003;90(3):1626-1634.The sophisticated receptive field organization of motion-sensitive tangential cells in the visual system of the blowfly Calliphora vicina matches the structure of particular optic flow fields. Hypotheses on the tuning of particular tangential cells to rotatory self-motion are based on local motion measurements. So far, tangential cells have never been tested with global optic flow stimuli. Therefore we measured the responses of an identifiable neuron, the V1 tangential cell, to wide-field motion stimuli mimicking optic flow fields similar to those the fly encounters during particular self-motions. The stimuli were generated by a "planetarium-projector," casting a pattern of moving light dots on a large spherical projection screen. We determined the tuning curves of the V1-cell to optic flow fields as induced by the animal during 1) rotation about horizontally aligned body axes, 2) upward/downward translation, and 3) a combination of both components. We found that the V1-cell does not respond as specifically to self-rotations, as had been concluded from its receptive field organization. The neuron responds strongly to upward translation and its tuning to rotations is much coarser than expected. The discrepancies between the responses to global optic flow and the predictions based on the receptive field organization are likely due to nonlinear integration properties of tangential neurons. Response parameters like orientation, shape, and width of the tuning curve are largely unaffected by changes in rotation velocity or a superposition of rotational and translational optic flow

    Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly

    Get PDF
    Karmeier K, Krapp HG, Egelhaaf M. Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology. 2005;94(3):2182-2194.Coding of sensory information often involves the activity of neuronal populations. We demonstrate how the accuracy of a population code depends on integration time, the size of the population, and noise correlation between the participating neurons. The population we study consists of 10 identified visual interneurons in the blowfly Calliphora vicina involved in optic flow processing. These neurons are assumed to encode the animal's head or body rotations around horizontal axes by means of graded potential changes. From electrophysiological experiments we obtain parameters for modeling the neurons' responses. From applying a Bayesian analysis on the modeled population response we draw three major conclusions. First, integration of neuronal activities over a time period of only 5 ms after response onset is sufficient to decode accurately the rotation axis. Second, noise correlation between neurons has only little impact on the population's performance. And third, although a population of only two neurons would be sufficient to encode any horizontal rotation axis, the population of 10 vertical system neurons is advantageous if the available integration time is short. For the fly, short integration times to decode neuronal responses are important when controlling rapid flight maneuvers
    corecore