138 research outputs found

    Provenance and logging for sense making

    Get PDF
    Sense making is one of the biggest challenges in data analysis faced by both the industry and the research community. It involves understanding the data and uncovering its model, generating a hypothesis, selecting analysis methods, creating novel solutions, designing evaluation, and also critical thinking and learning wherever needed. The research and development for such sense making tasks lags far behind the fast-changing user needs, such as those that emerged recently as the result of so-called “Big Data”. As a result, sense making is often performed manually and the limited human cognition capability becomes the bottleneck of sense making in data analysis and decision making. One of the recent advances in sense making research is the capture, visualization, and analysis of provenance information. Provenance is the history and context of sense making, including the data/analysis used and the users’ critical thinking process. It has been shown that provenance can effectively support many sense making tasks. For instance, provenance can provide an overview of what has been examined and reveal gaps like unexplored information or solution possibilities. Besides, provenance can support collaborative sense making and communication by sharing the rich context of the sense making process. Besides data analysis and decision making, provenance has been studied in many other fields, sometimes under different names, for different types of sense making. For example, the Human-Computer Interaction community relies on the analysis of logging to understand user behaviors and intentions; the WWW and database community has been working on data lineage to understand uncertainty and trustworthiness; and finally, reproducible science heavily relies on provenance to improve the reliability and efficiency of scientific research. This Dagstuhl Seminar brought together researchers from the diverse fields that relate to provenance and sense making to foster cross-community collaboration. Shared challenges were identified and progress has been made towards developing novel solutions

    Provenance analysis for sensemaking. IEEE Computer Graphics and Applications, 39 (6) . pp. 27-29. ISSN 0272-1716

    Get PDF
    The articles in this special section examine the concept of "sensemaking", which refers to how we structure the unknown so as to be able to act in it. In the context of data analysis it involves understanding the data, generating hypotheses, selecting analysis methods, creating novel solutions, and critical thinking and learning wherever needed. Due to its explorative and creative nature, sensemaking is arguably the most challenging part of any data analysis

    Analytic provenance for sensemaking: a research agenda

    Get PDF
    Sensemaking is a process of find meaning from information, and often involves activities such as information foraging and hypothesis generation. It can be valuable to maintain a history of the data and reasoning involved, commonly known as provenance information. Provenance information can be a resource for “reflection-in-action” during analysis, supporting collaboration between analysts, and help trace data quality and uncertainty through analysis process. Currently, there is limited work of utilizing analytic provenance, which captures the interactive data exploration and human reasoning process, to support sensemaking. In this article, we present and extend the research challenges discussed in a IEEE VIS 2014 workshop in order to provide an agenda for sensemaking analytic provenance

    Scalability considerations for multivariate graph visualization

    Get PDF
    Real-world, multivariate datasets are frequently too large to show in their entirety on a visual display. Still, there are many techniques we can employ to show useful partial views-sufficient to support incremental exploration of large graph datasets. In this chapter, we first explore the cognitive and architectural limitations which restrict the amount of visual bandwidth available to multivariate graph visualization approaches. These limitations afford several design approaches, which we systematically explore. Finally, we survey systems and studies that exhibit these design strategies to mitigate these perceptual and architectural limitations

    Toward Visualization for Games: Theory, Design Space, and Patterns

    Get PDF
    Abstract-Electronic games are starting to incorporate in-game telemetry that collects data about player, team, and community performance on a massive scale, and as data begins to accumulate, so does the demand for effectively analyzing this data. In this paper, we use examples from both old and new games of different genres to explore the theory and design space of visualization for games. Drawing on these examples, we define a design space for this novel research topic and use it to formulate design patterns for how to best apply visualization technology to games. We then discuss the implications that this new framework will potentially have on the design and development of game and visualization technology in the future

    Show me how you see: Lessons from studying computer forensics experts for visualization

    Get PDF
    Abstract. As part of a Analyze-Visualize-Validate cycle, we have initiated a domain analysis of email computer forensics to determine where visualization may be beneficial. To this end, we worked with police officers and other forensics professionals. However, the process of designing and executing such a study with real-world experts has been a non-trivial task. This paper presents our efforts in this area and the lessons learned as guidance to other practitioners

    Vortex Characterization for Engineering Applications

    Get PDF
    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach

    Characterization of Aptamer-Protein Complexes by X-ray Crystallography and Alternative Approaches

    Get PDF
    Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the affinity of binding (KD). Over the years, crystal structures of aptamer-protein complexes have only scarcely become available. Here we describe some relevant technical issues about the process of crystallizing aptamer-protein complexes and highlight some biochemical details on the molecular basis of selected aptamer-protein interactions. In addition, alternative experimental and computational approaches are discussed to study aptamer-protein interactions.
    • …
    corecore