59 research outputs found

    Device Detection and Channel Estimation in MTC with Correlated Activity Pattern

    Full text link
    This paper provides a solution for the activity detection and channel estimation problem in grant-free access with correlated device activity patterns. In particular, we consider a machine-type communications (MTC) network operating in event-triggered traffic mode, where the devices are distributed over clusters with an activity behaviour that exhibits both intra-cluster and inner-cluster sparsity patterns. Furthermore, to model the network's intra-cluster and inner-cluster sparsity, we propose a structured sparsity-inducing spike-and-slab prior which provides a flexible approach to encode the prior information about the correlated sparse activity pattern. Furthermore, we drive a Bayesian inference scheme based on the expectation propagation (EP) framework to solve the JUICE problem. Numerical results highlight the significant gains obtained by the proposed structured sparsity-inducing spike-and-slab prior in terms of both user identification accuracy and channel estimation performance.Comment: This is the extended abstract for the paper accepted for presentation at Asilomar 202

    ECG Signal Reconstruction on the IoT-Gateway and Efficacy of Compressive Sensing Under Real-time Constraints

    Get PDF
    Remote health monitoring is becoming indispensable, though, Internet of Things (IoTs)-based solutions have many implementation challenges, including energy consumption at the sensing node, and delay and instability due to cloud computing. Compressive sensing (CS) has been explored as a method to extend the battery lifetime of medical wearable devices. However, it is usually associated with computational complexity at the decoding end, increasing the latency of the system. Meanwhile, mobile processors are becoming computationally stronger and more efficient. Heterogeneous multicore platforms (HMPs) offer a local processing solution that can alleviate the limitations of remote signal processing. This paper demonstrates the real-time performance of compressed ECG reconstruction on ARM's big.LITTLE HMP and the advantages they provide as the primary processing unit of the IoT architecture. It also investigates the efficacy of CS in minimizing power consumption of a wearable device under real-time and hardware constraints. Results show that both the orthogonal matching pursuit and subspace pursuit reconstruction algorithms can be executed on the platform in real time and yield optimum performance on a single A15 core at minimum frequency. The CS extends the battery life of wearable medical devices up to 15.4% considering ECGs suitable for wellness applications and up to 6.6% for clinical grade ECGs. Energy consumption at the gateway is largely due to an active internet connection; hence, processing the signals locally both mitigates system's latency and improves gateway's battery life. Many remote health solutions can benefit from an architecture centered around the use of HMPs, a step toward better remote health monitoring systems.Peer reviewedFinal Published versio

    System-on-Chip Solution for Patients Biometric: A Compressive Sensing-Based Approach

    Get PDF
    IEEE The ever-increasing demand for biometric solutions for the internet of thing (IoT)-based connected health applications is mainly driven by the need to tackle fraud issues, along with the imperative to improve patient privacy, safety and personalized medical assistance. However, the advantages offered by the IoT platforms come with the burden of big data and its associated challenges in terms of computing complexity, bandwidth availability and power consumption. This paper proposes a solution to tackle both privacy issues and big data transmission by incorporating the theory of compressive sensing (CS) and a simple, yet, efficient identification mechanism using the electrocardiogram (ECG) signal as a biometric trait. Moreover, the paper presents the hardware implementation of the proposed solution on a system on chip (SoC) platform with an optimized architecture to further reduce hardware resource usage. First, we investigate the feasibility of compressing the ECG data while maintaining a high identification quality. The obtained results show a 98.88% identification rate using only a compression ratio of 30%. Furthermore, the proposed system has been implemented on a Zynq SoC using heterogeneous software/hardware solution, which is able to accelerate the software implementation by a factor of 7.73 with a power consumption of 2.318 W

    Inequality Indexes as Sparsity Measures Applied to Ventricular Ectopic Beats Detection and its Efficient Hardware Implementation

    Get PDF
    Meeting application requirements under a tight power budget is of a primary importance to enable connected health internet of things applications. This paper considers using sparse representation and well-defined inequality indexes drawn from the theory of inequality to distinguish ventricular ectopic beats (VEBs) from non-VEBs. Our approach involves designing a separate dictionary for each arrhythmia class using a set of labeled training QRS complexes. Sparse representation, based on the designed dictionaries of each new test QRS complex is then calculated. Following this, its class is predicted using the winner-takes-all principle by selecting the class with the highest inequality index. The experiments showed promising results ranging between 80% and 100% for the detection of VEBs considering the patient-specific approach, 80% using cross validation and 70% on unseen data using independent sets for training and testing, respectively. An efficient hardware implementation of the alternating direction method of multipliers algorithm is also presented. The results show that the proposed hardware implementation can classify a QRS complex in 69.3 ms that use only 0.934 W energy

    Real-time ECG Monitoring using Compressive sensing on a Heterogeneous Multicore Edge-Device

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In a typical ambulatory health monitoring systems, wearable medical sensors are deployed on the human body to continuously collect and transmit physiological signals to a nearby gateway that forward the measured data to the cloud-based healthcare platform. However, this model often fails to respect the strict requirements of healthcare systems. Wearable medical sensors are very limited in terms of battery lifetime, in addition, the system reliance on a cloud makes it vulnerable to connectivity and latency issues. Compressive sensing (CS) theory has been widely deployed in electrocardiogramme ECG monitoring application to optimize the wearable sensors power consumption. The proposed solution in this paper aims to tackle these limitations by empowering a gatewaycentric connected health solution, where the most power consuming tasks are performed locally on a multicore processor. This paper explores the efficiency of real-time CS-based recovery of ECG signals on an IoT-gateway embedded with ARM’s big.littleTM multicore for different signal dimension and allocated computational resources. Experimental results show that the gateway is able to reconstruct ECG signals in real-time. Moreover, it demonstrates that using a high number of cores speeds up the execution time and it further optimizes energy consumption. The paper identifies the best configurations of resource allocation that provides the optimal performance. The paper concludes that multicore processors have the computational capacity and energy efficiency to promote gateway-centric solution rather than cloud-centric platforms

    Compressive SensingBased Remote Monitoring Systems for IoT applications

    Get PDF
    Internet of things (IoT) is shifting the healthcare delivery paradigm from in-person encounters between patients and providers to an "anytime, anywhere" model delivery. Connected health has become more profound than ever due to the availability of wireless wearable sensors, reliable communication protocols and storage infrastructures. Wearable sensors would offer various insights regarding the patient's health (electrocardiogram (ECG), electroencephalography (EEG), blood pressure, etc.) and their daily activities (hours slept, step counts, stress maps,) which can be used to provide a thorough diagnosis and alert healthcare providers to medical emergencies. Remote elderly monitoring system (REMS) is the most popular sector of connected health, due to the spread of chronic diseases amongst the older generation. Current REMS use low power sensors to continuously collect patient's records and feed them to a local computing unit in order to perform real-time processing and analysis. Afterward, the local processing unit, which acts as a gateway, feeds the data and the analysis report to a cloud server for further analysis. Finally, healthcare providers can then access the data, visualize it and provide the proper medical assistant if necessary. Nevertheless, the state-of-the-art IoT-based REMS still face some limitations in terms of high energy consumption due to raw data streaming. The high energy consumption decreases the sensor's lifespan immensely, hence, a severe degradation in the overall performance of the REMS platform. Therefore, sophisticated signal acquisition and analysis methods, such as compressed sensing (CS), should be incorporated. CS is an emerging sampling/compression theory, which guarantees that an N-length sparse signals can be recovered from M-length measurement vector (M<<N) using efficient algorithms such as convex relaxation approaches and greedy algorithms. This work aims to enable two different scenarios for REMS by leveraging the concept of CS in order to reduce the number of samples transmitted form the sensors while maintaining a high quality of service. The first one is dedicated to abnormal heart beat detection, in which, ECG data from different patients is collected, transmitted and analysed to identify any type of arrhythmia or irregular abnormalities in the ECG. The second one aims to develop an automatic fall detection platform in order to detect falls occurrence, their strength, their direction in order to raise alert and provide prompt assistance and adequate medical treatment. In both applications, CS is explored to reduce the number of transmitted samples form the sensors, hence, increase the sensors lifespan. In addition, the identification and the detection is enabled by means of machine learning and pattern recognition algorithms. In order to quantify the performance of the system, subspace pursuit (SP) has been adopted as recovery algorithm. Whereas for data identification and classification, K-nearest neighbour (KNN), E-nearest neighbour (ENN), decision tree (BDT) and committee machine (CM) have been adopted.qscienc

    Zynq SoC based acceleration of the lattice Boltzmann method

    Get PDF
    Cerebral aneurysm is a life‐threatening condition. It is a weakness in a blood vessel that may enlarge and bleed into the surrounding area. In order to understand the surrounding environmental conditions during the interventions or surgical procedures, a simulation of blood flow in cerebral arteries is needed. One of the effective simulation approaches is to use the lattice Boltzmann (LB) method. Due to the computational complexity of the algorithm, the simulation is usually performed on high performance computers. In this paper, efficient hardware architectures of the LB method on a Zynq system‐on‐chip (SoC) are designed and implemented. The proposed architectures have first been simulated in Vivado HLS environment and later implemented on a ZedBoard using the software‐defined SoC (SDSoC) development environment. In addition, a set of evaluations of different hardware architectures of the LB implementation is discussed in this paper. The experimental results show that the proposed implementation is able to accelerate the processing speed by a factor of 52 compared to a dual‐core ARM processor‐based software implementation

    Incorporating patient concerns into design requirements for IoMT-based systems: The fall detection case study

    Get PDF
    Internet of Medical Things (IoMT) systems are envisioned to provide high-quality healthcare services to patients in the comfort of their home, utilizing cutting-edge Internet of Things (IoT) technologies and medical sensors. Patient comfort and willingness to participate in such efforts is a prominent factor for their adoption. As IoT technology has provided solutions for all technical issues, patient concerns are those that seem to restrict their wider adoption. To enhance patient awareness of the system properties and enhance their willingness to adopt IoMT solutions, this paper presents a novel methodology to integrate patient concerns in the design requirements of such systems. It comprises a number of straightforward steps that an IoMT designer can follow, starting from identifying patient concerns, incorporating them in system design requirements as criticalities, proceeding to system implementation and testing, and finally, verifying that it fulfills the concerns of the patients. To showcase the effectiveness of the proposed methodology, the paper applies it in the design and implementation of a fall detection system for elderly patients remotely monitored in their homes. The Author(s) 2021.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors wish to acknowledge Qatar National Research Fund project EMBIoT (Proj. No. NPRP 9-114-2-055) project, under the auspices of which the work presented in this paper has been carried out.Scopu

    IoT & environmental analytical chemistry: Towards a profitable symbiosis

    Full text link
    [EN] In a constantly evolving world, where the rising population and increased social awareness have led to a higher concern for the environment, research in this field (most notably in Environmental Analytical Chemistry) should take advantage of the great opportunities offered by new technologies such as Internet of Things (IoT) and Cloud-based services. Both of them are especially suitable when chemical sensors and related devices are used in the continuous in-line monitoring of environmental parameters. In this sense, it is very important to obtain spatially distributed information of these parameters as well as their temporal evolution. In this work, a friendly approach to IoT world for environmental applications is carried out. To get a global vision of these concepts, the starting point is their historical evolution. New trends are also identified along with associated challenges and potential threats. Furthermore, not only there will be (in the near future) a need to rely on distributed analytical sensors but also on even more complex, lab-based techniques that are connected to the IoT through appropriate mechanisms. A revision of the recent literature relating IoT with environmental issues has also been performed, the most relevant contributions being discussed. Finally, the need of a mutual cooperation between IoT and Environmental Analytical Chemistry is outlined and commented in detail. Ignoring the new capabilities offered by Cloud computing and IoT environments is no further an option. In this sense, the main contribution of this paper consists of highlighting the fact that the wiser course is to embrace these opportunities consciously for mutual profit.Capella Hernández, JV.; Bonastre Pina, AM.; Campelo Rivadulla, JC.; Ors Carot, R.; Peris Tortajada, M. (2020). IoT & environmental analytical chemistry: Towards a profitable symbiosis. Trends in Environmental Analytical Chemistry. 27:1-8. https://doi.org/10.1016/j.teac.2020.e00095S182
    corecore