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Abstract

In a typical ambulatory health monitoring systems, wearable medical sensors

are deployed on the human body to continuously collect and transmit phys-

iological signals to a nearby gateway that forward the measured data to the

cloud-based healthcare platform. However, this model often fails to respect the

strict requirements of healthcare systems. Wearable medical sensors are very

limited in terms of battery lifetime, in addition, the system reliance on a cloud

makes it vulnerable to connectivity and latency issues. Compressive sensing

(CS) theory has been widely deployed in electrocardiogramme ECG monitoring

application to optimize the wearable sensors power consumption. The proposed

solution in this paper aims to tackle these limitations by empowering a gateway-

centric connected health solution, where the most power consuming tasks are

performed locally on a multicore processor. This paper explores the efficiency

of real-time CS-based recovery of ECG signals on an IoT-gateway embedded

with ARM’s big.littleTM multicore for different signal dimension and allocated

computational resources. Experimental results show that the gateway is able

to reconstruct ECG signals in real-time. Moreover, it demonstrates that using

a high number of cores speeds up the execution time and it further optimizes

energy consumption. The paper identifies the best configurations of resource

allocation that provides the optimal performance. The paper concludes that

multicore processors have the computational capacity and energy efficiency to

promote gateway-centric solution rather than cloud-centric platforms.
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1. Introduction

Internet of things (IoT)-based healthcare applications have become more

attractive recently. After all, the growing older-adult population and unhealthy

lifestyle trends are leading to the spread of chronic diseases, escalating demand

for continuous clinician supervision and rising medical management costs [1].5

An ambulatory real-time monitoring system can provide a low cost, efficient

effective and convenient medical solution while maintaining the independence

of the patients and improving their quality of life.

IoT-based remote monitoring systems consist of small wireless sensors con-

tinuously measuring signals of interest and transmitting them to a nearby gate-10

way using low-power communication protocols [2]. The gateway further trans-

mits the captured information to the IoT-platform (e.g. cloud) where data pro-

cessing is conducted and useful information are extracted to meet the demands

of the end users [2].

Nevertheless, wireless transmission of big data takes a toll on the battery of15

wearable medical devices. In addition, processing the data remotely makes the

system vulnerable to connectivity and latency issues, and transmitting sensitive

medical information to remote servers raises serious privacy concerns [3, 4, 5].

Subsequently, in most cases, this model fails to grant a reliable and robust

solution that meets the quality of service required.20

This paper presents some of the results obtained as part of the ongoing

project “Embedded multi-core systems for multi-critical applications on the

Internet of Things Era (EMBIoT)” [6, 7, 8, 9, 10, 11]. The paper is dedicated

to addressing some of the aforementioned limitations by exploring mutlticore

processors in the design of real-time power-efficeint gateway-centric connected25

health applications. To this end, the paper explores the use of the CS scheme

on ECG signals acquisition and reconstruction [12, 13, 14].
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CS is an emerging acquisition technique that merges the sampling and sens-

ing stages into a single operation that allows an optimal recovery of the data

using a fewer number of measurements than that required by the Shannon-30

Nyquist theorem. Several studies in the literature have shown the benefits of

CS in terms of power consumption optimization [15].

Furthermore, in this paper, we also tackle latency and privacy issues related

to cloud-based models by investigating the efficeiency of moving the processing

from cloud to local heterogeneous multicore edge devices. Rather than a contin-35

uous stream of data, signals are reconstructed, classified, and analyzed locally.

Then, the extracted information is transmitted to remote servers to be evalu-

ated by the end-user. This approach can potentially address the shortcomings of

remote health monitoring systems by removing dependence on clouds and con-

sequently their transmission and computing latency, adding additional security40

and privacy measures locally before data is transmitted over the internet, and

reducing the cost of cloud infrastructures by distributing computational-load to

ubiquitous mobile-devices.

Within the aforementioned context, this paper qunatify CS-based ECG re-

construction on a heterogeneous multicore IoT-gateway using two real-time re-45

covery algorithms: the subspace pursuit (SP) and orthogonal matching pursuit

(OMP).

A thorough analysis of OMP’s real-time performance was performed in [16]

and [17]. This study employs an ARM big.littleTM processor used in modern

smartphones and provides a detailed analysis to evaluate the performance of50

the OMP algorithm on multiple cores.

Our experimental results show the superiority of SP under low signal distor-

tion criteria, the energy efficiency on increasing the number of cores allocated

to the reconstruction task, and the configurations where big cores—commonly

known for being power-hungry—consume less energy per reconstructed window55

than the little energy-efficient cores.

The rest of the paper is organized as follows. Section 2 provides a general

overview of the EMBIoT project, whereas, section 3 illustrates the criticalities
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that a remote monitoring system should address. Section 4 gives a brief overview

about CS and the reconstruction algorithms used. The hardware components60

as well as the communication protocols used to monitor the ECG signals have

been explained in section 5. Section 6 overviews the experimental setup and the

evaluation metrics used. Hardware implementation results are presented and

discussed in section 7. Section 8 concludes the paper.

2. EMBIoT Project65

The EMBIoT project aims to incorporate embedded system solutions to IoT-

based connected health applications. Embedded systems grant a reliable level

of connection and optimized cooperation between different system components

[18, 19, 20]. In the design of connected health solutions, conventional approaches

are no longer sufficient in terms of computaion perfromance and real-time per-70

formance. For instance, single-core processors used as computing resources are

running out of business, thus, exploring multi-cores can open a wider range of

opportunities for more reliable platforms. In addition, with tremendous amount

of medical data collection/transmission/processing, advanced algorithmic ap-

proaches will help to achieve real-time, energy efficient solutions.75

The EMBIoT project goal is to provide a sustainable system design to ac-

commodate the different requirements for modern connected health applications.

Subsequenlty, EMBIoT will focus on proposing a breakthrough of the developed

multicore technological solutions in IoT-based connected health, where real-time

and mixed-criticality are important issues to address.80

Connected health platforms are expected to demand a high level of criti-

calities. Therefore, EMBIoT aims to address these challenges by developing

solutions to achieve the following requirements:

• Reconfigurability and adaptability of solutions.

• Affordable design cost by utilizing multicores platforms similar to the ones85

used in commercial smartphones.
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• Management of multi-critical services and applications in dynamically

changing, real-time environments.

• Scalability of the proposed algorithms for fusion, classification and com-

pressive sensing.90

The EMBIoT conceptual framework is depicted in Figure 1. EMBIoT con-

sists of two main layers: the application layer and the technology layer.

The application layer is based on the IoT, comprising both wearable sys-

tems and smart environments. Wearable systems applications are related

to (i) the medical record of patients, (ii) their daily life activities and95

(iii) sensors capturing their vital signs. Smart environments may include

buildings (e.g. Hospitals, robotic surgery rooms, houses), and vehicles

(e.g. Ambulances). The technology to be used in order to build such ap-

plications will be based on multi-core platforms, where the challenges are

numerous: dealing with node failures, carrying out accurate and efficient100

data fusion and effectively configuring the network are some of the critical

issues to deal with.
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Figure 1: Overall EMBIoT Framework

3. EMBIoT Mixed Criticalities

As mentioned before, IoT-based remote health monitoring systems are mainly

composed of hardware (e.g. networked sensors, smartphones, etc.) and software105

(e.g. specialized operating systems, linear algebra libraries, etc.) that can exe-

cute different criticality applications [21].

Healthcare is traditionally a domain requiring mostly safety-critical core

components, since human lives can be jeopardized by a faulty implementation.

Other components or functions can be mission-critical (i.e. a failure may affect110

the credibility of certain organizations -such as hospitals-, putting them at great

risk), as well as operation-critical. Dealing with such criticalities, while develop-
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ing the IoT components of a health system, is of significant importance. Remote

elderly monitoring system (REMS), which will be used as a case study in this

paper, can be characterized as a mixed-criticality real-time health system that115

supports multiple components and functions, each with a different criticality.

In this work, deploying heterogeneous multicore edge-devices, like an IoT-

gateway, can address mixed criticalities, such as the real-time management of

patient health data, the energy consumption of such devices, as well as security

and privacy issues.120

In particular, time is a safety criticality for health monitoring components.

Gateways are responsible for the robust real-time treatment of sensor-collected

data (e.g. ECG signals). Thus, such devices must possess the efficiency and

technical capabilities to encapsulate a large number of functions and computa-

tionally complex tasks i.e. receive signals from all sensors, reconstruct, classify125

and compress them, while operating in real-time. Otherwise, the system is

considered to be faulty since the real-time behavior is compromised.

Tied to the real-time performance, the energy consumption of such devices is

operation-critical and must remain low in order to have a more sustainable IoT-

based health system. Deploying heterogeneous multicore architectures on IoT130

components, for example, an ARM’s big.LITTLE heterogeneous multicore plat-

form, can couple high performance with energy efficiency. Finally, security and

privacy are mission-critical. It is important to avoid errors (e.g., corruptions)

to the collected signals and ensure that they are safely delivered to the intended

receiver (e.g. the gateway), while the patient data needs to remain private. In135

order to meet this criticality, solutions like migrating the signal reconstruction

to a local edge IoT-gateway rather than transmitting them directly to the Cloud,

can address such issues. Figure 2 illustrates a graphical representation of the

performance, energy and security criticalities that a REMS gateway component

must address.140
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Figure 2: REMS criticalities

4. Compressive Sensing

In CS, signals that are sparse in certain domains can be captured using fewer

measurements than that required by the Nyquist rate [12]. A signal x ∈ Rn is

sparse if it can be represented in some basis as:

x =

n∑

i=1

siψi = ψs (1)

where only few elements of the vector s ∈ Rn are nonzero. The matrix ψ ∈ Rn×n

represents the domain where the signal x.

CS operation is non-adaptive sensing and can be represented as follows:

y = φx = φψs = As (2)

where y ∈ Rm is the measured signal (compressed) and m << n. ϕ ∈ Rm×n is

a sensing matrix and A = ϕψ ∈ Rm×n is a matrix linking the sparse represen-145

tation of x with the compressed signal y.

In order for the CS acquisition to be efficient and capture the salient infor-

mation about the signal, the sensing matrix ϕ should: 1) meet the restricted

isometry property (RIP) and 2) be incoherent with the sparsifying basis ψ [22].

Consequently, designing a sensing matrix is not a trivial task, but fortunately,150

it has been shown that a ϕ can satisfy both conditions with an arbitrary basis if

its elements are drawn from an independent identically distrusted (i.i.d) values

such as those obtained from a Gaussian or a Bernoulli distribution [22].
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In order to estimate the original signal x from the compressed data y, dif-

ferent approaches can be adopted such as convex optimization and greedy al-155

gorithms. The latter are widely considered for real-world applications as they

exhibit a simple implementation architecture, a fast convergence to the solu-

tion and a sub-optimal recovery. The most well known greedy algorithms are

OMP [23], compressive sensing matching pursuit (CoSaMP) [24]and SP [25]. It

is worth mentioning that in this paper both OMP and SP have been used to160

reconstruct the compressed acceleration data.

5. System Setup

The paper presents a REMS. First, the proposed platform collect compressed

ECG data from patients. Afterwards, the compressed ECG is transmitted to

the gateway via a Bluetooth connection. At the gateway, the data is recon-165

structed and classified to detect abnormalities in the patient’s heart beats. The

proposed platform relies on the- Shimmer3 device TM [26] for data acquisition

and ODROID XU4 [27] for data processing. The overall system framework is

shown in Figure 3.

ECG 
n smaples

CS

m<<n

OMP/ SP

Off-line Data Acquisition 

Hardware 
Implementation

Software 
Implementation

Dispaly Results and 
Comparison

evaluate 
time/energy 
resources

Pre-processing / 
Classiffication 

Pre-processing / 
Classiffication 

evaluate time/

OMP/ SP

Figure 3: Proposed framework
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5.1. Shimmer deviceTM:170

presents a low power and a lightweight sensing device used to acquire both

ECG and acceleration data to empower two different applications, namely, ECG

abnormality detection and automatic fall detection. The data acquired by the

shimmer are compressed before transmission following CS techniques, where

different compression modes can be performed. On the sensing level, different175

constraints have to be met such as security, low power transmission, etc.

Software wise, the Shimmer operates on a C-based firmware called LogAnd-

Stream [28]. To enable a CS-based ECG acquisition, the firmware has been

modified accordingly.

The new firmware will allow the user to execute the following commands:180

• Set Sampling Rate: Sets the Shimmer sampling frequency

• SET SENSORS: Activates and deactivates the appropriate sensor (ECG,

Accelerometer)

• SHIMMER COMMANDS: Takes 10 Bytes and configures the shimmer

parameters such as gain(refer to ECG document)185

• SET WINDOW AND MODE: Sets the transmission mode (real time, 1

second, 1.5 second) and the processing mode ( raw, adjusted, high quality

compression and low quality compression)

• START STREAMING COMMAND: Start the streaming

• STOP STREAMING COMMAND:End the streaming190

After making the necessary modification on the code, the firmware has been

compiled using Texas Instruments Code Composer studio (TI 4.4.8 compiler).

The result of the compilation is a text file that can be uploaded to the Shimmer

using the provided dock and Consensys [29].
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5.2. ODROID XU4 TM
195

is a heterogeneous multicore platform (HMP) featuring ARMs big.LITTLETM

technology. The ODROID-XU4 presents a modern processing platform with a

enhanced computing resources. The XU4 is equipped with a Samsungs Exynos

5422 octa-core processor which is embedded with a cluster of four Cortex-

A15 cores (big) and a cluster of four Cortex-A7 cores (LITTLE). Further-200

more, the XU4 architecture provides an optimized processing features lead-

ing to an efficient power consumption behaviour. Subsequently, leveraging the

big.LITTLETM technology, the XU4 can efficiently utilize a maximum of its

eigth cores to manage computationally intensive tasks [30] as shown in Figure

4.205

The XU4 plays the role of an edge computing platform to link the acquired

data from the sensor to the cloud. On the XU4, the received compressed data

has to be reconstructed and then classified to detect a different abnormal event,

i.e, ECG arrhythmia classification and automatic fall detection. Consequently,

the XU4 will provide the user with a wide range of applications each with a set210

of constraints, requirements and defined quality of service (QoS).

Figure 4: Task management within the ODROID XU4 platform [30]

5.3. REMS Implementation

In order to establish the connection between the Shimmer and the XU4, a

complex software tool has been developed based on both C++ and Python. The

developed application, namely, RemsClient, permits to connect and configure215

multiple Shimmer devices, process their data efficiently, and display them to

the user. The main Python program is RemsClient.py and is considered the

Parent Application, this app will contain the GUI of the program and has high-

level control over the programs below it. The Parent is capable of spawning
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independent Child processes each reading from a Shimmer device independently.220

The Child can spawn its own C++ based process if it needs it. The C++ process

can quickly perform complex data processing (such as CS signal reconstruction)

or data classification.

The communication between the Shimmer and the RemsClient established

in the new firmware is performed as follows:225

1. Shimmer initializes global variables by setting all buffer arrays to zero;

2. It waits for the RemsClient to send its configuration commands (discussed

earlier);

3. After being configured, it remains idle until the user starts the streaming

process;230

4. When the stream starts, the firmware samples requested ECG until the

buffer is full;

5. When full, the Shimmer will prepare a Bluetooth message to be sent to

the RemsClient after processing the data if that is required;

6. If the user did not stop the stream, the Shimmer will send the data to the235

RemsClient and empty the buffer;

7. Repeat 4 to 6 until the stream is stopped.

The principle of operation of the Parent is based on two classes, the Shim-

mer Class and the ChildManager Class. The Shimmer Class allows the parent

to create a Shimmer object per physical Shimmer device. Then, the parent can240

use the Shimmer Class methods to adjust the Shimmer configuration, allowing

to ignore the low-level details of the configurations and simply call high-level

methods. Afterwards, the configured Shimmer object can be passed to a Child-

Manager object, the ChildManager object has methods that allow to start a

Child process, read data from it, and terminate it, again giving a high-level245

interface for control. Both classes have been filled with error handles and ex-

ceptions, so it would be impossible to call a method or a function incorrectly.

Once the Parent spawns a Child, it passes the Shimmer object. The Child

uses the Shimmer object to access the configuration selected by the user and

12
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connect to and configure the physical Shimmer device. When the stream starts,250

the Child coordinates the data between the Shimmer, C++, and the Parent.

There are two messaging protocols in the client, the first being Python Parent

to Python Child which is simple, relaying on a custom parent Child message class

and Pythons multiprocessing pipes. The other messaging system is between the

Python Child and C++, relying on the ZMQ library and protocol buffer.255

The ZMQ library is common to Python and C++. It allows to start a

Python server and a C++ client and connect them to each other through an

inter process communication (IPC) socket. The socket however only accepts

strings or serialized information, meaning that vectors and lists (a common

type for our data) cannot be sent directly through a ZMQ socket.260

This serialization issue can be solved by using a common data format such as

Java Script Object Notation (JSON). But since JSON serialization and deseri-

alization is slow and our system is real-time sensitive, we use Google’s Protocol

Buffers (or Protobuf). Protobuf allows us to write a Proto file outside of Python

and C++. This proto file contains custom messaging classes. The custom mes-265

saging classes can be complied into C++ classes and Python classes, and hence,

now we have common objects between both languages. Protobuf also provides

us with serialize and deserialize methods. To summurize, a message from Python

to C++ requires the following:

1. Start a ZMQ sever in Python.270

2. Connect to ZMQ server from C++.

3. To send data from Python to C++. Create a protobuf class message,

serialize it and send it through the socket.

4. To receive the data in C++, receive the serialized protobuf message, and

deserialze it using C++ version of this class.275

6. Experimental Setup

The main objective of this work is to quantify the signal reconstruction per-

formance of OMP and SP. We consider multiple signal dimensions, the time and
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energy they require to run on ARM’s big.littleTM HMP at different processing

configurations.280

The evaluation of the reconstruction performance is carried out in matlab.

A set of ECG records (103, 106, 109, 113, 116, 119, 208, 217, 219, 221) from

the MIT-Arrhythmia database [31] have been used. The percentage root-mean-

square difference (PRD) metric is used to evaluate the reconstructed signal

quality and it is defined as follows:

PRD =
‖x− x̂‖2
‖x− x̃‖2

× 100 (3)

where x̃ is the mean of the original signal. To evaluate the effect of the signal di-

mensions on PRD, four signal lengths, n = [1.0 1.5 2.0 2.5]×fs, are considered.

The compression ratio is defined as CR = n/m and the average PRD is com-

puted using 300 consecutive windows from each record (total = 3000 segments).

ECG signals are not continuously transmitted to cloud for visual inspection285

but are locally analyzed for the majority of the time, and hence medical-grade

ECGs are only required at the request of the end user or in case of emergencies.

Consequently, we define two PRD quality targets as follows:

• High quality (HQ) target suitable for clinician inspection.

• Low quality (LQ) target that allows for accurate data classification and290

feature extraction.

The HQ target is defined based on [32], where clinicians rated ECG signals at

varying distortion levels, concluding that PRD ≤ 9 is “good” for visual inspec-

tion. The LQ target is defined empirically by quantifying abnormality classifi-

cation accuracy at different signal distortion levels. Two heart beat classes are295

used for classification: normal beat (N) and premature ventricular contraction

beat (V), and four records (106, 119, 208, 221) were tested. The average accu-

racy of the K-nearest neighbor (KNN) and the extend-nearest neighbor (ENN)

algorithm in detecting the class of heart beats in the aforementioned records

is presented in Figure 5. The results reveal that signals reconstructed with300

PRD ≤ 25 provide a near identical or slightly deteriorated (≈ 2 %)classification

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

accuracy in comparison to the original signal (PRD = 0). Thus, the LQ target

is set as PRD ≤ 25 %.

Figure 5: ENN abnormality detection accuracy versus ECG signal distortion in PRD

Real-time performance and energy consumption are assessed using Hard-

Karnel’s Odroid XU4 board [33]. The XU4 operates Ubuntu 16.04 (Linux 3.10305

+ armv7) and the algorithms were written in C++ using the Armadillo (v8.3)

library [34] for linear algebra and complied with gcc (v5.4).

The reconstruction time is computed over a 50 consecutive trails at a par-

ticular signal dimension with variable core type, number, and frequency. Since

increasing the signal window length increases both computational complexity310

of reconstruction and time-gap between two consecutive segments, the average

reconstruction time is normalized over a real-time window defined Tr = n/fs.

Power consumption is measured and averaged using a digital wattmeter in series

with the boards power supply. Afterwards, the energy required for reconstruc-

tion is defined as average power× reconstruction-time.315
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7. Results

7.1. Reconstruction Quality

Figure 6 presents a comparison between OMP and SP in terms of PRD using

diffrent ECG signal dimensions.

Figure 6: Signal reconstruction performance of OMP and SP at different ECG window di-

mensions

OMP performs better than SP at most CRs, however, SP has lower recon-320

struction error at CRs= [2.5− 3.5]. Generally, higher segment lengths decrease

reconstruction error as it reduces both average PRD and its deviation. This

can be more clearly observed in Table 1 where the highest possible CR that

provides the targeted PRDs with a probability of 98% is computed. The data

concludes that SP allows for higher compression considering the HQ criterion,325

while for the LQ target OMP is preferred. Increasing n from (360→ 900) ren-

ders approximately a 10% and a 9% improvement in signal compressibility which

16
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is beneficial for the sensing node but will also increase the computational com-

plexity and energy required for reconstruction at the gateway. For the remainder

of this paper, every window size will be compressed with its corresponding high-330

est possible CR, and HQ and LQ will refer to signals reconstructed using SP

and OMP respectively.

OMP SP

n 360 540 720 900 360 540 720 900

HQ 2.77 3.06 3.00 3.20 2.85 3.13 3.04 3.28

LQ 4.1 4.43 4.47 4.61 3.78 4.12 4.08 4.30

Table 1: Highest CR that achieves the LQ and HQ targets with probability of 98%

7.2. Real-time Performance and Energy Consumption

In CS, several parameters govern the performance of the reconstruction al-

gorithm when implemented on the XU4. these parameters are the signal dimen-335

sion, number of cores running the process as well as their operating frequencies

In here, we only presented the cases where n = 360 and n = 900. Normalized

reconstruction time for OMP and SP is shown in Figure 7. Obtained results

show that it is possible to achieve real-time recovery using the lowest number

Figure 7: Normalized time of HQ and LQ ECG signal reconstruction using SP and OMP at

different signal lengths, core type, number of cores, and core frequency
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of cores at its minimum frequency ((1 × A7 at 0.8 GHz) for the largest signal340

dimension, i.e, n = 900.

Furthermore, implementation on the A15 processors speeds up the recon-

struction process to a factor [2 − 4] compared to A7-based implementation. It

is worth noting that the number of cores used is the most dominant factor in

speeding up the process. Whereas, the frequency of the cores does not show to345

affect the speed of the recovery algorithm. For instance, using 2×A7 at 0.8 GHz

is 25% faster than running it on a 1×A7 at 1.2 GHz.

Moreover, increasing the cores’ frequency from 0.8 GHz to [1.0 1.2 1.4] GHz

results in a [20 35 47]% and a [17 31 41]% faster reconstruction using SP and

OMP respectively. Whereas, increasing the number of cores used from 1 to350

[2 3 4] results in a [37 56 68]% and [44 71 86]% speed up for SP and OMP

respectively.

Figure 8. shows the energy consumption per window for diffrent procesor

configurations. The following observation can be drawn:

• Intuitively, power consumption increases as more cores are used.355

• The optimal result in terms of power consumption is obtained using 1×A15

at 0.8 GHz for the case of n = 360. For a highest dimensional signal,

1 × A15 at 0.8 GHz renders the best results, although replacing the A7

Figure 8: Energy required for HQ and LQ ECG signal reconstruction using SP and OMP at

different signal lengths, core type, number of cores, and core frequency
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by A15 processor increase the power consumption only by a factor of 1.2,

however, it speeds up the process by 3.2 factor.360

• The LQ scenario shows an interesting result where A15 cores are more

energy-efficient than the A7 cores for different combinations of core’s

“number-frequencies”. In addition, the more A7 used, the less power is

consumed. This can be explained by the fact that parallelization of OMP

on A7 cores results in a significant decrease in computational-time, enough365

to compensate for the increased power required for the extra cores.

• For LQ reconstruction, the combination 1 × A15 at 0.8 GHz could be

selected as the best configuration as it exhibits the less power consumption

with a fast reconstruction time.

8. Conclusions370

This paper presents a solution to IoT connected health based on edge-

computing devices embedded with HMPs. Such solution addresses the latency

and privacy issues that can be bottleneck the reliability of healthcare systems.

The EMBIoT project objective to empower a complete solution to health-

care application by relying on multicore platforms and advanced algorithmic375

approaches such as CS and machine learning techniques. The aim is to address

issues related to power efficiency, real-time performance, reliable and secure

communication. EMBIoT focuses also on the identification and modelling crit-

icalities of healthcare IoT systems.

The presented work demonstrates the efficiency of CS-based ECG recon-380

struction implemented on an ARM big.littleTM processor. The analysis has

been conducted using different signal sizes as well a various combination of the

core’s ”number-type-frequency”. The performance has been evaluated in terms

of energy consumption and reconstruction quality/execution time.

Moreover, multicore processors have shown their ability to reconstruct ECG385

segments of up to 2.5 sec using the minimum computational resource. The
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obtained performance that the more cores used for the reconstruction process,

the lower reconstruction time and is more energy-efficient than increasing the

cores’ frequency.

HMPs are able to efficiently process computationally complex tasks in real-390

time and can be a viable solution to a more sustainable IoT-based remote health

monitoring system.
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