153 research outputs found

    On the Cohomology of 3D Digital Images

    Get PDF
    We propose a method for computing the cohomology ring of three--dimensional (3D) digital binary-valued pictures. We obtain the cohomology ring of a 3D digital binary--valued picture II, via a simplicial complex K(I)topologically representing (up to isomorphisms of pictures) the picture I. The usefulness of a simplicial description of the "digital" cohomology ring of 3D digital binary-valued pictures is tested by means of a small program visualizing the different steps of the method. Some examples concerning topological thinning, the visualization of representative (co)cycles of (co)homology generators and the computation of the cup product on the cohomology of simple pictures are showed.Comment: Special Issue: Advances in Discrete Geometry and Topolog

    Homological tree-based strategies for image analysis

    Get PDF
    Homological characteristics of digital objects can be obtained in a straightforward manner computing an algebraic map φ over a finite cell complex K (with coefficients in the finite field F2={0,1}) which represents the digital object [9]. Computable homological information includes the Euler characteristic, homology generators and representative cycles, higher (co)homology operations, etc. This algebraic map φ is described in combinatorial terms using a mixed three-level forest. Different strategies changing only two parameters of this algorithm for computing φ are presented. Each one of those strategies gives rise to different maps, although all of them provides the same homological information for K. For example, tree-based structures useful in image analysis like topological skeletons and pyramids can be obtained as subgraphs of this forest

    Towards digital cohomology

    Get PDF
    We propose a method for computing the Z 2–cohomology ring of a simplicial complex uniquely associated with a three–dimensional digital binary–valued picture I. Binary digital pictures are represented on the standard grid Z 3, in which all grid points have integer coordinates. Considering a particular 14–neighbourhood system on this grid, we construct a unique simplicial complex K(I) topologically representing (up to isomorphisms of pictures) the picture I. We then compute the cohomology ring on I via the simplicial complex K(I). The usefulness of a simplicial description of the digital Z 2–cohomology ring of binary digital pictures is tested by means of a small program visualizing the different steps of our method. Some examples concerning topological thinning, the visualization of representative generators of cohomology classes and the computation of the cup product on the cohomology of simple 3D digital pictures are showed

    The persistent cosmic web and its filamentary structure I: Theory and implementation

    Full text link
    We present DisPerSE, a novel approach to the coherent multi-scale identification of all types of astrophysical structures, and in particular the filaments, in the large scale distribution of matter in the Universe. This method and corresponding piece of software allows a genuinely scale free and parameter free identification of the voids, walls, filaments, clusters and their configuration within the cosmic web, directly from the discrete distribution of particles in N-body simulations or galaxies in sparse observational catalogues. To achieve that goal, the method works directly over the Delaunay tessellation of the discrete sample and uses the DTFE density computed at each tracer particle; no further sampling, smoothing or processing of the density field is required. The idea is based on recent advances in distinct sub-domains of computational topology, which allows a rigorous application of topological principles to astrophysical data sets, taking into account uncertainties and Poisson noise. Practically, the user can define a given persistence level in terms of robustness with respect to noise (defined as a "number of sigmas") and the algorithm returns the structures with the corresponding significance as sets of critical points, lines, surfaces and volumes corresponding to the clusters, filaments, walls and voids; filaments, connected at cluster nodes, crawling along the edges of walls bounding the voids. The method is also interesting as it allows for a robust quantification of the topological properties of a discrete distribution in terms of Betti numbers or Euler characteristics, without having to resort to smoothing or having to define a particular scale. In this paper, we introduce the necessary mathematical background and describe the method and implementation, while we address the application to 3D simulated and observed data sets to the companion paper.Comment: A higher resolution version is available at http://www.iap.fr/users/sousbie together with complementary material. Submitted to MNRA

    Advanced homology computation of digital volumes via cell complexes

    Get PDF
    Given a 3D binary voxel-based digital object V, an algorithm for computing homological information for V via a polyhedral cell complex is designed. By homological information we understand not only Betti numbers, representative cycles of homology classes and homological classification of cycles but also the computation of homology numbers related additional algebraic structures defined on homology (coproduct in homology, product in cohomology, (co)homology operations,...). The algorithm is mainly based on the following facts: a) a local 3D-polyhedrization of any 2×2×2 configuration of mutually 26-adjacent black voxels providing a coherent cell complex at global level; b) a description of the homology of a digital volume as an algebraic-gradient vector field on the cell complex (see Discrete Morse Theory [5], AT-model method [7,5]). Saving this vector field, we go further obtaining homological information at no extra time processing cost

    Homological computation using spanning trees

    Get PDF
    We introduce here a new F2 homology computation algorithm based on a generalization of the spanning tree technique on a finite 3-dimensional cell complex K embedded in ℝ3. We demonstrate that the complexity of this algorithm is linear in the number of cells. In fact, this process computes an algebraic map φ over K, called homology gradient vector field (HGVF), from which it is possible to infer in a straightforward manner homological information like Euler characteristic, relative homology groups, representative cycles for homology generators, topological skeletons, Reeb graphs, cohomology algebra, higher (co)homology operations, etc. This process can be generalized to others coefficients, including the integers, and to higher dimension

    Connectivity forests for homological analysis of digital volumes

    Get PDF
    In this paper, we provide a graph-based representation of the homology (information related to the different “holes” the object has) of a binary digital volume. We analyze the digital volume AT-model representation [8] from this point of view and the cellular version of the AT-model [5] is precisely described here as three forests (connectivity forests), from which, for instance, we can straightforwardly determine representative curves of “tunnels” and “holes”, classify cycles in the complex, computing higher (co)homology operations,... Depending of the order in which we gradually construct these trees, tools so important in Computer Vision and Digital Image Processing as Reeb graphs and topological skeletons appear as results of pruning these graphs

    Algebraic topological analysis of time-sequence of digital images

    Get PDF
    This paper introduces an algebraic framework for a topological analysis of time-varying 2D digital binary–valued images, each of them defined as 2D arrays of pixels. Our answer is based on an algebraic-topological coding, called AT–model, for a nD (n=2,3) digital binary-valued image I consisting simply in taking I together with an algebraic object depending on it. Considering AT–models for all the 2D digital images in a time sequence, it is possible to get an AT–model for the 3D digital image consisting in concatenating the successive 2D digital images in the sequence. If the frames are represented in a quadtree format, a similar positive result can be derived
    corecore