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Abstract. We propose a method for computing the Z2–cohomology ring
of a simplicial complex uniquely associated with a three–dimensional dig-
ital binary–valued picture I. Binary digital pictures are represented on
the standard grid Z3, in which all grid points have integer coordinates.
Considering a particular 14–neighbourhood system on this grid, we con-
struct a unique simplicial complex K(I) topologically representing (up
to isomorphisms of pictures) the picture I. We then compute the coho-
mology ring on I via the simplicial complex K(I). The usefulness of a
simplicial description of the digital Z2–cohomology ring of binary digital
pictures is tested by means of a small program visualizing the different
steps of our method. Some examples concerning topological thinning, the
visualization of representative generators of cohomology classes and the
computation of the cup product on the cohomology of simple 3D digital
pictures are showed.
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1 Introduction

The homology groups (given in terms of number of connected components, holes
and cavities in the digital picture), the digital Euler characteristic or the digital
fundamental group are well–known operations in Digital Topology [15,10]. All of
them can be considered as translations into the discrete setting of classical con-
tinuous topological invariants. In order to prove that a digital topology operation
πD (associated with a continuous operation πC) correctly reflects the topology
of digital pictures considered as Euclidean spaces, the main idea is to associate a
“continuous analog” C(I) with the digital picture I. In most cases, each binary
digital picture I is associated with a polyhedron C(I) [10,11,9,1]). It is clear that
C(I) “fills the gaps” between black points of I in a way that strongly depends
on the grid and adjacency relations chosen for the digital picture I. Recent at-
tempts to enrich the list of computable digital topological invariants in such a
way can be found in [8].

In this paper, we will consider binary digital pictures I = (Z3, 14, 14, B),
having the standard lattice Z3 as the underlying grid and fixing a special 14–
adjacency for both the points of B and the points of its complement. Our bi-
nary digital picture space (or, briefly, DPS) is regular and isomorphic to the
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well–known DPS called 3–d body–centered cubic grid [11]. Starting from a pic-
ture I, we construct, in a straightforward way, a simplicial complex K(I) based
on the triangulation of the Euclidean 3–space determined by the previous 14–
neighbourhood relation: The i–simplices of K(I) (i ∈ {0, 1, 2, 3}) are consti-
tuted by the different sets of i 14–neighbour black points in I (analogously,
we can construct another simplicial complex whose i–simplices are the different
sets of i 14–neighbour white points in I). We do not take care of the orienta-
tion of the simplices due to the fact that we are interested in computing the
mod 2 cohomology. Since an isomorphism of pictures is equivalent to a sim-
plicial homeomorphism of the corresponding simplicial representations, we are
able to define the digital cohomology ring H∗(I;Z2) as the cohomology ring
H∗(K(I);Z2). In this simplicial setting and using the technique of simplicial
collapses [5], we topologically thin K(I), obtaining a smaller simplicial com-
plex MtopK(I). The following step is the computation of the cohomology ring
H∗(MtopK(I);Z2). Since H∗(MtopK(I);Z2) is isomorphic to H∗(K(I);Z2), the
information obtained in this way can be used for “topologically” classifying (up
to isomorphisms of pictures) and distinguishing (up to cohomology ring level)
3–d binary digital pictures. A small program, called EditCup, for editing binary
digital pictures and visualizing cohomology aspects of them has been designed
by the authors and developed by others1. This software allows us to test in some
simple examples the potentiality and topological acuity of our method.

2 Simplicial Representation of 3D Pictures

We follow the terminology given in [11] for representing binary digital pictures.
A 3D binary digital picture space (or, briefly, DPS) is a triple (V, β, ω), where
V is the set of grid points in a 3–d grid and each of β and ω is a set of closed
straight line segments joining pairs of points in V . The set β (resp. the set
ω) determines the neighbourhood relations between black points (resp. white
points) in the grid. An isomorphism of a DPS (V1, β1, ω1) to a DPS (V2, β2, ω2)
is a homeomorphism h of the Euclidean 3–space to itself such that h maps V1
onto V2, each β1-adjacency onto a β2-adjacency and each ω1-adjacency onto an
ω2-adjacency, and h−1 maps each β2-adjacency onto a β1-adjacency and each
ω2 adjacency onto an ω1-adjacency. A 3D digital binary picture is a quadruple
I = (V, β, ω, B), where (V, β, ω) is a DPS and B (the set of black points) is
a finite subset of V. An isomorphism of a picture I1 = (V1, β1, ω1, B1) to a
picture I2 = (V2, β2, ω2, B2) is an isomorphism of the DPS (V1, β1, ω1) to the
DPS (V2, β2, ω2) that maps B1 onto B2.

The DPS used in this paper, that we call (14, 14)–DPS, is (Z3, 14, 14), in
which the underlying grid is the set of points with integer coordinates in the
Euclidean 3–space E3 and the 14–neighbours of a grid point (black or white)
with integer coordinates (x, y, z) are: (x ± 1, y, z), (x, y ± 1, z), (x, y, z ± 1),
1 The 1st version was programmed by J.M. Berrio, F. Leal and M.M. Maraver. The

2nd version was programmed by F.Leal. This program has been already presented
in [2]. http://www.us.es/gtocoma/editcup.zip.
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(x+1, y −1, z), (x−1, y +1, z), (x+1, y, z −1), (x−1, y, z +1), (x, y +1, z −1),
(x, y − 1, z + 1), (x + 1, y + 1, z − 1), (x − 1, y − 1, z + 1). Nevertheless, the 14–
adjacency for digital pictures has been usually defined in a 3–d body–centered
cubic grid (BCC grid) [11]: The grid points are the points (a, b, c) ∈ Z3 such that
a ≡ b ≡ c (mod 2). The 14–neighbours of a grid point p with coordinates (a, b, c)
are: (a ± 2, b, c), (a, b ± 2, c), (a, b, c ± 2), (a ± 1, b ± 1, c ± 1). The (14, 14)–DPS
and the BCC grid are isomorphic DPSs: a grid point (x, y, z) of the (14, 14)–DPS
can be associated to the point (x + y + 2z,−x + y, −x − y) of the BBC grid.

Fig. 1. The 14–neighbours of a grid point p of the (14,14)–DPS (on the left) and the
BCC grid (on the right).

3 An Approach to Digital Cohomology Ring

Given a binary digital picture I = (Z3, 14, 14, B) on the (14, 14)–DPS, we can
uniquely associate with it a 3–dimensional simplicial complex K(I) that we
call the simplicial representation of the digital picture I. The vertices (or 0–
simplices) of K(I) are the points of I. The edges, triangles and tetrahedra are
formed joining two, three and four 14–neighbour points of B, respectively. This
naive simplicial construction, together with the satisfactory algorithmic solution
presented here to the problem of the computation of cohomology operations on
finite simplicial complexes, will allow to “cohomologically control” the digital
picture I (up to isomorphisms of pictures). Before explaining in detail the dif-
ferent steps of our method, we will enunciate the following theorem whose proof
is straightforward and left to the reader.

Theorem 1. Two binary digital pictures, I1 = (Z3, 14, 14, B1) and I2 = (Z3, 14,
14, B2), are isomorphic if and only if the simplicial representations K(I1) and
K(I2) are simplicially homeomorphic.

This last result allows us to define the following notion:

Definition 1. Given a binary digital picture I = (Z3, 14, 14, B), the digital Z2-
cohomology ring of I is defined as the Z2-cohomology ring of K(I).

Since the simplicial complexes considered in this paper are embedding in R3

then homology groups are torsion free (moreover, the possible non–null homol-
ogy groups are H0(K), H1(K) and H2(K)). Therefore, homology and cohomol-
ogy are isomorphic. The q–Betti number is the rank of the qth homology group.
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In general, the 0th Betti number is the number of connected components, the
1st and 2nd Betti numbers have intuitive interpretations as the number of in-
dependent non–bounding loops and the number of independent non–bounding
shells. Since the Betti numbers are independent of the group of coefficients we
consider, throughout the paper, the ground ring is Z2.

In the next three subsections, we will reinterpret classical methods in Alge-
braic Topology and Homological Algebra in terms of chain contractions[12] that
will enable us to design an algorithm for computing the cohomology rings of
binary digital pictures. Now, the previous reading of the appendix is strongly
recommended if the reader is not familiar with the concepts from Algebraic
Topology presented in this section. Let us emphasize that a fundamental notion
here is that of chain contraction:

Definition 2. A chain contraction from a chain complex C to another chain
complex C′ is a set of three homomorphisms (f, g, φ) such that:

– f : C → C′ and g : C′ → C are chain maps.
– fg is the identity map of C′.
– φ : C → C is a chain homotopy of the identity map idC of C to gf , that is,

φ∂ + ∂φ = idC + gf .

Important properties of chain contractions are that C′ has fewer or the same
number of generators than C, and C and C′ have isomorphic homology groups.
We will also use the following notation: let a be a chain and b an element of
a. We denote by (a; b) the new chain obtained replacing b by a variable x and
solving the equation a = 0 for the variable x.

3.1 Topological Thinning

Topological thinning is an important preprocessing operation in Image Process-
ing. The aim is to shrink a digital picture to a smaller, simpler picture which
retains a lot of the significant information of the original.Then, further processing
or analysis can be performed on the shrunken picture.

In our approach, a 3D binary digital picture is directly converted into a
3D simplicial complex. There is a well–known process for thinning a simplicial
complex using simplicial collapses [3]. Suppose K is a simplicial complex, σ ∈ K
is a maximal simplex and σ′ is a free facet of σ. Then, K simplicially collapses
onto K − {σ, σ′}. An important property of this process is that there exists
an explicit chain contraction from C(K) to C(K − {σ, σ′}) [5]. More generally,
a simplicial collapse is any sequence of such operations. A thinned simplicial
complex MtopK is a subcomplex of K with the condition that all the faces
of the maximal simplices of MtopK are shared. Then, it is obvious that it is no
longer possible to collapse. There is also an explicit chain contraction from C(K)
to C(MtopK). In particular, recall that this means that the (co)homology of K
and MtopK are isomorphic.

The following algorithm computes MtopK and a chain contraction (ftop, gtop,
φtop) from C(K) to C(MtopK). Initially, MtopK = K.
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While there exists a maximal simplex σ with a free facet σ′ do
MtopK := MtopK − {σ, σ′}, ftop(σ) := 0, ;φtop(σ) := 0,
ftop(σ′) := ftop(∂σ; σ′), φtop(σ′) := σ + φtop(∂σ; σ′);

if σ ∈ MtopK, then ftop(σ) := σ, gtop(σ) := σ and φtop(σ) := 0.
End.

3.2 “Algebraic Thinning”

Having obtained the simpler thinned complex MtopK(I), we next compute its
homology. The computation of a chain contraction (falg, galg, φalg) from the chain
complex C(MtopK(I)) to its homology can be considered as a thinning, at alge-
braic level, of C(MtopK(I)) (for this reason we call it “algebraic thinning”). We
compute (falg, galg, φalg) interpreting the “incremental algorithm” [4] for com-
puting homology groups in R3 in terms of chain homotopies. This procedure is
essential for us in order to calculate the cohomology ring of I.

Let (σ1, . . . , σm) be a sorted set of all the simplices of a given simplicial
complex L with the property that any subset {σ1, . . . , σi}, i ≤ m, is a subcomplex
of L. The algorithm computes a chain complex C with set of generators h, and a
chain contraction (falg, galg, φalg) from C(L) to C. Initially, h is empty. In the step
ith of the algorithm, the simplex σi is added to the subcomplex {σ1, . . . , σi−1}
and then, a homology class is created or destroyed. If falg∂(σi) = 0 then σi

“creates” the class αi. Otherwise, σi “destroys” one homology class involved in
the expression of falg∂(σi). At the end of the algorithm, C is a chain complex
isomorphic to the homology of L. The pseudocode of the algorithm is:

For i = 1 to i = m do
if falg∂(σi) = 0 then h := h ∪ {αi},
else let falg(σj) be an element of falg∂(σi) then

falg(σi) := 0, φalg(σi) := 0, h := h − {αj},
falg(σj) := (falg∂(σi); falg(σj)),
φalg(σj) := σi + (φalg∂(σi); φalg(σj));

for i = 1 to i = m do
if αi ∈ h then αi := [σi + φalg∂(σi)],

falg(σi) := αi, galg(αi) := σi + φalg∂(σi), φalg(σi) := 0.
End.

Recall that the output of the algorithm is a chain contraction (falg, galg, φalg)
from C(L) to H(L), allowing us to determine both a representative cycle for
each homology class and the homology class for each cycle. Moreover, for any
q–boundary a on L we can obtain a (q + 1)–chain a′ = φalg(a) on L such that
a = ∂(a′). The algorithm runs in time at most O(m3) if L has m simplices.

The idea of computing a contraction from a chain complex to its homology
has also been used in [6,7]. In [6] the computation of the contraction is based
on the transcription of the reduction algorithm [14, p. 58] and it is used for
computing primary and secondary cohomology operations.



Towards Digital Cohomology 97

We can compose the chain contraction (ftop, gtop, φtop) from C(K(I)) to
C(MtopK(I)), described in the section above, with that (falg, galg, φalg) from
C(MtopK(I)) to H(MtopK(I)) (which is isomorphic to H(K(I))). We then
obtain a new chain contraction [12] (falgftop, gtopgalg, φtop + gtopφalgftop) from
C(K(I)) to H(K(I)).

Example 1. Let I be the digital picture showed in Figure 3. The non–null im-
ages of the component morphisms of a chain contraction (falg, galg, φalg) from
C(K(I)) to H(K(I)) obtained using the algorithm explained above are:

K h falg galg φalg

〈1〉 α1 α1 〈1〉 0
〈2〉 α1 〈1, 7〉 + 〈6, 7〉 + 〈5, 6〉 + 〈4, 5〉 + 〈3, 4〉 + 〈2, 3〉
〈3〉 α1 〈1, 7〉 + 〈6, 7〉 + 〈5, 6〉 + 〈4, 5〉 + 〈3, 4
〈4〉 α1 〈1, 7〉 + 〈6, 7〉 + 〈5, 6〉 + 〈4, 5〉

〈2, 4〉 0 〈2, 3, 4〉
〈5〉 α1 〈1, 7〉 + 〈6, 7〉 + 〈5, 6〉
〈6〉 α1 〈1, 7〉 + 〈6, 7〉
〈7〉 α1 〈1, 7〉

〈1, 2〉 α16 α16 a 0

Where a = 〈1, 2〉 + φ(〈2〉). Therefore, H0(I) � Z2, H1(I) � Z2 and H2(I) = 0.

Fig. 2. A digital picture I and its simplicial representation K(I).

3.3 Computing the Digital Z2-Cohomology Ring

After applying topological and algebraic thinning to the simplicial representation
K of a binary digital picture I in order, we are able to compute the multiplication
table on the cohomology.

Let (f, g, φ) be a contraction from C(K) to H(K). Observe that if γ ∈ Hq(K)
then γ∗ : Hq(K) → Z2, defined by γ∗(ω) = 1 if ω = γ and γ∗(ω) = 0 otherwise,
is a cohomology class of K. Moreover, γ∗f : Cq(K) → Z2 is a representative
cocycle of γ∗. Let {α1, . . . , αp} and {β1, . . . , βq} be sets of generators of H1(K)
and H2(K) then, {α∗

1, . . . , α
∗
p} and {β∗

1 , . . . , β∗
q } are sets of generators of H1(K)

and H2(K). The cohomology ring of K is computed as follows:

For i = 1 to i = p do
for j = i to j = p do

∑q
k=1 ((α∗

i f 	 α∗
jf)(gβk)) · β∗

k .
End.
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Fig. 3. The pictures X and Y and their simplicial representations K and L.

Given a binary digital picture I, the total algorithm for computing the cohomol-
ogy ring of I runs in time at most O(m6) if K(I) has m simplices.

As we have said in Section 1, in order to show an example of the computation
and visualization of the cohomology ring of simple 3D binary digital pictures, we
expose a small prototype called EditCup. We use a free program for building 3D
words. In our case, a world is a particular 3D simplicial complex K representing
a digital picture I considering the 14–adjacency. A way for distinguishing the
different maximal simplices of the simplicial complex associated with a simplicial
representation is by using different colours: red for tetrahedra, green for triangles,
blue for edges, and black for vertices. For visualizing (co)chains, the simplices on
which a given (co)chain is non–null, are lighted in a different color. On the other
hand, the “visualization” of any Z2–(co)homology class on the original binary
digital picture I is given by lighting the points of I such that the corresponding
vertices span simplices on which the representative cochain of this class (obtained
using our algorithm) is non–null.

Let us consider now the following pictures (see Figure 4): the torus (the
picture X) and the wedge of two topological circles and a topological 2–sphere
(the picture Y ). In order to compute the cup product, we need the simplicial
representation K and L of X and Y , respectively (see Figure 4). It is clear that
the (co)homology groups of X are isomorphic to those of Y . They are Z2, Z2⊕Z2
and Z2 in dimension 0, 1 and 2, respectively. Let us denote by a1, a2 and a3 the
representative cycles of the classes in H1(K) and H2(K), respectively; and by a′

1,
a′
2 and a′

3 the same in H1(L) and H2(L). We show the visualization of this cycles
in Figure 5. In Figure 6 we show the two representative cocycles u, v generating
H1(K) and the cup product w = u 	 v which is a representative cocycle of
H2(K). If we consider now the representative cocycles u′ and v′ generating
H1(L), and w′ generating H2(L) then [u′] 	 [u′] = [v′] 	 [v′] = [u′] 	 [v′] = 0.
We conclude that X and Y are not isomorphic.

Let us note that this multiplication table for the cohomology ring of K is
not suitable in general for topological classification tasks, due to the fact that
determining whether two rings are isomorphic or not by means of its respective
multiplication tables is an extremely difficult computational question. In order to
avoid this problem, we can put the information of the cup product in a matrix
form M (pairs of cohomology classes of dimension 1 × cohomology classes of
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Fig. 4. The cycles a1, a2 and a′
1, a′

2 (in yellow); and a3 and a′
3 (in green).

Fig. 5. The cocycles u, v and u′, v′ (in yellow); and w and w′ (in green).

dimension 2). From the diagonalization D of the matrix M , a first cohomology
invariant HB1(I) appropriate for distinguishing non–isomorphic binary digital
pictures with isomorphic (co)homology groups appears.

Definition 3. Given a 3D binary digital picture I, the cohomology invariant
HB1(I) is defined as the rank of the matrix M .

For example, the matrices corresponding to the cohomology rings of the pictures
X and Y are:

X ([u],[u]) ([u],[v]) ([v],[v])
[w] 0 1 0

Y ([u’],[u’]) ([u’],[v’]) ([v’],[v’])
[w’] 0 0 0

Therefore, HB1(X) = 1 and HB1(Y ) = 0.
In fact, more complicated topological invariants can be derived from the co-

homology ring in a similar way. Constructing these invariants is a very technical
matter and we will study it in detail in the near future. Nevertheless, we will
confine ourselves to say that these topological numbers can be directly generated
from the homology of a well–known chain complex in Homological Algebra: the
reduced bar construction of an algebra [12].
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Appendix: Basic Notions From Algebraic Topology

In this section we briefly explain the main concepts from Algebraic Topology we
use in this paper. Our terminology follows Munkres book [14].

The four types of non–empty simplices in R3 are: a 0–simplex which is a
vertex, a 1–simplex which is an edge, a 2–simplex which is a triangle and a 3–
simplex which is a tetrahedron. Considering an ordering on a vertex set V , a
q–simplex with vertices v0 < · · · < vq in V is denoted by 〈v0, . . . , vq〉. If i < q,
an i–face of σ is an i–simplex whose vertices are in the set {v0, . . . , vq}. A facet
of σ is a (q − 1)–face of it. A simplex is shared if it is a face of more than one
simplex. Otherwise, the simplex is free if it belongs to one higher dimensional
simplex, and maximal if it does not belong to any.

A simplicial complex K is a collection of simplices such that every face of a
simplex of K is in K and the intersection of any two simplices of K is a face of
each of them or empty. The set of all the q–simplices of K is denoted by K(q).
A subset K ′ ⊆ K is a subcomplex of K if it is a simplicial complex itself. Let
K and L be simplicial complexes and let |K| and |L| be the subsets of R3 that
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are the union of simplices of K and L, respectively. Let f : K(0) → L(0) be a
map such that whenever the vertices v0, . . . , vn of K span a simplex of K, the
points f(v0), . . . , f(vn) are vertices of a simplex of L. Then f can be extended to
a continuous map g : |K| → |L| such that if x =

∑
tivi then g(x) =

∑
tif(vi).

The map g is called a simplicial homeomorphism if f is bijective and the points
f(v0), . . . , f(vn) always span a simplex of L.

A chain complex C is a sequence · · ·Cq+1
∂q+1−→ Cq

∂q−→ Cq−1 · · · of abelian
groups Ci and homomorphisms ∂i, indexed with the integers, such that for all q,
∂q∂q+1 = 0 . A q–chain a ∈ Cq is called a q–cycle if ∂q(a) = 0. If a = ∂q+1(a′) for
some a′ ∈ Cq+1 then a is called a q–boundary. We denote the groups of q–cycles
and q–boundaries by Zq and Bq respectively, and define Z0 = C0. Since Bq ⊆ Zq,
define the qth homology group to be the quotient group Zq/Bq, denoted by Hq(C).
Given a ∈ Zq, the coset a + Bq is the homology class in Hq(C) determined by a.
We denote this class by [a].

Let C = {Cq, ∂q} and C′ = {C ′
q, ∂

′
q} be two chain complexes. A chain map f :

C → C′ is a family of homomorphisms {fq : Cq → C ′
q} such that ∂′

qfq = fq−1∂q .
A chain map f : C → C′ induces a homomorphism f∗ : H(C) → H(C′).

Let K be a simplicial complex. A q–chain a on K is a formal sum of simplices
of K(q). The q–chains form a group with respect to the component–wise addition
mod 2; this group is the qth chain group of K, denoted by Cq(K). The boundary of
a q–simplex σ = 〈v0, . . . , vq〉 is the formal sum: ∂q(σ) =

∑q
i=0〈v0, . . . , v̂i, . . . , vq〉

where the hat means that vi is omitted. By linearity, the boundary operator ∂q

can be extended to q–chains. The homology of K, denoted by H(K), is defined
by the homology of the chain complex C(K).

Let C = {Cq, ∂q} be a chain complex. Define the q–dimensional cochain group
of C by the equation: Cq(C) = {c : Cq → Z2 such that c is a homomorphism} .
The boundary operator ∂q+1 on Cq+1 induces the coboundary operator δq : Cq →
Cq+1 via δqc = c∂q+1. It follows that δqδq−1 = 0. In the obvious way, there are
also the dual notions of cocycles, coboundaries and cohomology of a cochain
complex C∗(C).

Given a simplicial complex K, Cq(K) denote the q–cochain group Cq(C(K)).
Observe that a q–cochain c can be defined on the q–simplices of K and it is
naturally extended to Cq(K). Define the cup product 	: Cp(K) × Cq(K) →
Cp+q(K) by the formula (c 	 c′)(σ) = c〈v0, . . . , vp〉 • c′〈vp, . . . , vp+q〉 , where
σ = 〈v0, . . . , vp+q〉 ∈ K(p+q). It induces an operation 	: Hp(K) × Hq(K) →
Hp+q(K) that is bilinear, associative, independent of the ordering of the vertices
of K and topologically invariant as follows: [c] 	 [c′] = [c 	 c′].
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