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Abstract. In this paper, we provide a graph-based representation of the
homology (information related to the different “holes” the object has)
of a binary digital volume. We analyze the digital volume AT-model
representation [8] from this point of view and the cellular version of
the AT-model [5] is precisely described here as three forests (connectiv-
ity forests), from which, for instance, we can straightforwardly deter-
mine representative curves of “tunnels” and “holes”, classify cycles in
the complex, computing higher (co)homology operations,... Depending
of the order in which we gradually construct these trees, tools so impor-
tant in Computer Vision and Digital Image Processing as Reeb graphs
and topological skeletons appear as results of pruning these graphs.

Keywords: digital volume, cell complex, chain homotopy, graph, tree,
forest, homology, cohomology.

1 Introduction

Finding a concise, yet geometrically and topologically faithful digital representa-
tion of a digital volume is at the core of several research themes in graphics. We
propose a new strategy for the design of succinct and efficient volume approxi-
mations. In [5], given a binary 26-adjacency voxel-based digital volume V , the
homological information (that related to n-dimensional holes: connected compo-
nents, “tunnels” and cavities) is extracted from a linear map (called homology
gradient vector field) acting on a polyhedral cell complex P (V ) homologically
equivalent to V . Based on that description, we define here a three-level graph
data structure for representing digital volumes. This connectivity encoding tech-
nique attempt to reduce the redundancy inherent in many popular representa-
tions of polyhedral or triangular meshes in 3D.

In this paper, we first develop an algebraic homological study for dealing with
special chain homotopies appearing in the technique developed in [5] for deter-
mining homology gradient vector fields for a binary voxel-based digital volume.
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From this study, we derive a graph-based representation of homology gvfs and,
finally, the problem of encoding the connectivity in 3D is solved here using a hi-
erarchical “cover” forest describing the homology of a cell continuous analogous
(cell AT-model) of the volume.

2 Chain Homotopies and Gradient Vector Fields

We work here with 3-dimensional cell complexes. The cells are typically poly-
hedra, polygons, line segments and points, in decreasing order of degrees. For
convenience, we call a cell of degree p a p-cell. Since the objects considered in
this paper are embedded in R3 then the homology groups vanish for dimensions
greater than 3 and they are torsion–free for dimensions 0, 1 and 2. Throughout
the paper, we consider that the ground ring is the finite field F2 = {0, 1}. Let K
be a three-dimensional cell complex. A q–chain a is a formal sum of simplices of
K(q). We denote σ ∈ a if σ ∈ K(q) is a summand of a. The q–chains form a group
with respect to the component–wise addition; this group is the qth chain group
of K, denoted by Cq(K). There is a chain group for every integer q ≥ 0, but for
a complex in R3, only the ones for 0 ≤ q ≤ 3 may be non–trivial. The boundary
map ∂q : Cq(K) → Cq−1(K) applied to a q–cell σ gives us the collection of all its
(q−1)–faces which is a (q−1)–chain. By linearity, the boundary operator ∂q can
be extended to q–chains. For the rest of the paper, we adopt the notation (K, ∂)
for representing a 3D cell complex. In the concrete case of a simplicial complex,
the boundary of a q-simplex defined in terms of vertices σ = 〈v0, . . . , vq〉 is de-
fined by: ∂q(σ) =

∑〈v0, . . . , v̂i, . . . , vq〉, where the hat means that vertex vi is
omitted. In our case, taking into account that the 3-cells of our cell complexes
can automatically be subdivided into tetrahedra, its boundary map can directly
be derived from that of the component tetrahedra. It is clear that ∂q−1∂q = 0. A
chain a ∈ Cq is called a q–cycle if ∂ q (a) = 0. If a = ∂q+1(a′) for some a′ ∈ Cq+1

then a is called a q–boundary. Define the qth homology group to be the quotient
group of q–cycles and q–boundaries, denoted by Hq(C). Let C = {Cq, ∂ q} and
C′ = {C′

q, ∂
′
q} be two chain complexes. A chain map f : C → C′ is a family of

homomorphisms {fq : Cq → C′
q}q≥0 such that ∂ ′

qfq = fq−1∂ q .
The following definitions are necessary in order to classify gradient vector

fields.

Definition 1. [3] Let (K, ∂) be a finite cell complex. A linear map of chains
φ : C∗(K) → C∗+1(K) is a combinatorial gradient vector field (or, shortly,
combinatorial gvf) over K if the following conditions hold:

1. For any cell a ∈ Kq, φ(a) is a q + 1-cell b.
2. φ2 = 0

If we remove the first condition, then φ will be called an algebraic gradient vector
field. If φ is a combinatorial gvf which is only non-null for a unique cell a ∈ Kq

and satisfying the extra-condition φ∂φ = φ, then it is called a (combinatorial)
integral operator [6]. An algebraic gvf satisfying the condition φ∂φ = φ is called
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an algebraic integral operator. An algebraic gvf satisfying the conditions φ∂φ = φ
and ∂φ∂ = ∂ will be called a homology gvf [5]. A gvf is called strongly-nilpotent if
it satisfies the following property: given any u ∈ Kq, and being φ(u) =

∑r
i=1 vi,

then φ(vi) = 0, ∀i. We say that a linear map f : C∗(K) → C∗(K) is strongly
null over an algebraic gradient vector field φ if given any u ∈ Kq, and being
φ(u) =

∑r
i=1 vi, then f(vi) = 0, ∀i.

Using homological algebra arguments, it is possible to deduce that a homology
gvf φ over K determines a strong algebraic relationship connecting C(K) and
its homology vector space H(K). Let us define a chain contraction (f, g, φ) :
(C, ∂) => (C′, ∂′) between two chain complexes as a triple of linear maps such
that f : C∗ → C′∗, g : C′∗ → C∗ and φ : C∗ → C∗+1 and they satisfy the following
conditions: (a) idC − gf = ∂φ + φ∂; (b)f g = idC′ ; (c) f φ = 0; (d) φ g = 0; (e)
φφ = 0.

Given a chain contraction (f, g, φ), it is an elementary homological algebra
result that Ker φ = Img + Imφ and Imφ is acyclic (i.e, it has null homology).

Proposition 1. Let (K, ∂) be a finite cell complex. A homology gvf φ : C∗(K) →
C∗+1(K) over K give raise to a chain contraction (f, g, φ) = (π, incl, φ) from
C(K) onto a chain subcomplex of it isomorphic to the homology of K. Recipro-
cally, given a chain contraction (f, g, φ) from C(K) to its homology H(K), then
φ is a homology gvf.

Let incl : Imπ → C(K) be the inclusion map. Let π = idC(K) − ∂φ − φ∂. This
chain map describe for each cell a representative cycle of the homology class asso-
ciated to this cell and satisfies that π2 = π. If Imπ = {x ∈ C(K), such that x =
φ(y) for some y} and Kerπ = {x ∈ C(K) such that φ(x) = 0}, then C(K) =
Imπ ⊕ Kerπ). Let f : C(K) → Im(π) be the corestriction of π to Im(π) (that
is, π : C(K) → Im(π)) and g : Im(π) → C(K) be the inclusion. Let ∂̃ be the
boundary operator of Im(π). We now prove that ∂̃ = 0. Taking into account that
idC(K) +gf = φ∂+∂φ, ∂∂ = 0 and ∂φ∂ = ∂, we then obtain ∂−∂gf = ∂. There-
fore, ∂gf = g∂̃f = 0. Since f is onto and g is one-to-one, we deduce that ∂̃ = 0.
That means that the so-called Morse complex associated to φ, Mφ,∂ = Imπ is
a graded vector space with null boundary operator isomorphic to the homology
H(K). 

The following proposition can be seen as an elementary boundary-perturbation
result.

Proposition 2. Let (K, ∂) be a finite cell complex and φ : C∗(X) → C∗+1(X)
be a homology gvf over K. If we consider a new boundary map ∂ + δ for C∗(X)
(that is,δ : C∗(K) → C∗−1(K) is a linear map satisfying (∂ + δ)2 = 0) such that
φδφ = 0 , then a new chain contraction (fδ, g, φ) = (π + φδ + δφ, incl, φ) from
C∗(K) onto the Morse complex Mφ,∂+δ = Im(π + φδ + δφ) (having in general, a
non-null boundary map δ + ∂φδ + δφ∂ + δφδ) can be established.

It is clear that

Proposition 3. In the conditions of Proposition 2 and if δφ = 0, then the
boundary map of Mφ,∂+δ is δ + ∂φδ.
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Naming π′ = π + φδ + δφ and being in general φδφ �= 0, then we have that
idC(K) + gf = φd+ dφ and, for an element x = π′(y), such that π′(y) �= (π′)2(y)
then

x+ π′(x) = (∂ + δ)φπ′(y) + φπ′(∂ + δ)(y).

In fact, an algebraic integral operator (non necessarily a homology gvf) φ over
K always determines a chain contraction from C(K) to Imπ (Morse complex
having in general a non-null boundary). If φ is an algebraic gvf which does not
satisfy in general the condition φdφ = φ, then we have idC(K) + gf = φd + dφ
and, for an element x = π(y), such that π(y) �= π2(y) then

x+ fg(x) = ∂φπ(y) + φπ∂(y).

Now, we can easily prove the following gvf-perturbation result:

Proposition 4. Let (K, ∂) be a finite cell complex and φ : C∗(K) → C∗+1(K)
be an algebraic gvf over K. If we consider a new algebraic gvf φ + ψ (that is,
ψ : C∗(K) → C∗+1(K) is a linear satisfying that (φ + ψ)2 = 0) such that
(φ+ψ) + (φ+ ψ)∂(φ+ ψ) = 0 , then a new chain contraction (fψ, g, φ+ ψ) =
(π + ψ∂ + ∂ψ, incl, φ) from C∗(K) onto the Morse complex Mφ+ψ,∂ = Im(π +
ψ∂ + ∂ψ) (having in general, a non-null boundary map ∂ + ∂(φ + ψ)∂) can be
established.

It is time to analyze an incremental technique for getting gvfs, using the previ-
ous elementary perturbation steps. In this way, the incremental technique gives
us a combinatorial gvf. Given a cell complex (K, ∂), the ordered set of cells
K = 〈c1, . . . , cm〉 is a filter if all the faces of the cell cj belong to the subset
〈c1, . . . , cj−1〉. It is possible to “filter” K by first considering all the 0-cells in a
certain order, then an order on all the 1-cells, and so on.

Algorithm 1. Let (K, ∂) be a finite cell complex with filter Km = 〈c0, . . . , cm〉.
We represent the cell complex K up to filter level i by Ki = 〈c0, . . . , ci〉, with
boundary map ∂i. Let Mi be a chain complex associated to Ki.
M0 := {c0}, φ0(c0) := 0.
For i = 1 to m do

Mi := Mi−1 ∪ {ci}, φi(ci) := 0,
If (∂i + ∂i−1φi−1∂i)(ci) = 0, then

For j = 0 to i− 1 do,
φi(cj) := φi−1(cj).

If (∂i + ∂i−1φi−1∂i)(ci) is
a sum of a kind

∑r
j=1 uj �= 0 (ui ∈ Mi−1), then:

Let us choose one cir from all the summands uk = fi(cik)
= (1 + φi−1∂ + ∂φi−1)(cik) such that φi−1(cir) = 0
and cir /∈ Imφi−1 and define φi(cir) := ci
and φi := φi−1 for the rest of elements of Mi−1.

Output: a combinatorial gradient vector field φm for K.
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The previous algorithm can be considered as an application of discrete Morse
techniques [3]. The following figure shows in a pictorial way the result of the
algorithm of a concrete cell complex. The gvf φm does not satisfy in general
that φm∂mφm = φm and it is necessary to “correct” this fact in order to get a
homology gvf.

Proposition 5. Let (K, ∂) a finite cell complex and φ : C∗(K) → C∗+1(K) a
gvf such that φ∂φ �= φ. Then, starting from φ it is possible to construct a chain
contraction connecting C(K) and Imπn (Morse cellular complex associated to
the gvf φ), where π = 1 + ∂φ+ φ∂.

Proof. If φ∂φ �= φ for a gvf φ over (K, ∂) , the translation of Forman’s work [3]
to the chain homotopy language is as follows:

1 + π = φ∂ + ∂φ

π + π2 = πφ∂ + ∂πφ

. . . . . .

πn−1 + πn = πn−1φ∂ + ∂πn−1φ

πn + πn+1 = πnφ∂ + ∂πnφ

Let us suppose that πn = πn+1, that is, πn(1 + π) = 0. This property, called
stabilization by Forman, can be satisfied, for example if (1 + ∂φ)n = 0. Then,
we get that

1 + πn = (
∑

πk)φ∂ + ∂(
∑

πk)φ,

and it is not difficult to prove that (πn, incl, (
∑n
k=0 π

k)φ) is a chain contraction
connecting C(K) and Imπn (Morse cellular complex associated to the gvf φ).

3 Graph Representation of a Homology Gradient Vector
Field

Using Discrete Morse Theory and its pictorial language, combinatorial gvfs can
be described in terms of directed graphs on the cell complex. For example, let
us take an integral operator φ such that φ(a) = c, a ∈ K0 and being a and b
the vertices of the 1-cell c. It is clear that φ can be represented by a directed
tree consisting in the edge c together with its vertices, such that the arrow on
c goes out from vertex a. Of course, the previous properties of a homology gvf
φi : Ci(K) → Ci+1(K) (i = 0, 1, 2) help us to suitably express all the φi in terms
of graphs.

Proposition 6. If φ : C(K) → C(K) is a homology gvf for a cell complex
(K, ∂) and we denote by H∂(K) and Hφ(K) the homology groups of K taking
respectively ∂ and φ as boundary maps on K (both satisfy the 2-nilpotency condi-
tion). Then, H∂(K) and Hφ(K) are isomorph. The maps h : H∂(K) → Hφ(K)
defined by h([c]∂) = [c+ ∂φ(c)]φ and k : Hφ(K) → H∂(K) defined by h([c]φ) =
[c+ φ∂(c)]φ specify this isomorphism.
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The following homology computation algorithm is given in[5]. It describes each
incremental step as a composition of chain contractions and provides a easy way
to prove that the final chain homotopy φm is strongly nilpotent.

Given a cell complex (K, ∂), the ordered set of cells K = 〈c1, . . . , cm〉 is a filter
if ci is a face of cj for i < j. It is possible to “filter” K by first considering all
the 0-cells in a certain order, then an order on all the 1-cells, and so on.

Algorithm 2. Let (K, ∂) be a finite cell complex with filter Km = 〈c0, . . . , cm〉.
We represent the cell complex K up to filter level i by Ki = 〈c0, . . . , ci〉, with
boundary map ∂i. Let Hi the homology chain complex (with zero boundary map)
associated to Ki.
H0 := {c0}, φ0(c0) := 0, π0(c0) := c0.
For i = 1 to m do

πi(ci) = ci = ci + φi−1∂i(ci),
Hi := Hi−1 ∪ {ci}, φi(ci) := 0,
If (∂i + ∂i−1φi−1∂i)(ci) = 0, then

For j = 0 to i− 1 do,
φi(cj) := φi−1(cj).

If πi−1∂i(ci) is
a sum of a kind

∑r
j=1 πi−1(esj ) =

∑r
j=1 uj �= 0 (ui ∈ Hi−1), then:

Let us choose a summand uk and define φ̃(uk) := ci
and zero for the rest of elements of Hi−1.
then For j = 0 to i− 1 do,

φi(cj) = (φi−1 + φ̃πi−1)(cj),
πi(cj) = [1Ki − φi∂i + ∂iφi](cj)

Hi := Hi \ {uk, ci}
Output: a homology gradient vector field φm

and the set of homology generators Hm for K.

The following result that can be easily proved using induction on i is the key
for determining the graph nature of a homology gradient vector field

Fig. 1. Zoom of the polyhedral cell complex associated to a digital volume and its
associated vertex tree
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Proposition 7. In the previous algorithm, the homology gradient vector field
φm is strongly nilpotent and the map πm = 1 + ∂φm + φm∂ is strongly null over
φm.

Proposition 8. Let (K, ∂) a finite cell complex and φ a strongly nilpotent ho-
mology gradient vector field on K with map π = 1 + ∂φ+ φ∂ being strongly null
over φ. Then, the following properties hold:

1. φ(u) can be represented as a path from u to a fixed u0 = (1 + φd+ dφ)(u).
2. If φ(u) = uv + φ̃(u), then φ(v) = φ̃(u).
3. The graph of consisting of all the paths φ(u), u ∈ K0 is a forest (as many

trees as connected components the object has).
4. If ∂φ(c− c′) = 0, then φ(c) = φ(c′), ∀ c, c′ ∈ Ki, i = 0, 1, 2.

In fact, these properties and the fact that Img has null homology guarantee
that Imφ in each level (levels 0 determined by the set φ(C0(K)), level 1 by
φ(C1(K)) and level 2 by φ(C2(K))) can be represented as a kind of “cover”
forest (F (φ)0, F (φ)1, F (φ)2) for the cell complex K. From level 0 to 1, the 1-
cells appearing as summands in φ(C0(K)) are the edges of the graph F (φ)0 and
all the 0-cells are the vertices. In fact, F (φ)0 is a spanning forest of the graph
defined by the vertices and edges of the cell complex K and it is called vertex
forest. From level 1 to 2, the rest of 1-cells of K not involved in F (φ)0 are the
vertices of the graph F (φ)1 (in fact, each edge is represented by its barycenter)
and the 2-cells which are summands in φ(C1(K)) generates the edges of F (φ)1
(in fact, they join the “vertices” of the graph F (φ)1). The critical 1-cells (that
is, the 1-cells u of K such that φ(u) = 0)are the vertices of F (φ)1 which are
isolated. If there is a 2-cell v = φ(u), for some 1-cell u such that the rest of
1-cells of its boundary belong to the set of edges of F (φ)0 or to the set of critical
1-cells, then v is represented in F (φ)1 by an edge connecting the vertex u with
the barycenter of v.

From level 2 to 3, the rest of 2-cells ofK not involved in F (φ)1 are the vertices
of the graph F (φ)2 (each 2-cell is represented by its barycenter) and all the 3-
cells which are summands in φ(C2(K)) generate the edges connecting them (if
two 2-cells share a 3-cell, then these “vertices” are connected by an edge). The
critical 2-cells (that is the 2-cells u of K such that φ(u) = 0)are the vertices of
F (φ)2 which are isolated. If there is a 3-cell v = φ(u), for some 2-cell u such that
the rest of 2-cells of its boundary belong to the set of edges of F (φ)1 or to the
set of critical 2-cells, then v is represented in F (φ)2 by an edge connecting the
vertex u with the barycenter of v.

4 Trees Encoding the Connectivity of Digital Volumes

In [5], given a binary 26-adjacency voxel-based digital volume V , the homo-
logical information (that related to n-dimensional holes: connected components,
“tunnels” and cavities) is extracted from a linear map (called homology gradient
vector field) acting on a polyhedral cell complex P (V ) homologically equivalent
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Fig. 2. A cell complex K and its corresponding forests F (φ)0, F (φ)1 and F (φ)2

Fig. 3. Topological skeleton of a trabecular bone

to V . As we have seen in the previous sections, this map can be represented
with no loss of information by three forests. This technique can be considered as
an appropriate generalization of the spanning tree technique (arising from the
graph theory) to three dimensions [13].

For a 3D binary digital image V , the choice of the filter and the choice of
the pair of cells in each step of the Algorithm 2 allows us to see Reeb graphs,
topological skeletons or other topological tools of V as results of pruning in the
connectivity forests determining the homology gradient vector field.
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